
A Balloon Born Instrument for Measuring Three

Dimensional
Charge Movement in Thunderstorms

by

John D. Battles

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Physics

with a Specialization in Instrumentation

New Mexico Institute of Mining and Technology

Socorro, New Mexico

August, 2005

ABSTRACT

ACKNOWLEDGMENT

This thesis was typeset with LATEX1 by the author.

1 LATEX document preparation system was developed by Leslie Lamport as a special

version of Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of

the American Mathematical Society. The LATEX macro package for the New Mexico Institute

of Mining and Technology thesis format was adapted from Gerald Arnold’s modification of

the LATEX macro package for The University of Texas at Austin by Khe-Sing The.

ii

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

1. Instrument History, Theory, and Goals 1

1.1 Thunderstorm Electric Field Measurement History 1

1.2 Basic Thunderstorm Charge Distribution Models 1

1.3 E-sonde Theory of Operation 1

1.4 Science Goals of the E-sonde Project 1

2. System Hardware 2

2.1 Overview . 2

2.1.1 Complete E-sonde System 2

2.2 Sonde Layout External . 8

2.2.1 Sonde Package . 8

2.2.2 Sonde User Interface . 11

2.3 Sonde Layout Internal . 14

2.4 E-field Sensors . 18

2.4.1 Sensor Layout . 18

2.4.2 Electrode Design . 18

2.5 E-field Sensor Board . 21

2.5.1 Charge Amplifier Basics 21

iii

2.6 A/D . 27

2.7 A/D Signal Conditioning Board 29

2.8 CPU and Storage . 30

2.9 Magnetometer . 34

2.10 GPS . 37

2.11 Power Control Board . 40

2.12 Radio TX/Sensor Board . 43

2.13 Amplifier Board . 47

2.14 Batteries . 49

2.15 Interface and Control . 52

3. Software 54

3.1 Operating System . 54

3.2 System Time NTP Daemon . 55

3.3 Transmit Control Program . 56

3.3.1 Program description . 56

3.3.2 Program command line options 62

3.3.3 Program revision control 63

3.3.4 Program dependencies 63

3.4 Receive Program . 63

3.4.1 Program Purpose . 63

3.4.2 Program Operataion . 67

3.4.3 Program command line options 71

3.4.4 Program Function map 71

3.4.5 Program revision control and compile instructions 73

iv

3.5 Instrument Test Programs . 73

3.6 Graphical Balloon Tracking . 73

3.7 Preflight Procedures . 74

3.8 Data Analysis Programs . 74

4. Testing and Calibration 75

5. Flight Results 77

6. Data Analysis 81

A. System Configuration 82

A.1 Communication Ports . 82

B. Pebble Linux Installation and Setup 84

C. DSCUD Driver Installation 94

D. NTP Daemon Checkout Procedures 97

E. Log and Data File Naming Convention and Format 99

F. Makefile, Function locations, and File Dependencies 104

G. Balloon E-field,B-field, and Coordinate System 108

REFERENCES 114

v

LIST OF TABLES

2.1 Channel allocation and sample rate for the A/D converter. . . . 28

2.2 PC/104 CPU Specifications. 31

2.3 Magnetometer Specifications. 36

2.4 GPS Specifications. 38

2.5 Radio modem specifications . 43

2.6 Radio amplifier specifications 47

2.7 AA Lithium Battery Specification 49

2.8 9V Battery Specification . 49

vi

LIST OF FIGURES

2.1 E-sonde system diagram. 2

2.2 Picture of the E-sonde tracking antenna. 4

2.3 Picture of the entire balloon train in flight. 5

2.4 Picture of the E-field sonde package. 9

2.5 Picture of sonde outer shell open showing internal plates. 10

2.6 Picture of bottom plate of sonde with user interface. 11

2.7 Status LED panel diagram. 12

2.8 E-Sonde system block diagram. 14

2.9 E-Sonde with shells removed showing major component locations. 15

2.10 Picture of threaded rods that plates are mounted to. 16

2.11 Sonde outer shells showing location of electrodes. 19

2.12 Close-up picture of electric field sensor plate. 20

2.13 Schematic of basic charge amplifier. 21

2.14 Block diagram of a single e-field sensor circuit. 22

2.15 Schematic of a single electric field sensor circuit. 24

2.16 PCB mask for e-field sensor board. 25

2.17 E-field and signal conditioning boards mounted to plate. 26

2.18 Block diagram of data acquisition system. 27

vii

2.19 Schematic of A/D signal conditioning circuit. 29

2.20 Prometheus CPU board mounted to plate. 32

2.21 Compact Flash and IDE interface board mounted to plate. . . . 33

2.22 Magnetometer board mounted to plate. 35

2.23 Garmin GPS-35 LVS mounted to sonde top cover. 38

2.24 Schematic of GPS connection to system with PPS filter circuit. 39

2.25 Power regulation and distribution board mounted to plate. . . . 40

2.26 Schematic diagram of power control board.. 42

2.27 Radio modem, pressure and temperature sensor board mounted

to plate. 45

2.28 Schematic of radio modem, pressure and temperature sensor board. 46

2.29 1 Watt RF amplifier board mounted to plate. 48

2.30 Two 4xAA 6V Battery Packs. 50

2.31 9V and 4xAA 6V Battery Packs. 51

2.32 Picture of the inside of the E-sonde’s bottom plate. 53

3.1 Block diagram of balloon tx program function names and purpose. 60

3.2 Flowchart diagram for balloon tx program. 61

3.3 Block diagram of balloon rx program showing basic functionality. 64

3.4 Screenshot of balloon rx program running.. 67

3.5 Block diagram of balloon rx program function names and purpose. 72

viii

3.6 Telemetry and tracking map screen during a flight. 73

4.1 Plot of transfer function for e-field sensor board. 75

4.2 Transfer function plot of e-field board showing detail up to 20

kHz. 76

5.1 Comparison of altitude from GPS and pressure sensor with tem-

perature. 77

5.2 Comparison of altitude from GPS and pressure sensor with tem-

perature. 78

5.3 Comparison of altitude from GPS and pressure sensor with tem-

perature. 79

6.1 E-fields vs. LMA distance for August 18,2004 20:18:24. 81

A.1 Serial port configuration diagram for E-sonde. 82

A.2 Serial port configuration diagram for receive station. 83

F.1 Block diagram of file dependencies. 105

ix

This thesis is accepted on behalf of the faculty of the Institute by the following

committee:

Richard R. Sonnenfeld,Advisor

John D. Battles Date

CHAPTER 1

Instrument History, Theory, and Goals

1.1 Thunderstorm Electric Field Measurement History

Cover history of ground and balloon based electric field sensors.

1.2 Basic Thunderstorm Charge Distribution Models

Talk about basic charge mechanisms and simplified storm models.

[Krehbiel et al., 1979]

1.3 E-sonde Theory of Operation

Describe how the slow electric field antenna works. Derive Mathe-

matical equations for E-field to Voltage.

1.4 Science Goals of the E-sonde Project

Describe what is to be measured and how it will enhance knowledge

of storms.

1

CHAPTER 2

System Hardware

2.1 Overview

2.1.1 Complete E-sonde System

Tracking Antenna/
Radio Modem

Pre−flight
Computer

Fiber
Serial to

Serial
Fiber to

Tracking
Computer

E−sonde

Fiber Cable LX200

Figure 2.1: E-sonde system diagram.

