Physics 122 – Class #23 – (4/7/15)

- Announcements / Equation Abuse
- Resistance and Resistivity
- Drude Model of Conduction
- Series and Parallel Circuits
- •RC Circuits

Homework assignment from Hell

Week of 4/6/2015

Read ALL OF Chapter 31

Mastering Physics HW-OL-10 (Current) is posted.

MP includes problems: 30.9, 30.13, 19, 20, 21, 34, 43, 44, 46, 49

[Due Thursday 4/9/2015 at 11:59 pm]

Mastering Physics HW-OL-11 (Circuits) is posted.

MP includes problems (CH30): 30.23, 30.53 (EC), 30.55,

(CH31): 31.7, 31.8, 31.10, 31.11, 31.19, 20, 21, 28, 30, 31, 32, 34, 35, 36

(CH32): 32.9, 32,10, 14, 33, 34, 35, 36

[Due Sunday 4/19/2015 at 11:59 pm]

Art by Carlos.S americaslastdays.blogspot.com

Physicists are nice people

Physicists are nice people

- •We only torture wires, and transistors, and vacuums, and motors and "samples" ...
- •We also abuse equations.
 - Given any equation you can
 - Multiply it, Add to it, rearrange it, integrate it, differentiate it, exponentiate it, subtract other equations from it, divide other equations by it ...
 - We also abuse calculus and frequently "multiply" by dt

Why are half of you skipping recitation??

- Free points
- We're doing the homework
- Working in groups

Physics 122 – Class #23 – (4/7/15)

- Announcements / Equation Abuse
- Resistance and Resistivity
- Drude Model of Conduction
- Series and Parallel Circuits
- •RC Circuits

Metallic conductors (20°C)

 2.65×10^{-8} Aluminum 1.68×10^{-8} Copper 2.24×10^{-8} Gold 9.71×10^{-8} Iron 9.84×10^{-7} Mercury 1.59×10^{-8} Silver

Ionic solutions (in water, 18°C)

 3.9×10^{-4} 1-molar CuSO₄ 1.7×10^{-2} 1-molar HCl 1.4×10^{-4} 1-molar NaCl 2.6×10^{5} H_2O 0.70 Blood, human Seawater (typical) 0.22

Semiconductors (pure, 20°C)

Germanium 0.47Silicon 23.0 **Insulators**

 $10^{11} - 10^{14}$ Ceramics $10^{10} - 10^{14}$ Glass $10^{15} - 10^{17}$ Polystyrene $10^{13} - 10^{16}$ Rubber $10^8 - 10^{14}$ Wood (dry)

Resistance in terms of Resistivity P

$$R = \rho \frac{L}{A} = \frac{L}{\sigma A}$$

$$\rho = \frac{1}{\sigma}$$

The femoral artery is the large artery that carries blood to the leg. What is the resistance of a 20-cm-long column of blood in a 1.0 cm diameter femoral artery? The conductivity of blood is

$$\sigma_{\text{blood}} = 0.63 \frac{1}{(\Omega \cdot \mathbf{m})^{i}}$$

$$R = \rho \frac{L}{A} = \frac{L}{\sigma A}$$

$$\rho = \frac{1}{\sigma}$$

If you make a resistor with a length of copper wire of square cross-section with side 1 mm, how long a wire do you need to make a 3.2 Ohm resistor? $\rho_{copper} = 1.6 \times 10^{-8} \, \Omega \cdot m$

$$R = \rho \frac{L}{A}$$

- (A) 200,000 m
- (B) 160,000 m
- (C) 3.2 m
- (D) 100 m
- (E) 200 m

The Current Density in a Wire

The **current density** J in a wire is the current per square meter of cross section:

$$J = \text{current density} \equiv \frac{I}{A} = n_{\text{e}} e v_{\text{d}}$$

The current density has units of A/m².

Clicker

The current density in this wire is

- A. $4 \times 10^6 \,\text{A/m}^2$.
- B. $2 \times 10^6 \,\text{A/m}^2$.
- C. $4 \times 10^3 \,\text{A/m}^2$.
- D. $2 \times 10^3 \,\text{A/m}^2$.
- E. Some other value.

A cylindrical tube of seawater carries a total electric current of 350 mA. If the electric field in the water is 21 V/m, what is the diameter of the tube?

$$I = JA$$

$$J = \sigma E$$

Possible Confusion about Ch. 30-31

$$J = \sigma E$$
 $E = \frac{\sigma}{\epsilon_0}$

Sigma means conductivity in first formula, and surface charge density in second.

In Chapter 30, we calculate resistance of a wire:

$$R = \rho \frac{L}{A} = \frac{L}{\sigma A}$$

In Chapter 31, wires are assumed to have no resistance (only "resistors" have resistance)

Electric field in home wire?

