Physics questions?
Outline

(1) HW

(2) Announce

(3) Friction and Newton's Laws in 2-D
 ▪ “Non-obvious” single forces

(4) Circular Motion

(5) Chandeliers
Friction is temporary bonding

Friction results from these regions where surfaces adhere.

\[f_k = \mu_k n \]
\[f_s \leq \mu_s n \]
Problem 4.45 – “A bat crashes into a subway train”
Announcements

Grade update – see next slides.

If you number is in bold – you missed a quiz or more.

The people who have started the homework are the people who have 'A's

Clicker tubs are now available. You can leave clickers if you label with a
Getting Help

Workman Room 110 – Grad. student help (see yellow cards for schedule)

Fidel student center, 2nd floor,
Advising resource center – 6-8 pm
Tuesday (and Wednesday 6-8 pm)

Clicker tubs are now available. You can leave clickers if you label with a number – or not.

Missing persons - Steven Asher and Gael Tawatieu-Yota – please come see me.
Consider a lawnmower of weight w which can slide across a horizontal surface with a coefficient of friction μ. In this problem the lawnmower is pushed using a massless handle, which makes an angle θ with the horizontal. Assume that F_h, the force exerted by the handle, is parallel to the handle.

Take the positive x direction to be to the right and the positive y direction to be upward.

Express the required force in terms of given quantities:

$$F_h = \mu w \cos \theta \sqrt{\theta}$$

Part A

Find the magnitude, F_h, of the force required to slide the lawnmower.

Part B

This part will be visited later.
\(\theta = 30^\circ, \ T = 1000 \text{ N}, \ m = 200 \text{ kg}, \ \mu_k = 0.1, \ a = ? \)

\(\theta = 30^\circ, \ T = 1000 \text{ N}, \ m = 200 \text{ kg}, \ \mu_s = ?, \ a = 0 \)
Tires are as important as engine for a drag racer.
Uniform circular motion
An object moves at a constant speed in a clockwise direction around a circular track. The geometrical center of the track is at point O. When the object is at point P, which arrow shows the direction of the object’s acceleration vector?

A. arrow #1 (directly away from O)
B. arrow #2 (perpendicular to track)
C. arrow #3 (in direction of motion)
D. arrow #4 (directly toward point O)
You are driving your car (mass \(m \)) at a constant speed \(v \) around a flat, unbanked curve of radius \(R \).

Which of the following forces should be included in a free-body diagram for the car?

A. an outward centrifugal force of magnitude \(\frac{mv^2}{R} \)
B. an inward centripetal force of magnitude \(\frac{mv^2}{R} \)
C. the force of the car’s acceleration
D. two of the above
E. none of the above
You are driving your car (mass \(m \)) at a constant speed \(v \) around a banked curve of radius \(R \) and bank angle \(\beta \) (measured from the horizontal).

Which of the following forces *should* be included in a free-body diagram for the car?

A. a normal force that points vertically upward

B. a normal force that points at an angle \(\beta \) from the vertical

C. a normal force that points at an angle \(\beta \) from the horizontal

D. an outward centrifugal force of magnitude \(mv^2/R \)

E. more than one of the above
Figure 5.29

The diagram shows a 10 kg block suspended from a cable that forms a 45° angle with the vertical.
For a 20 kg pack, what is tension in each rope?

If yield strength of rope is 2000 N, how hard must bear pull to get sardines?
A car engine is suspended from a chain linked at O to two other chains. Which of the following forces *should* be included in the free-body diagram for the engine?

A. tension T_1
B. tension T_2
C. tension T_3
D. two of the above
E. all of T_1, T_2, and T_3
Science teachers ride the vomit comet

http://www.youtube.com/watch?v=iCAzo-wTxiU&NR=1
Astronauts in orbit are weightless because:

-a- gravity ends at the edge of Earth's atmosphere.

-b- they are too far from the center of Earth for gravity to affect them much.

-c- they are closer to the moon which mostly balances Earth's pull.

-d- they aren't weightless, they're just falling.

-e- there are good special effects on that “space set” in Arizona that NASA has been using for years.