The E-sonde system is composed of the balloon train, tracking com-

puter, tracking antenna, and preflight computer. The preflight computer is

notebook PC running a communication program called Minicom under the

Linux OS. It is connected to the DB-9 serial port at the bottom of the E-sonde.

See Figure 2.6 on page 11. When the E-sonde is first turned on all the boot-up

information can be seen and controlled from the terminal program which is

running in VT100 emulator mode. In addition to the OS boot sequence the

CMOS setup can be accessed and changed if necessary. Once the system boots

2

3

the preflight operator can login and perform the preflight operations described

in section 3.7 on page 74.

The tracking computer is used to control the tracking antenna and

record and display telemetry information from the E-sonde. A real-time map is

displayed showing the E-sonde’s location. Figure 3.6 on page 73 shows a picture

of the tracking computers screen during a flight. The tracking computer is also

used during pre-launch to verify all operational parameters are normal.

The tracking antenna shown in Figure 2.2 on page 4 is used to receive

the telemetry signal of the E-sonde. The antenna is a 900 MHz yagi antenna

mounted on a Meade LX-200 azimuth and elevation telescope mount. Attached

to the antenna is a Maxstream 900 MHz radio modem and a counterweight.

The antenna system is connected to the tracking computer via a pair of fiber

optic transceivers which convert fiber to RS-232 serial data. The up-link from

the computer to the telescope is 4800 baud 8N1 and the down link from the

Maxstream modem to the tracking computer is 19.2K baud 8N1.

Below the antenna is a white box which houses a 12V Optima Bluetop

deep-cycle marine battery to power the telescope and the Maxstream modem.

It also houses the fiber to RS-232 transceiver and its 9V battery supply. Two

fiber cables 30 meters long run through 1 in. PVC pipe connected the two

transceivers together.

The balloon train consist of several pieces show in figure 2.3 on page

5. At the top of the train providing the lift is a polyethylene balloon filled with

helium. The balloon was filled to have a lifting capacity of 7.3 kg kilograms.

Attached to the balloon is a cut down package. The cut down package

4

Figure 2.2: Picture of the E-sonde tracking antenna.

5

Balloon
Polyethelene

Backup Tracking
Package

Esonde

Damper

Parachute

Cut Down Package
(hidden under chute)

Figure 2.3: Picture of the entire balloon train in flight.

6

has a timer and an pressure based altitude sensor. If either the timer expires

or a predetermined altitude is reached the package heats up a wire which melts

a mono-filament string connecting the parachute and lower parts of the train

to the balloon. This is to prevent the E-sonde package from landing too far

away from the launch site. The timer was set to 43 minutes and the altimeter

to a pressure of fixme mbar.

The parachute was constructed of nylon and used to slow the de-

scent velocity of the E-sonde to 10 m/s before hitting the ground. Below the

parachute was a small plastic ring. The purpose of the ring was to keep the

parachute’s cords from tangling and to make sure the chute filled with air.

After the parachute was a backup tracking package. It consisted of a

GPS, battery, 70 cm ham radio and micro-controller. The package transmitted

GPS coordinates using 1200 baud AFSK modulation in the APRS format on a

frequency of fixme. The purpose of this package was to enable location of the

E-sonde if the E-sonde stopped transmitting its telemetry position information

during the flight.

The damper sits between the backup tracking package and the E-

sonde. It’s purpose is to slow down the movements of the E-sonde. The E-

sonde’s magnetometer is susceptible to errors from tilt so the damper was used

to stop the swaying of the E-sonde package under the balloon. The goal was

to keep the swaying of the E-sonde to less than 10o from vertical.

At the bottom of the train is the E-sonde which records electric field

changes from its four electrodes. The E-sonde stores all the data to the compact

flash card but transmits its position and other telemetry data. The E-sonde

7

must be recovered in order to retrieve the electric field data data.

8

2.2 Sonde Layout External

2.2.1 Sonde Package

The electric field change sonde, referred to as the E-sonde for short,

is show in figure 2.4 on page 9. The E-sonde package is an aluminum cylinder

0.34 m tall by 0.14 m in diameter. The aluminum cylinder is composed of two

shell halves fastened onto the main support frame with screws. The weight of

the E-sonde is 2.73 kg. On the outside of the sonde are four brass electrodes

having a length of 0.110 m and a width of 0.090 m. The top of the sonde is

covered with a plastic hat upon which the GPS is mounted. Protruding from

the top of the E-sonde are four mount points for connecting to the balloon

train. The bottom of the E-sonde has the user interface panel and an antenna.

During flight aluminum tape is used to seal the edges of the aluminum halves

and a plastic sheath is place over the cylinder to help seal out water. On the

bottom of the E-sonde are stand-offs so that it can rest in the upright position

if the antenna is removed.

Figure 2.5 on page 10 shows the E-sonde with the plastic top hat

removed and one of the shells detached. This diagram shows how the internal

of the E-sonde is composed of a series of circular plates holding various compo-

nents are stacked on top of each other. The plates are separated by aluminum

spacers which are held in place by four lengths of all-thread running the length

of the sonde. The connectors where the shells attach can be seen. Also, on the

top deck, a red electrode connector can be seen.

9

Figure 2.4: Picture of the E-field sonde package.

10

Figure 2.5: Picture of sonde outer shell open showing internal plates.

11

2.2.2 Sonde User Interface

Outside Temp.
Sensor

System Console
Serial Port

Fast A/D
Start Button

Power
Switches

Status
LED’s

SMA Antenna Conn.

Ethernet Port
(Removed)

Figure 2.6: Picture of bottom plate of sonde with user interface.

Figure 2.6 on page 11 shows the bottom of the E-sonde where the user

can control and monitor the E-sonde status. There are two power switches used

to turn the E-sonde on and off. One of the switches controls the three of the

5V regulators and the 9V battery. The second switch turns on the -9V supply

and -5V regulator. The two switches were used keep the negative voltage from

causing problems with the 5V regulator grounds.

The fast A/D start button is pressed once just before launch to begin

the fast data acquisition. The purpose of this button is so the E-sonde does not

have to collect the fast data while the sitting on the ground during preflight.

When the button is pressed the fast A/D indicator LED will come on.

12

Tx Radio

GPS Lock

Fast A/D Scan

Tx CPU

Pwr Good V1

Pwr Good V2

Pwr Good V3

Pwr Good V4

Pwr Good V5

(CPU)

(Radio/Amp)

(+9V)

(−9V)

(GPS,Mag.)

Figure 2.7: Status LED panel diagram.

Figure 2.7 on page 12 shows the nine indicator LEDs. These indica-

tor LEDs are used to see what the status of the E-sonde is during preflight.

There are five green LED’s that show that the either the battery voltage or

regulator voltages are at or above a safe level programmed into the software.

The selection is chosen by a set of jumpers on the power regulator board.

There are two yellow LEDs. One lights up to show a fast A/D scan

is occurring. Since these scan are back to back as much as possible it may

appear to be lit most of the time with a slight flicker. The second yellow LED

indicates that the GPS has acquired a position lock and knows where it is.

The two red LEDs are used to indicate transmission of data. The first

one indicates that the radio receiver is powered and it blinks as data is received.

The second one is used to show that the balloon tx program is sending data

to the modem. Between the two LED’s the user can validate the program is

trying to send data and the radio modem is receiving it.

The system console serial port connector is a DB9 male which is

used by the preflight computer to see the system boot console. This allows

monitoring of the CPU as the system boots. The user can also log-on to the

13

system and start the balloon tx program as well as check the NTP daemon to

make sure the GPS has locked the time.