You are using a cheap extension cord made of #14 copper wire (which has a 2 mm² cross sectional area). What is the electric field in the wire when you light a 100 Watt bulb?

$$\rho_{copper} = 1.6 \times 10^{-8} \Omega \cdot m$$

Going from Microscopic to Human Scale

$$V_{+}$$
 \overrightarrow{E}
 \overrightarrow{I}
 \overrightarrow{A}
 \overrightarrow{I}
 \overrightarrow{A}
 \overrightarrow{I}
 \overrightarrow{A}
 \overrightarrow{A}

$$\vec{J} = \sigma \vec{E}$$

$$E = \frac{V}{L}$$

$$J = \frac{I}{A}$$

$$R = \frac{L}{\sigma A}$$

$$V = IR$$

Definition of Voltage for constant Electric field

Definition of Current density

Relation between resistance And resistivity

Engineers form of Ohm's Law

Going from Microscopic to Human Scale

$$\vec{J} = \sigma \vec{E}$$
 $E = \frac{V}{L}$ $J = \frac{I}{A}$ $R = \frac{L}{\sigma A} \rightarrow \sigma = \frac{L}{RA}$

$$V_{+}$$
 \vec{E}
 \vec{I}
 \vec{I}
 \vec{I}
 \vec{I}
 \vec{I}
 \vec{I}
 \vec{I}

$$\frac{I}{A} = \frac{L}{RA} \frac{V}{I}$$

$$I = \frac{1}{R}V \rightarrow V = IR \ Ohm's Law$$

Physics 122 – Class #23 – (4/7/15)

- Announcements / Equation Abuse
- Resistance and Resistivity
- Drude Model of Conduction
- Series and Parallel Circuits
- •RC Circuits

Microscopic view of resistivity

"Free electron gas" model (also called Drude model) of a metal.

You can derive Ohm's law by assuming a metal is a box full of loose electrons that bump into "scattering centers" every τ seconds.

Parabolic paths

Electric Field

Microscopic view of resistivity

- In the presence of an electric field, the electric force causes electrons to move along parabolic trajectories between collisions.
- Because of the curvature of the trajectories, there is a slow net motion in the "downhill" direction.

Drude Model of Resistance

- The graph
 shows the speed
 of an electron
 during multiple
 collisions.
- The average drift speed is

$$v_{\rm d} = \frac{e\tau}{m}E$$

n charges/unit volume, each charge q

This volume contains charge $\Delta Q = nALq$.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$\Delta Q = n A \vec{v}_d \Delta t q$$

$$I = n q \vec{v}_d A$$

$$\vec{J} = n q \vec{v}_d$$
 $\vec{I} = \vec{J} \cdot \vec{A}$

Drude Model of Conductance

You can derive Ohm's law by assuming a metal is a box full of loose electrons that bump into "scattering centers" every T Seconds. (Tau is < 1 picosecond for most solids at room temp.)

$$\vec{J} = nq\vec{v}_d = nqa\tau = \frac{nq^2\tau}{m}\vec{E} = \sigma\vec{E}$$

Derived electrical resistance from Classical Mechanics!

$$\sigma = \frac{n q^2 \tau}{m}$$

In semiconductor, n is small, so $\sigma = \frac{n \, q^2 \tau}{m}$ rho is larger than a conductor. In insulator, n is nearly zero.

$$\rho = \frac{\mathbf{m}}{\mathbf{n} \, \mathbf{q}^2 \, \tau}$$

 $\rho = \frac{m}{n\,q^2\,\tau} \quad \text{In ionic conductor, m is larger (ions not electrons) so conductivity is}$ Lower.

A semiconductor may be "doped"

Typical drift velocity

$$I = 5.0 \text{ A}$$

$$n = 1.1 \times 10^{29} \text{ m}^{-3}$$

$$A = 1.0 \text{ mm}^{2}$$

$$A = 1.0 \text{ mm}^{2}$$

$$A = 7$$
Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$I = n q \vec{v}_d A$$

Physics 122 – Class #23 – (4/7/15)

- Announcements / Equation Abuse
- Resistance and Resistivity
- Drude Model of Conduction
- Series and Parallel Circuits
- •RC Circuits

Series circuits: Same current in every part of circuit Voltage drops at every resistor

Series circuits:

Same current in every part of circuit. Voltage drops at every resistor.

Series circuits: All light bulbs equally bright

Parallel circuits: Same voltage drop across resistors. Current splits between resistors.

$$\frac{1}{R_{\text{equivalent}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Parallel circuits: Same voltage drop across resistors. Current splits between resistors.

Clickers: A 2.0 Ω resistor is in series with a 6.0 Ω resistor. If the 2.0 Ω resistor has a current of 1.0 Amp, what is the current through the 6.0 Ω resistor?

[A] also 1.0 Amp

[B] 0.333 Amp

[C] 6.0 Amps

[D] 3.0 Amps

[E] Need more information to decide.

