Physics 122 – Class #11 – Outline

- Announcements
- Coulomb's Law
- •Interferometer
- Interference
 - Single slit
 - Huyghens principle

Reading - This Week

ALL of Chapter 25 ...
It is key to rest of course.

Next Week - Chapter 26

Main Concepts - Ch 25.

Coulomb's Law, Charge, Electric Field Applies to lab

Chance to catch up ... (HW due a week from Thursday)

Exam #1 THURSDAY 2/19/2014 ... in CLASS

Covers Ch. 20, 21, 22, 23
Review Homework
Review Workbook (recitation questions)

One 3x5 card. One side. With equations only. No words / no pictures. Card submitted with exam.

From single slit to diffraction grating ...

Diffraction and small angle approximation

Exact: $dsin\theta_m = m\lambda$

Approximate: $d\theta_{m} \sim m\lambda \rightarrow \theta_{m} = m\frac{\lambda}{d}$

Exact: $y_m = L \tan \theta_m$

Approximate: $y_m \sim L \sin \theta_m$

$$y_m \sim Lm \frac{\lambda}{d}$$

Taylor series and small angle approximation

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} \dots$$

$$\tan \theta = \theta + 2 \frac{\theta^3}{3!} + 16 \frac{\theta^5}{5!} + \dots$$

Single slit diffraction

Light from different Parts of a single slit interferes with itself Destructive Condition:

$$\frac{a}{2}\sin\theta = \lambda/2$$

 $a\sin\theta = m\lambda$

Analyzing Single-Slit Diffraction

Greatly magnified view of slit **Initial** wave front Slit width a

The wavelets from each point on the initial wave front overlap and interfere, creating a diffraction pattern on the screen.

- The figure shows a wave front passing through a narrow slit of width a.
- According to Huygens' principle, each point on the wave front can be thought of as the source of a spherical wavelet.

Huyghens Principle

- Every point on a wave can be considered a new source for a spherical wave.
- Add up all the spherical waves to find out what diffraction pattern you get.

Huyghens

Huyghens

Huyghens principle in action ... watch time dependence of wave

Single slit

A slit is 2.8 microns wide and an infrared laser with wavelength 2 microns shines through it. At what angle is the first null?

- (A) 30 degrees
- (B) 45 degrees
- (C) 60 degrees
- (D) 90 degrees
- (E) There is no first null

Single slit

A slit is 2.8 m wide and a water wave with wavelength 2 microns passes through it. At what angle is the first null?

Clicker Questions

A laboratory experiment produces a double-slit interference pattern on a screen. If the left slit is blocked, the screen will look like

Michelson Interferometer

Youtube tsgphysics michelson LIGO Grav Wave Observatory

Can measure displacements a tiny fraction of wavelength of light.

Apps:

Small indexes of refraction

Nano-controllers grav-wave detection. Relativity

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Problems

Find the wavelength of light used in a Michelson interferometer if 550 bright fringes go by a fixed point when the mirror moves 0.15 mm.

$$\Delta x = 2\Delta L \quad \Delta x = m\lambda$$

$$\Delta = \frac{2\Delta L}{m} = \frac{2 \times 1.5 \times 10^{-4} \text{ m}}{550}$$

Problems

22-65) One arm of a Michelson interferometer is 42.5 cm long and enclosed in a box that can be evacuated. 388 fringes pass a point when the air is pumped out. For 641.6 nm laser light, what is the refractive index of air?

Ch. 22: Interference and Diffraction

 $d \sin \theta = m \lambda$

Condition for constructive interference between slits separated by "d".

 $a \sin \theta = m \lambda$

Condition for destructive interference for single slit of width "a".

In general: Phase difference of 2 pi m or path difference of lambda, constructive interference.