The system originally had an Ethernet port which was removed due

to damage to its connecting wire. This port (when installed) can be used

to transfer the data files off of the E-sonde. This is useful if the fast data

acquisition mode is used while on the ground to test the electric field sensors.

14

2.3 Sonde Layout Internal

GPS

PC104
CPU

Power
Regulatiion and
Distribution

PPS
Conditioner

Compact Flash
Data Storage/OS

Temp.,Press.
Sensors

B−field.

E−field.

Battery
Packs

Serial
Console
Port

Power
Switches

Status LED
Display

Radio
Modem

1W Amp

Fast A/D
Start
Pushbutton

Signal
Conditioning
Board

Digital data

Voltage Signal

Power

Figure 2.8: E-Sonde system block diagram.

The interior of the sonde is composed of nine plates to which the major

components are mounted to the top or the bottom. Figure 2.9 on page 15 shows

the location of the major components. Four threaded rods pass through the

plates and 0.25” aluminum spacers with lengths from 0.50” to 1.00” determine

the spacing between plates.

Figure 2.10 on page 16 shows the threaded rods which hold the plates

together. Plate 4 is secured between two 0.25” nuts. This center plate is used to

maintain the reference position for aligning the other plates and spacers. The

15

E−field/sig. cond.

Radio/Env. Sensors

Plate 0

Plate 1

Plate 8

Plate 6

Plate 2

Plate 3

Plate 4

Plate 7

Plate 5

Magnetometer

Prometheus CPU

CF card/socket

Power Regulation

Battery Packs

Amplifier

Status Board

Pwr.Switches

Figure 2.9: E-Sonde with shells removed showing major component locations.

16

Figure 2.10: Picture of threaded rods that plates are mounted to.

17

Plates above this one must be removed sequentially off the top of the sonde

from 8 to 5. The plates below this one must be removed sequentially from 0 to

3 from the bottom of the sonde.

Due to this construction replacing the batteries is time consuming.

To replace the batteries one or two plates are removed from each end. This

allows the remaining plates to be moved father apart from each other. The

batteries can then be removed and replaced.

18

2.4 E-field Sensors

2.4.1 Sensor Layout

In order to be able to calculate a three dimensional electric field vector

an array of four electrodes was chosen. There are two sets of electrodes aligned

on the x-axis and two aligned on the y-axis. The pairs of sensors would be

vertically spaced apart on the z-axis along the length of the cylinder. Each

pair of electrodes face 180 degrees apart. Figure 2.11 on page 19 shows the

positioning of the electrodes on the E-sonde’s shell halves. In G on page 108

details of deriving the electric field vector from the sensors are given.

2.4.2 Electrode Design

Figure 2.12 on page 20 shows a close-up picture of the electrode. The

electrode is 9 cm by 11 cm with an area of 9.9x10−3 m2. A layer of electrical tape

is place on the bottom side of the electrode and on the shell half to prevent it

from making contact with the metal shell. Electrical tape is then place around

the outside edges of of the electrode to secure it to the shell half. The electrode

is made of brass and is 0.28 mm thick. A brass screw is used to electrically

connect the electrode to a connector inside the E-sonde on plates 1 and 8. The

connector positions can be seen in figure 2.9 on page 15. Figure 2.22 on page

35 shows a close up detail of the electrode connector. In the figure a brass nut

can be seen where the screw enters. The connector has a wire which then runs

to the signal conditioning board. Each of the connectors has been painted a

unique color a for reference purposes.

19

Figure 2.11: Sonde outer shells showing location of electrodes.

20

Figure 2.12: Close-up picture of electric field sensor plate.

21

2.5 E-field Sensor Board

2.5.1 Charge Amplifier Basics

q

Rf

Cf

VoA

E

+

−

Figure 2.13: Schematic of basic charge amplifier.

The function of the charge amplifier is to convert a charge induced

on an electrode into a voltage. It is also used to convert a change in charge

into a change in voltage. Figure 2.13 on page 21 shows a schematic of a basic

charge amplifier circuit. When a charge is induced on the electrode by an

electric field the voltage at the negative terminal changes from zero. Since

the positive terminal is grounded the negative terminal is effectively ground or

to be more accurate a virtual ground. The op-amp compensates by changing

the voltage output until the change is voltage across the capacitor induces a

current which effectively neutralizes the current from the induced change in

charge. Therefore, the output voltage is proportional to the change in charge

on the plate which represents the change in e-field.Equation 2.1 shows the basic

relationship between the electric field magnitude and the output voltage.

E ∝ −
V0

CF
(2.1)

22

The purpose of CF is to discharge the capacitor. If not discharged

the Vo will rise until reaching the maximum output voltage the amplifier can

produce from successive changes in charge in one direction. The decay constant

for the output voltage is τ = CfRf . This implies that the events to be observed

must take place in a time frame smaller then τ .

sensor
plate

charge pump

amplifier
lightning
protection

inverting gain
amplifier
G=−10

low−pass
filter
fc=5 Khz

Figure 2.14: Block diagram of a single e-field sensor circuit.

Figure 2.14 on page 22 shows a simplified block diagram of the schematic

in figure 2.15 on page 24. Equation 2.2 shows the relationship between the out-

put voltage and the electric field change. A is the area of the electrode. G is

the gain of the system. C is the value of feedback capacitor CF . ∆E is the

change in electric field. ǫ0 is the permitivity of free space. The design is set so

that a 1 V output represents a field change of 24.8 kV/m.

∆V = −ǫ0∆EA
G

C
(2.2)

The charge-amp in figure 2.15 is using a T-network feedback resistor

configuration. Equation 2.3 shows how to calculate the Req value for the net-

work. Since R1 and R2 are 1 M ohm, and R3 is 21.5 K ohm, the resultant Req

is 48.5 M ohm. C1 is 22 nF giving a τ=1.0673 s.

Req = R1 + R2 +
R1R2

R3

(2.3)

23

In the block diagram of Figure 2.14 a few additions other than the

charge-amp are added. The first is a block for lightning protection. Details

of the lightning protection circuit can be seen in the schematic in figure 2.15.

They consist primarily of a neon discharge bulb and a zener diode. The circuits

are designed to prevent large voltages from damaging the circuits further down

stream. There are also two 10 MHz low-pass filters to prevent the RF signal

from the radio transmitter from entering the charge-amp circuit. During the

initial flights the protection circuitry along with the two 10 MHz low-pass filters

were not installed on the e-field board due to time constraints.

After the charge-amp is a -10 gain stage and 5 kHz low pass filter.

The gain stage inverts the signal so that a positive output voltage represents a

positive change in field and the gain is used to increase the scale of the voltage

range. The low pass filter center frequency is set by the Nyquist criteria for

the A/D converter. Since the sample rate is 10 kHz the low pass is centered at

5 kHz to prevent aliasing in the data.

Figure 2.16 on page 25 and figure 2.17 on page 26 show the PCB

(printed circuit board) for the e-field sensor board. The board is 10.2 cm by

5.1 cm in size and is mounted on plate 7 of the E-sonde in figure 2.9 on page 15.

The electrode connectors are color coded to make wiring to the proper elec-

trode connector more error proof. After populating the circuit boards there

were a few initial problems discovered. There was a feedback oscillation prob-

lem with the op-amps, but more bypass capacitors eliminated the problem.

Another problem was the size of the pads for the op-amp IC were too small

requiring some tricky soldering and produced some reliability problems during

24

Figure 2.15: Schematic of a single electric field sensor circuit.