In the circuit shown, the two bulbs *A* and *B* are identical. Compared to bulb *A*,

- A. bulb B glows more brightly
- B. bulb B glows less brightly
- C. bulb B glows just as brightly
- D. answer depends on whether the mobile charges in the wires are positively or negatively charged

рНеТ

http://phet.colorado.edu/en/simulation/circuit-construction-kit-dc

In the circuit shown in (a), the two bulbs A and B are identical. Bulb B is removed and the circuit is completed as shown in (b). Compared to the brightness of bulb A in (a), bulb A in (b) is

- A. brighter
- B. less bright
- C. just as bright
- D. any of the above

Physics 122 – Class #23 – (4/7/15)

- Announcements / Equation Abuse
- Resistance and Resistivity
- Drude Model of Conduction
- Series and Parallel Circuits
- •RC Circuits

RC Circuits

A circuit with both a resistor and a capacitor in it is called an "RC-circuit".

A circuit of pure resistors comes to equilibrium in less than a picosecond.

RC circuits have a characteristic time $(\tau = RC)$ Before they reach equilibrium.

For the Biology majors ... (or anyone with neurons)

Try Googling "RC model of a neuron".

If capacitor begins charged

$$\mathbf{Q}_{C} = \mathbf{Q}_{0} \mathbf{e}^{-t/RC}$$

$$\mathbf{V}_{C} = \mathbf{V}_{0} \mathbf{e}^{-t/RC}$$

$$\mathbf{I} = \mathbf{I}_{0} \mathbf{e}^{-t/RC}$$

Is an Ohm Farad really a second?

$$Q=CV \rightarrow C = \frac{Q}{V} \rightarrow [Farad] = \frac{[Coul]}{[Volt]}$$

$$V=IR \rightarrow R = \frac{V}{I} \rightarrow [Ohm] = \frac{[Volt]}{[Amp]}$$

$$RC=[Ohm][Farad] = \frac{[Volt]}{[Amp]} \times \frac{[Coul]}{[Volt]}$$

$$RC = \frac{[Coulomb]}{[Amp]} = \frac{[Coul]}{[Coul/second]} = seconds!_{\iota}$$

If capacitor begins charged ...

$$V + IR = 0 \rightarrow \frac{Q}{C} + \frac{dQ}{dt}R = 0$$

If capacitor begins charged ...

$$V+IR=0 \rightarrow \frac{Q}{C} + \frac{dQ}{dt}R=0$$

$$\frac{dQ}{dt} = -\frac{Q}{RC}$$

$$\frac{dQ}{Q} = -\frac{dt}{RC}$$

$$\int \frac{dQ}{Q} = -\frac{1}{RC} \int dt$$

$$\ln Q = -\frac{t}{RC}$$

$$Q = -\frac{C}{RC}$$

$$V_{C} = \frac{Q_{0}}{C} e^{-t/RC}$$

What is I(t)?

Given
$$Q(t)=Q_0e^{-t/RC}$$

And
$$I(t) = \frac{-dQ}{dt}$$

What is I(t) ?

$$[A] Q_0 e^{-t/RC}$$

$$[B] Q_0 RCe^{-t/RC}$$

$$[C] - Q_0 RC e^{-t/RC}$$

$$[D] \frac{1}{RC} e^{-t/RC}$$

$$[E] \, \frac{Q_0}{RC} e^{-t/RC}$$

RC Circuits

RC circuits have a characteristic time $(\tau = RC)$ Before they reach equilibrium. Note that R and C never appear alone

A 200 k Ω resistor is in series with C=10 μ F. A t=0, the voltage on the capacitor is 8 V. What is the voltage on the capacitor and the current through the resistor after 1 sec, 2 sec and 4 seconds?

A 200 k Ω resistor is in series with C=10 μ F. A t=0, the voltage on the capacitor is 8 V. What is the voltage on the capacitor and the current through the resistor after 1 sec, 2 sec and 4 seconds?

$$\begin{split} I &= I_0 e^{-t/RC} & I = \frac{V_0}{R} e^{-t/RC} \\ V &= V_0 e^{-t/RC} \\ RC &= (2.0 \times 10^5 \,\Omega) (1.0 \times 10^{-5} \,F) \\ V(4) &= 8 \, e^{-4.00 \, s/2.00 \, s} \, \, Volts \end{split}$$

Time for pHeT (AC Circuits Lab)

In this circuit, where capacitor begins charged

$$\mathbf{V}_{\mathbf{C}} = \mathbf{V}_{0} \mathbf{e}^{-t/\mathbf{RC}}$$

$$I = I_0 e^{-t/RC}$$

Find the resistance needed in an RC circuit to discharge a 20 $\,\mu\,F$ capacitor to 55% of full charge in 140 ms.

Find the resistance needed in an RC circuit to discharge a 20 µF capacitor

to 55% of full charge in 140 ms.

$$Q_C = Q_0 e^{-t/RC}$$

$$0.55Q_0 = Q_0 e^{-t/RC}$$

$$0.55 = e^{-t/RC}$$

$$ln(0.55) = ln(e^{-t/RC})$$

$$-0.597 = \frac{-t}{RC}$$

$$R = \frac{t}{0.597C}$$

$$R = \frac{1.40 \times 10^{-1} \text{ s}}{0.597 \cdot 2.0 \times 10^{-5} \text{ F}}$$

$$R=11.74 k\Omega$$

RC Circuits Demo