Coulomb's Law

$$F = k \frac{q_1 q_2}{r^2}$$

$$k = \frac{1}{4\pi\epsilon_0} \qquad k = 9.0 \times 10^9 \,\mathrm{N \, m^2/C^2}$$

Coulomb = 6.242×10^{18} electrons

 $Mole = 6.02 \times 10^{23}$ atoms

Making Connections

What does Coulomb's law remind you

of?
$$F = k \frac{q_1 q_2}{r^2}$$

- (A) Christopher Co(u)lombus
- (B) $E = m c^2$
- (C) The combined gas law $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$
- (D) F=ma
- (E) Newton's law of gravity $F = -G \frac{m_1 m_2}{r^2}$

Coulomb's Law (and gravitation)

$$F = k \frac{q_1 q_2}{r^2}$$

$$F = -G \frac{m_1 m_2}{r^2}$$

$$k = \frac{1}{4\pi\epsilon_0}$$

$$k=9.0\times10^9 \,\mathrm{N\,m^2/C^2}$$

 $G=6.67\times10^{-11} \,\mathrm{N\,m^2/kg^2}$

Coulomb's Law (and gravitation) – With vectors

$$\overrightarrow{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \widehat{r}_{12}$$
 $\overrightarrow{F}_{12} = -G \frac{m_1 m_2}{r_{12}^2} \widehat{r}_{12}$

$$k = \frac{1}{4\pi\epsilon_0} \qquad k = 9.0 \times 10^9 \,\text{N m}^2/\text{C}^2$$

$$G = 6.67 \times 10^{-11} \,\text{N m}^2/\text{kg}^2$$

 F_{12} Means force that particle one exerts on particle 2.

 Γ_{12} Is a unit vector that points from particle 1 to particle 2

Chapter 25 key concepts

Coulomb's law Principle of superposition.

Coulomb's Law – What is the force on an electron in a hydrogen atom?

$$F = k \frac{q_1 q_2}{r^2}$$

$$k = \frac{1}{4\pi\epsilon_0} \qquad k = 9.0 \times 10^9 \,\mathrm{N \, m^2/C^2}$$

Coulomb = 6.242×10^{18} electrons

Electron(e)=
$$1.6\times10^{-19}$$
 C

Proton and electron have same magnitude, opposite sign charges.

Forces in Hydrogen atom

A hydrogen atom is composed of a proton and an electron with equal charges. The proton has roughly 1800 X the electron mass.

Compare the forces on electron and proton.

- (A) The electron feels a greater force because it orbits the nucleus.
- (B) The proton feels a greater force because it is larger and has a larger surface area.
- (C) Depends on whether the atom is in a molecule.
- (D) The electron and proton feel the same force because coulomb's law is symmetrical.

The unit vector \hat{r} always points away from q_1 .

$$\vec{F}_{12} = \frac{kq_1q_2}{r^2}\,\hat{r}$$

 q_1

 \vec{F}_{12}

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Field Model

- The photos show the patterns that iron filings make when sprinkled around a magnet.
- These patterns suggest that space itself around the magnet is filled with magnetic influence.
- This is called the magnetic field.
- The concept of such a "field" was first introduced by Michael Faraday in 1821.

The Field Model

- A field is a function that assigns a vector to every point in space.
- The alteration of space around a mass is called the gravitational field.
- Similarly, the space around a charge is altered to create the electric field.

In the Newtonian view, A exerts a force directly on B.

In Faraday's view, A alters the space around it. (The wavy lines are poetic license. We don't know what the alteration looks like.)

Particle B then responds to the altered space. The altered space is the agent that exerts the force on B.

The Electric Field

• If a probe charge (or test charge) "q" experiences an electric force at a point in space, we say that there is an electric field \vec{E} at that point causing the force.

$$\vec{E}(x, y, z) \equiv \frac{\vec{F}_{\text{on } q} \text{ at } (x, y, z)}{q}$$

The units of the electric field are N/C. The magnitude E of the electric field is called the **electric field strength.**

The Electric Field of a Point Charge

Using unit vector notation, the electric field at a distance r from a point charge q is:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

- A negative sign in front of a vector simply reverses its direction.
- The figure shows the electric field of a negative point charge.