25

board checkout. After the bad solder joints were re-soldered the boards worked

properly. Some of the early boards had problems with a single channel have

large offsets. Or the channel would stay at the rail voltage if signal output

went close to the rail. The cause was never determined, but the board used in

the second and third flights board #3 never showed either problems.

Figure 2.16: PCB mask for e-field sensor board.

26

Sensor Input Conn.

Power Conector

E−Field Board

Board
Signal Conditioning

A/D Connector

Figure 2.17: E-field and signal conditioning boards mounted to plate.

27

2.6 A/D

The data acquisition unit (DAQ) for the E-sonde was built onto the

Prometheus PC/104 CPU board. The converter had a multiplexed 16 channel

input block that passes through a programmable gain amplifier. Figure 2.18

on page 27 shows a block diagram of the DAQ system. The analog to digital

converter (ADC) has a 16 bit resolution and was programmed for ±10 V. This

gave a minimum voltage resolution of 305 uV. The maximum sample rate for

the system was 100 Ksps. The DAQ has a 48 sample buffer before being

transferred to the CPU with an overflow indicator.

Analog
Devices
ADG508

8 to 1 Mux

Analog
Devices
ADG508

8 to 1 Mux

LTC1606
16bit
Analog to Digital
Converter

BB PGA206

Ch 0

Ch 15

Ch 8

Ch 7

Voltage Input

CPU
Data Aquisition
Control
Logic

Analog Channel
Select

Programmable Gain
Amplifier

Digitized
Value

+

−

Figure 2.18: Block diagram of data acquisition system.

During testing of the system, it was determined that a sample rate

of 10 Ksps over eight channels for two seconds was the maximum sustainable

28

Table 2.1: Channel allocation and sample rate for the A/D converter.
A/D Channel Input Signal Sampling

0 E-field 1 fast,slow
1 E-field 2 fast,slow
2 E-field 3 fast,slow
3 E-field 4 fast,slow
4 PPS fast,slow
5 Mag. x-axis fast,slow
6 Mag. y-axis fast,slow
7 Max. z-axis fast,slow
8 V batt./reg. 1 (CPU) slow
9 V batt./reg. 2 (GPS,Mag.,Temp.Press.) slow
10 V batt./reg. 3 (E-field Board +V) slow
11 V batt. 4 (E-field Board -V) slow
12 V batt./reg 5 (Radio/Amplifier) slow
13 Atm. pressure sensor slow
14 Internal temp. sensor slow
15 External temp. sensor slow

Note: Fast is 10 Ksps and slow is programmable but typically every 17 s.

data rate for the system without sustaining overflow errors. The system also

had a relatively high input impedance of 300 Ohms. Since some of the input

channels had high impedance sources such as the temperature sensors and

magnetometer there was some voltage carried over from the previously scanned

channel. In particular, the x-axis from the magnetometer saw the PPS signal

pulses. The internal temperature sensors saw the voltage from the pressure

sensor. The x-axis input was fixed by a capacitor places in parallel, but the

internal temperature sensor corruption was not fixed during the three flights.

Table 2.1 on page 28 shows the allocation of the channels and there respective

sample rate.

29

2.7 A/D Signal Conditioning Board

The signal condition board is used to pre-condition the sensor signals

before arriving at the DAQ input. The board is located on plate 7 with the

e-field board. The signal conditioning board has three machined DIP sockets

for placing resistors, capacitors, or shunts in. Figure 2.17 on page 26 shows a

picture of the board. Figure 2.19 on page 29 shows a schematic of the board

and possible configuration options.

series resistor,
wire or capacitor

parallel resistor
and/or
capacitor

input signal to A/D conv. input

For each of the 16 input channels

Figure 2.19: Schematic of A/D signal conditioning circuit.

The board can be used to implement high-pass or low-pass first order

filters as well as in-line and parallel resistors and capacitors. This allows for a

wide range of signal conditioning possibilities for dealing with noise and other

problems of the input signals without have to solder components down. During

the balloon flights a parallel capacitor of 1 uF was added to the x-axis of the

magnetometer so the PPS signal would not bleed over into its value.

30

2.8 CPU and Storage

In order to facilitate rapid prototyping and flexible software design a

microcomputer platform that could run existing operating systems was chosen.

This system allowed for development of the E-sonde system software on a PC

a which could then be transferred to the E-sonde. The E-sonde CPU system

needed to run the Linux OS, fit within a 15 cm cylinder, run off a single voltage

supply, and be able to run for several hours off of batteries. In order to meet

these requirements a PC/104 platform was determined to be optimal.

The Prometheus PC/104 platform from Diamond Systems was chosen

because it had a built in A/D converter and digital I/O with support for Linux.

It had an IDE interface which could be connected to a compact flash (CF) card.

It had four serial ports of which a minimum of three were needed for the design.

It also had a stand alone development platform which would allow for early

design of the system software. Table 2.2 on page 31 shows the specifications

for the Prometheus board. Figure 2.20 on page 32 shows a picture of the CPU

board mounted to the plate.

The CPU board was placed on plate 6 just above the voltage regulator

to minimize the lead lengths between the voltage regulator and the CPU board.

Since the Prometheus CPU is a digital system with a high current draw it can

produce RF noise and voltage transients. By minimizing the length of its power

leads the RF noise from the power leads should be minimized as well. The CPU

board was given its own voltage regulator so it would cause problems with the

more sensitive analog systems such as the GPS and sensors.

The E-sonde uses a compact flash card for both data storage and to

31

Table 2.2: PC/104 CPU Specifications.
Diamond Systems Corp. Prometheus PC/104 integrated system
Processor 486-DX2 100 MHz
Memory 32 MB SDRAM 50 MHz
BIOS Boot from CF, serial boot monitor
Serial Ports 4 each with 115 Kbps
USB Ports 2 Ver 1.1
IDE 44 pin connector, 2 devices
Ethernet 100 BaseT full duplex
Other Ports PS/2 keyboard & mouse,speaker,LED’s
Clock Real-time battery backed
A/D 16 bit, ±10 V, 16 Channel, 100 Ksps aggregate
Digital I/O 24 pins, 3.3 V and 5 V compatible
Supply Voltage 5V at 1.10 Amps
Temp. Range -40oC to +85oC
Size 9.59 cm x 9.02 cm
Weight 84.6 g

hold its operating system and control programs. Since the system is capable of

acquiring data at the rate of 9.6 MB/minute and a typically balloon flight last

45-60 minutes at least 576 MB of data storage is needed. The CF must also

hold the OS which takes up about 64 MB.

The data storage device must be able to operate in sub-freezing tem-

peratures and low pressure readings. It must also have very low power require-

ments and be able to sustain the shocks of landing and stress. In order to meet

these requirements a 1 GB Sandisk CF card was chosen.

The only limit encountered with the cards was a slow data write trans-

fer rate of 1.6 MB/s. This limited the sample rate of the A/D converters. There

was also a problem with the A/D converter driver having buffer overflows if the

system was writing the CF at the same time data acquisition was occurring.

32

Figure 2.20: Prometheus CPU board mounted to plate.

Figure 2.21 on page 33 shows a picture of the CF card and CF to 44 pin IDE

adapter card mounted to the bottom of plate 6.

33

Figure 2.21: Compact Flash and IDE interface board mounted to plate.

34

2.9 Magnetometer

The magnetometer was used in the E-sonde in order to determine its

azimuthal orientation and how much the z-axis was tilted from perpendicular

to the Earth’s surface. The magnetometer did not have a g-force sensor so the

magnitude of the tilt was used to indicate how reliable the azimuthal orientation

was. If the there was a large deviation in the z-axis value of more than a few

degrees then the azimuth could not be calculated from the x-axis and y-axis

values. Figure 2.22 on page 35 shows a picture of the magnetometer mounted

on the E-sonde plate. The magnetometer was place near the top of the E-sonde

in order to reduce electromagnetic interference from other circuits.

The magnetometer was sampled at the same rate as the electric field

sensors so there would be good time correlation between the magnetometer

values and the e-field values. Table 2.3 on page 36 shows the specifications

for the magnetometer. The magnetometer has a response of 400 Hz. This is

slower then the 10,000 kHz sample rate, but is fast enough to detect significant

rotation of the sonde.

On earlier flights, in post data analysis, noise from the PPS input

was showing up on the magnetometer x-axis. A 1 uF capacitor was added in

parallel on the signal conditioning board. The addition of the capacitor was

successful in eliminating the PPS input noise.

35

Magnetometer Board

Electrode Connector

Color Code Shell
Connector

Figure 2.22: Magnetometer board mounted to plate.

36

Table 2.3: Magnetometer Specifications.
Applied Physics Model 113 PC Board-level 3-Axis Fluxgate Magnetometer
Noise level 3x10−6 G RMS/Hz1/2

Frequency response DC to 400 Hz (-3dB)
Linearity ±0.1% of Full Scale
Drift in zero with temperature < 10−4 G/oC
Drift in scale factor with temperature < 0.05% FS/oC
Sensitivity 4.00 V/G
Orthogonality ±2o

Alignment of sensor package with reference surfaces ±20

Size 2.5”x2.5”x0.75”
Weight 30 g
Power input +5VDC at 28ma, -5VDC at 7ma

37

2.10 GPS

The GPS (Global Positioning System) device is an essential part of

the E-sonde system. It has dual purposes of tracking time and position. The

time output is used in a high resolution way of feeding the PPS output to the

A/D so the signal is recored along with the data. This allows for aligning the

data with the UTC time to the nearest 100 uS. The system also uses the serial

output of the GPS to synchronize the system time to the GPS UTC time with

the NTP daemon. Table 2.4 on page 38 shows the specifications for the GPS.

Both the NTP daemon and the balloon tx program use the NMEA GPGGA

string to extract their time and position information. All other strings were

turned off and the GPS was programmed to transmit its GPGGA string every

second.

The GPS sends the position information through the serial port as

well. The position information contains latitude, longitude and altitude. It is

important to know where the E-sonde is so that the data e-field vector can be

correlated with the LMA data.

Figure A.1 on page 82 shows how the GPS is wired to the CPU and

what ports are used by the balloon tx program to read the GPS. The balloon tx

program can pole the GPS at any interval,but 17 seconds was chosen for the

three initial flights.

Figure 2.23 on page 38 shows the GPS mounted on the E-sonde top

cover. The GPS was placed on the top so that its antenna would have the

maximum view of the sky. The GPS case is waterproof and made of tough

plastic so that rain and small hail would not affect it.

38

Table 2.4: GPS Specifications.
Garmin model GPS35-LVS

Weight 124.5 g
Size 57 mm(w)x96 mm(l) x 27 mm(h)
Operating temperature -30oC to +85oC(internal)
Voltage +3.6VDC to 6.0VDC 150mV ripple
Current 120 mA typical 140 mA max.
Satellite tracking 12 or 11 with PPS active
Position update rate 1 sec.
Acquisition time 45 sec. cold to 5 min. sky search
Position accuracy 15 meters RMS
PPS accuracy ±1 uS at rising edge of PPS pulse
Interface RS-232 compatible level with baud of 300 to 19200
Data format NMEA 0183 ver. 2.0 ASCII output

Figure 2.23: Garmin GPS-35 LVS mounted to sonde top cover.

39

1

5

9
4

8

7

2

6

3

PPS GND

5K Ohm

0.015uF

DB9−M
To GPS

Board
Conditioning

To Signal

DB9−F
To Com3
and Com4
Y adapter

Tx

Rx

+5V
To
Power Supply
Board

Figure 2.24: Schematic of GPS connection to system with PPS filter circuit.

The GPS PPS signal passes through an RC circuit to convert the

pulse into an exponential ramp. Figure 2.24 on page 39 shows the circuit used

to modify the PPS signal. This modification was done so that it would be

easier to extract which sample the PPS edge was on. The post analysis data

program uses the time constant of the RC to do an exponential fit of the data

and determine exactly which sample the PPS pulse started on. The PPS pulse

is a square wave with a period of 100 mS on and 900 mS off. The edge of the

off to on determines when the second began that is transmitted in the next

serial output message.

40

2.11 Power Control Board

The power control board regulates and distributes power from the

battery packs to the other subsystems. Figure 2.25 on page 40 shows a picture

of the board mounted to plate 5. The board holds four voltage regulators, a

set of voltage monitor select jumpers, and connectors that run to battery packs

and subsystems. The three five volt positive regulators are mounted to a large

aluminum heat sink. The jumpers select whether the DAQ system monitors

the battery voltage or the regulated voltage.

5V Regulators

−5V Regulator

Voltage Monitor
Select Jumpers

Heat Sink

Figure 2.25: Power regulation and distribution board mounted to plate.

Figure 2.26 on page 42 shows a schematic of the power board. In this

diagram the power distribution scheme for the battery packs can be seen. Due

41

to the higher current draw of the radio amplifier and the CPU two battery backs

are attached to each regulator. The individual 5V positive regulators (LP3963)

are capable of handling 3.0 A each. The switch for the system is used to turn

on the three positive regulators and connect the 9 V batteries to the power

board. When the switch is in the off position the -9 V and +9V batteries

are disconnected. The LP3963’s have there shutdown pin shorted to ground

which turns off the output voltage. When the switch is in the on position

the CPU battery pack provides a 6V signal to the shutdown pin through a

10K ohm resistor. In the actually construction of E-sonde 3 the 3PDT switch

was replaced with two single pole switches. One switch was wired to the 9V

batteries and the other controlled the 5V regulators.

42

SHDN

Vin Vout

Error

Gnd

LP3963

68uF
10v

33uF

10v

10K

SHDN

Vin Vout

Error

Gnd

LP3963

68uF
10v

33uF

10v

10K

10K10K

1uF 1uF 1uF

SHDN

Vin Vout

Error

Gnd

LP3963

68uF
10v

33uF

10v
6V

2 4xAA

2 4xAA

6 V
4xAA

6V

Gnd

LM7905Vin Vout

9V

9V

V1 5V
CPU

V5 5V
Radio/Amp.

V2 5V
GPS/Mag./Temp./Press.

E−field Bd.

E−field Bd.

V4 −5V

B3 9V

B4 −9V

B1

B5

B2

SW1
3PDT

B1
B2
B4
B5
V1
V2
V4
V5

Jumper Header
Voltage Monitor Select

B3

to A/D Ch 8

to A/D Ch 9

to A/D Ch 11

to A/D Ch 12

to A/D Ch 10

Mag. Bd.,Temp. Bd.

−

+

−

+

−

+

−

+

−

+

−

+

−

+

Figure 2.26: Schematic diagram of power control board..

43

Table 2.5: Radio modem specifications
Maxstream 9XStream OEM RF module

Outdoor Range 11 km w/dipole ant.
Data Throughput 19,200 bps
Transmit Power 100 mW(20 dBm)
Receiver Sensitivity -110 dBm
Frequency Range 902-928 MHz
Spread Spectrum Frequency Hopping, 7 sequences, 25 freqs.
Power 5 VDC(±0.25V) 50-150 mA (RX vs.TX)
Size 4.06 cm x 7.18 cm x 0.89 cm
Weight 24 g
Operating Temp. -40OC to 85oC
Ant. Connector RPSMA 50 Ohms

2.12 Radio TX/Sensor Board

The radio transmitter and sensor board has two functions that are

independent and combined on one board only for conveniences. The board

is shown in figure 2.27 on page 45 mounted to plate 1. In the picture the

Maxstream 9XStreamTM 900 MHz radio modem can be seen plugged into

the board. The radio board contains a circuit to convert from the 5V logic

levels of the modem to the RS-232 level of the CPU. A MAX232 IC from

Maxim Semiconductor was used to perform the conversion. Figure 2.28 on

page 46 shows a detailed schematic of the circuit for converting the signals.

The connector pin out detail for the Maxstream is also shown. Since there

is a 100 mA difference in supply current between receive and transmit mode

there was an addition 33 uF capacitor added to the voltage supply pins at

the connector. Table 2.5 on page 43 shows a listing of the radio modems

specifications.

Since the radio only had a maximum throughput of 19,200 bps or

44

approximately. 2 KB/s it was not feasible to transmit the higher sample rate

data which occurred at 160 KB/s during the time of the flight. The modem

was used to transmit the position and slow A/D data as well as the maximum

voltages for the fast A/D channels. The transmit and receive modems used in

the E-sonde systems were set up for one way data communication. However, in

the future it is possible to use the modems in bidirectional data communication.

The other part of the radio board is a temperature sensor and pressure

sensors. A remote temperature sensor that is located on the bottom of the

E-sonde also connects to this board. The schematics for the pressure and

temperature sensors is show in figure 2.28 on page 46 and the pressure sensor

can be seen on the picture in figure 2.27 on page 45.

The pressure sensor used was a Motorola 5100 AP which gave a volt-

age output proportional to absolute air pressure. The sensor was temperature

compensated, but since its temperature sensor was inside the E-sonde it could

not fully compensate for outside air temperature changes. The sensor has a

range of 15 to 115 kPa. The sensor was not calibrated before the flights.

The temperature sensor was a National Semiconductor LM34CAZ.

It has a voltage output proportional to 10 mV/oF and will output a negative

voltage for values less than 0oF. This negative output voltage required a -5V

supply to be routed to the sensor. The sensors were not calibrated before the

flights.

45

Serial Data Connector

Temp. Sensor

Pressure
Sensor

RF to Amplifier Radio Modem
Board

E−field Electrode
Connector

Figure 2.27: Radio modem, pressure and temperature sensor board mounted
to plate.

46

CTS 1

Sleep 2

DOut 3

DIn 4

RTS 5

Reset 6

Rx LED 7

TX/Pwr 8

cfg 9

Vcc 10

GND 11

+5V

T2out

R2in

V−

C1+

V+

C1−

C2+

C2−

Vcc

T2in

T1in

R1out

R1in

T1out

Gnd

R2out

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

Max232

1uF
1uF

1uF

1uF

1uF

+5V

nc

nc

33 uF

nc

Serial Pin2 Rx

Serial Pin 3 Tx

LED Status Board
Radio/TX

+5V

Gnd

Vs Vout

2

MPX5100
3 1 Pin 1

Red1uF 0.1uF 470pF

+5V

Gnd

−5V

LM34 VoutVs Pin 2
Yellow

100K
0.1uF

+5V

Gnd

Inside Temperature Sensor

Outside Temperature Sensor

Pressure/Altitude Sensor

−5V

LM34 VoutVs

100K
0.1uF

Pin 3
Red

Figure 2.28: Schematic of radio modem, pressure and temperature sensor
board.

47

2.13 Amplifier Board

The purpose of the amplifier board is to boost the signal of the radio

modem to 1W of output power. The amplifier board is show in the figure

2.29 on page 48. The board is a Maxim MAX2602 evaluation kit. With the

amplifier the E-sonde is capable of transmitting data reliably over 100 km. The

board can draw over 1 A of current at 5V so the radio modem and this board

were given there own voltage regulator. Since data packets are transmitted

only every 18 seconds and the power draw is very low most of the time. The

main problem encountered with the board was that Maxim does not want to

see the evaluation kits in quantities greater than two. Table 2.6 on page 47

shows the specifications of the board.

Table 2.6: Radio amplifier specifications
Maxim MAX2602 Evaluation Kit

Output Power 1W (30dBm) at 836 MHz
Power Supply 2.7-5.5V at 1.1 A
Connectors SMA 50 Ohm input and output
Temp. Range -40oC to 85oC

48

Input from
RF Modem To Antenna

Figure 2.29: 1 Watt RF amplifier board mounted to plate.

49

2.14 Batteries

The batteries are critical part of the E-sonde design. They had to

meet the environmental and current capacity criteria while being as light as

possible. Tables 2.7 and 2.8 show the specifications for the batteries. Although

expensive the Lithium batteries provided the best energy to weight ratio. They

also produce quite a bit of heat when under a heavy current load and help keep

the internals of the E-sonde warm.

Table 2.7: AA Lithium Battery Specification
Chemistry Lithium/Iron Disulfide
Battery Voltage 1.5 Volts
Weight 14.5 g
Oper. Temp. -40oC to 60oC
Capacity 3000 mAh (to 1.0 V)
Max. Discharge 2.0 Amps

Table 2.8: 9V Battery Specification
Chemistry Alkaline (Zn/MnO2)
Battery Voltage 9.0 Volts
Weight 45.6 g
Oper. Temp. -18oC to 55oC
Capacity 625 mAh (to 4.8 V)

Four batteries were tied in series to form a battery pack with a plastic

battery holder. Figure 2.31 on page 51 shows both the 9V and AA batteries in

their pack mounted to the plate. In order to keep the batteries in place during

flight wide electrical tape was place over the plastic battery carrier as show in

figure 2.30 on page 50. This figure also shows the double AA battery pack on

the plate. One major drawback of this system is that the entire E-sonde must

50

be taken apart to change the batteries out. This proved to be a major endeavor

while in the field and resulted in a few missed storm opportunities.

Figure 2.30: Two 4xAA 6V Battery Packs.

The CPU drawing from 700 mA to 1.1 A of current was the most

demanding on system. In order to ensure adequate preflight time, fight time,

and post flight search time two battery packs were tied together in parallel to

give 6 Ah of current. In testing the system was able to run for about seven

hours before it stopped transmitting. Although flight times were less than two

hours, this gave time to try and find the package once it had landed.

51

Figure 2.31: 9V and 4xAA 6V Battery Packs.

52

2.15 Interface and Control

The interface and control section shows the top of the bottom plate of

the E-sonde. From the picture in figure 2.32 on page 53 the various components

can be located. There are three mini-boards on the plate. The LED status

board hold the resistors and connectors for the system status LED’s. The

power switch board takes wires from the switch and converts them into plugs

which then connect to the power board. The plugs are of different sizes so

they cannot be hooked up to the wrong connector. The temperature board

holds the circuit show in the schematic of figure 2.28 on page 46 for the outside

temperature sensor. The serial console connector and antenna connector and

cable can be seen as well. There is also a hole where the Ethernet connector

should have been. The Ethernet connector had a damaged wire and so it was

removed and the hole covered with tape.

53

Fast A/D
Start Switch

Power Control Switches

Console
Serial Port

LED Status
Board

RF Antenna
Connector

Shell
Mount

Shell
Mount

Temp. Sensor Board Ethernet
Port
(Removed)

Figure 2.32: Picture of the inside of the E-sonde’s bottom plate.

CHAPTER 3

Software

3.1 Operating System

Although it would be possible to run the E-sonde without the use

of an operating system it would require writing code for all system functions

from scratch. The decision to use an existing OS saved a tremendous amount

of time and allowed for the coding effort to be focused on the control program

balloon tx. The decision was made to go with a Linux based distribution due to

Linux’s open source nature, reliability, no cost, and there were drivers available

for the Prometheus CPU board peripherals.

The Pebble Linux distribution from NYCwireless was chosen to for

the E-sonde because it was originally designed to be run from a compact flash

card and was based on the Debian distribution. The Debian nature of the

distribution allowed for easy adding and removing of additional software pack-

ages. The Debian configuration and layout is also well documented. Since the

distribution was designed to run from a compact flash it was design to minimize

file writes by putting all the log files in RAM disk. It also keeps the filesystem

partition in read only mode so sudden power failures do not corrupt the OS

partition on the flash.

Since the distribution was originally intended to run in a wireless

router box it had many firewall features enabled that were not needed for the

54

55

E-sonde. It also only had a limited version of the NTP daemon installed that

did not have a driver for a GPS. These issues were easy to fix and the installa-

tion and configuration of the Pebble distribution of the E-sonde is detailed in

appendix B on page 84.

3.2 System Time NTP Daemon

On the E-sonde system it is very important to correlate the data it

took with the lightning mapping array data. In order to do this the system

has to know what the UTC time is. The purpose of the NTP daemon is to

synchronize the system time with UTC time and keep them locked.

The NTP daemon does this by reading data from the serial port from

the GPS that has the time encoded. It uses several algorithms to figure out

how much time has occurred between the start of the data string and when

it processes the data. It also monitors how much the system clock is drifting

between successive reads. The NTP daemon nudges the system clock toward

the GPS time instead of setting it at once from a single reading.

It can take several minutes for the two to become synchronized. If the

time between the UTC and system time is off by too much the NTP daemon

will abort. During preflight the system clock was set to the same time as UTC

time.

It is important to allow time for GPS to locate itself and figure out

the UTC time and then wait for the NTP daemon to synchronize the clocks. In

appendix D on page 97 there are detailed instructions for checking that the two

are synchronized. Instructions for setting up the NTP configuration are given

56

in Appendix B on page 84. Before launch the system time was compared to a

clock that was set by the WWIV radio signal to make sure it had synchronized.

The NTP daemon keeps the the system clock synchronized to the

GPS with better than 100 ms. Since the fast scanned data is encoded with the

PPS signal only 1 s of time correlation is needed. It is possible to modify the

kernel and use the PPS driver to synchronize the kernel time to a much higher

accuracy of around 100 us. There was not enough time before the summer

launches to work this mode but remains a good approach for future flights.

3.3 Transmit Control Program

3.3.1 Program description

The program responsible for controlling the E-sonde data collection

and transmission is called balloon tx. The program is written in the C language

and composed of several files. The progam is built with passing the balloon tx

argument to the makefile. The makefile is detailed in appendix F on page 104.

The appendix also documents where specific functions used in the program can

be found and the file dependecies of the makefile.

The program has several important functions for the success of the

flight. The first fucntion is to find the voltage offsets of the A/D and store

them. The program preforms this calibration operation right after it initializes

the data aquisition system. All sixteen A/D channels are sampled 10,000 times

at 10 Khz. Each channel is then analyzed for mean and standard deviation. The

voltage values of the mean and standard deviation are written to a file of the

format Inst ID HH MM.cal. Where Inst ID is the name given to the instrument

57

in the command line options when starting the program and HH MM are the

hours and minutes in UTC time of the system when the calibration step was

done.

The purpose of the calibration routine is to help in processing the data

later on. The mean is useful for the offsets of the electric field channels. The

standard deviation gives a general idea of how much noise is on each channel.

Another way to use this feature is to ground all the input channel and then run

the balloon tx program. The calibration file will then show the offsets internal

to the A/D converter and give an idea of how much noise the A/D contributes

to the sytstem itself.

For the balloon tx program to work properly it needs to have the

system time set to UTC. The system time is used for logging the time of the

slow data scans. The NTP daemon does the work of reading the GPS time

and setting the system time. The balloon tx program does read and store the

GPS time for the GPS transmit string. By comparing the GPS position string

time with the slow A/D transmission string the operator can determine if the

system time is synchronized to the GPS UTC time within one second.

Of prime importance for recovering the E-sonde is knowing where it

landed. This is done by the program reading the GPS serial data string and

transmitting this data to the radio modem. The data is also logged to the

compact flash drive. The details of the file naming convention and format can

be found in appendix E on page 99. The rate at which the program reads the

GPS postion and transmits it is determined by the a command line parameter

or if not specified uses the default value of 30 seconds. If the debug and vebose

58

is turned on the program will display the string to the terminal. The status

indicator light for GPS lock is turned on. See the figure 2.7 on page 12 for a

diagram of where the LED is located on the bottom panel.

During preflight it is useful to know what the status of the system is.

Before a flight, the launch person needs to know that the battery voltages are

good, the GPS has a lock, the balloon tx program is running and taking data,

and the transmittr is receiving data from the program. All the above conditions

are controlled by the balloon tx program controlling the status LED’s except

for the radio modem receiving data.

The progam has two different modes of collecting the sensor data. The

first mode is referred to as the slow scan mode. In this mode the program scans

all sixteen A/D channels 20 times and averages the result for each channel. This

number is set in the balloon.h file under the variable SLOW SCAN AVG NUM.

There is no set sample rate for this scan. The program calls the sigle channel

scan function in a loop until the programmed number of scans is completed.

The second mode for data aquistion is fast scan mode. In this mode

the first eight channels are scanned at 10 KHz for two seconds. The data from

the first four channels is converted to voltages and checked agianst the current

maximum voltage value. If a value is greater in absolute magnitued the new

signed value is stored. The data from the scan is stored to the compact flash

immediately after the scan in the the orignal binary format from the A/D

converter in a structure that also holds a before and after scan time stamp.

The original intent was to have the scans continuing while the data was being

written to storage, but the A/D system was getting buffer overflows while trying

59

to scan while data was being written out. Buffer overflow conditions mean

that the A/D subsystem could not tranfer data fast enough and incoming data

samples had to be discarded. There is no way of knowing how many sample

were dropped. This is also flagged in the fast data file structure, but was not

seen to happen once A/D scans and data writing were done seperately. The

fast scan files each hold about one minutes worth of data as the files name is

determined by the current time of the system. The fast scan data files end with

the extension “.edat”.

The program then assembles the GPS postion information and the

slow A/D data scans along witht the maximum electic field channel values into

text strings and transmits them to the radio modem. After transmitting the

data the maximum values stored are reset. The data strings are also written to

a text based log file. The log files for the transmitted data end in the extension

“.log” The are named by the instruments given ID an the system date.

The above process of getting data, storing data, and transmitting

data is repeated until either the system runs out of power or the program is

killed. If the program fills up the compact flash disk files of length zero are

created.Figure 3.2 on page 61 shows a flow chart of the balloon tx main control

loop. Figure 3.1 on page 60 shows a breakdown of the main program function

names and what purpose they serve.

60

get data
functions

prom_ad_scan()

get_and_tx_slow_ad()
 prom_fad_start()

 ser_readline()
get_new_gps_pos()
 open_gps_rx()
close_gps()
 prom_ad_init()
 prom_ad_scan()
 prom_fad_init()
 prom_fad_start()

transmitt
functions

 tx_gps_pos()
get_and_tx_slow_ad()
open_radio_tx()
close_radio()

fucntions
calculation

 find_checksum()
nmea_checksum_check()
prom_sample_to_voltage()

save data
functions

 writedatafile()
writelogfile()

status LED/
pushbutton
fucntions

 prom_dio_init()
 prom_set_dio()
 prom_get_dio()
 prom_calibration()

functions

data
manipulation

buildtxstring_ad()
buildtxstring()
 atohex()
parse_nmea_gga()
prom_find_max_voltage()

balloon_tx
program

Figure 3.1: Block diagram of balloon tx program function names and purpose.

61

pos_tx_time
>
tx_pos_interval

Y

N

Read fast
scan A/D
Data

Read system time
and updaate
fast A/D data file
name.

Write fast scan
data to edat
fiile

Update max A/D
values.

Read GPS
position

Read slow A/D

Transmitt
GPS and A/D
data to radio
port

Write GPS and A/D
Data to logfiile

Reset
pos_tx_time

and max A/D
values

Fast
Scan
enabled

Y

N

read system time

pos_tx_time
count

and update

Check Fast
scan enable
button

Write Calibration
Data to file

Calibration
Scan

Initialize A/D
system

Start Program

Figure 3.2: Flowchart diagram for balloon tx program.

62

3.3.2 Program command line options

The listing below shows the programs command line options and what

their usage is. The -i option must be set before flight to give the E-sonde a

unique identification for the transmitt strings and the log files. The -t option

was used on the initial flights to set the transmitt interval to 18 seconds. This

was done in case there problems with receiving the balloons position. A shorter

interval gives more position strings sent, but reduces the number of fast data

scans. The -x, -p, -v,and -d options were used in early debugging of the soft-

ware. The -b option is used to indicate if the jumpers on the power board

are set to monitor the battery or regulator voltages. This setting changes the

internal values used to light the LED voltage status indicators. The values are

set in the balloon.h file.

Usage: balloon_tx -hvda <-l filename.log> <-r comm port radio>

<-g comm port gps> <-f alt.log file> <-i InstrumentID>

<-t TX interval>

-h Display this help screen.

-v Verbose mode: display data to screen

-d Debug enable mode

-l Turn on logging default is ON

-r Radio Comm. Port Default:/dev/ttyS0

-g GPS Comm. Port Default:/dev/ttyS1

-f logfilename Use alternative logfilename dflt is InstID_MMDDYYYY.log

-i instr name Name of Instrument default hostname

-t TX interval Time delay in seconds between position and

slow A/D scan data default=30s

-x number Disable Fast A/D scanning/logging

bit 4 2 1

| | |

| | - Fast A/D scan

| -- Slow A/D scan

----- GPS position

Example -x 3 Disable Fast & slow A/D

-p Disable push button Fast A/d datalogging start.

-b Enable monitoring of battery instead of regulator voltages.

63

3.3.3 Program revision control

The balloon tx program files have a simpe revisions control system

called RCS. A “man rcsintro” will bring up a man page describing this partic-

ular RCS system. The RCS data base files are stored in a subdirectory called

RCS. The command “ci -l ¡filename¿” is used to check-in a file and add com-

ments to it. The -l keeps a locked copy of the file out in the main directory. The

source code files include special tags in the comment sections at the beginning

and end of the file to show the RCS version and comment information.

3.3.4 Program dependencies

In addition to the progam file dependencies shows in appendix F.1

on page 105 the balloon tx program is linked against several libraries. Most

are standard libraries, but the dscud5 library is from the Prometheus software

package and must be installed first. One thing to note in the makefile on page

104 in the same appendix is that the math library “-lm” is placed last in the

file. The order of the libraries is dependent. If changed the file may to compile.

3.4 Receive Program

3.4.1 Program Purpose

The primary purpose of the receive program is to receive incoming

data packets and display them on the screen. The program is also repsponsible

for presenting a real-time display of the E-sonde flight status and log the packets

to the hard disk. The program is also capable of automatically pointing an

64

antenna mounted on the Meade LX-200 mount at the E-sonde for maximum

signal gain and reading the last packet received signal strength from the radio

modem. A diagram showing the functional breakdown of the program can be

found in figure 3.3 on page 64.

Antenna
Control

− Manual Pointing
− Automatic Tracking − CSV file for Matlab

− Good data packet file

− Waypoints file

− Bad data packet file

Data Logging

− Raw GPS data
− E−sonde packets
− Rx station GPS position
− Rx signal strength

Receive Data
Processing Modes

balloon_rx
program

− Dist. and heading to E−sonde

− Receive station Position
− E−sonde position

− E−sonde voltages
− Packet receive info.
− User menu
− Comm. port status
− Program state

Display Management

Figure 3.3: Block diagram of balloon rx program showing basic functionality.

The program is capable of receiving data in three differnent modes.

The first mode was to receive raw GPS data strings transmitted by an earlier

balloon package that had a GPS tied straight to the radio modem without an

intervening CPU. The program can log these data packets in a format shown in

appendix E on page 99 under the GPSRAW catagory. Currently, the program

does not provide antenna pointing in this mode, but this is an easy modification

to code to support this in the future.

Similar to this mode the program can read the position from a local

GPS attached to a system serial port. The purpose for this is to provide an easy

way to update the location of the receive station which is needed for antenna

pointing along with distance and bearing calculations to the E-sonde. A future

65

goal is to expand this capability to provide real-time position updates for a

vehicle tracking the E-sonde. On the NMEA GPGGA strings are considered

valid. Other strings will be flagged as bad packets if received from the GPS.

The third receive mode is to look for instrument data packets and

decode them. This mode provides the most information for the user during a

flight. The user can monitor E-sonde slow scan voltages as well as the position

information. This mode receives data packets formatted by the CPU on the

E-sonde. When the packets arrive a checksum at the end of the packet is re-

calculated and compared to determine if the packet is good. Once a packet is

determined to be good the display is updated with the new packet information.

While receiving packets of data logging can be turned on or off. The

purpsoe for this is so the operator and choose to not have packets recorded

which testing or in pre-flight that would otherwise just clutter the log files.

Log files names are created based on the instrument ID and the system date.

A duplicate file for the good data packets is also created when in instrument

receive mode that modifies the format of the data so that Matlab can easily

load the data into memory. The file ends with the “.csv” for comma seperated

values. In this file there are no text strings so the data can be loaded into a

matrix. The type of string is represented numerically and based on the first

column can be sorted. Another file created is the way.txt file which contains the

waypoints used by the GPSDRIVE program to plot the path of the E-sonde

and its altitude. The program encodes the altitude as part of the waypoint

label. The details for the format of the log files are discussed in appendix E on

page 99 in the receive program section.

66

The receive program displays information on the screen in a terminal

window of 80x25 size. The display is updated as the data packets arrive.

The display has several sections. A screenshot of the display can be found

in figure 3.4 on page 67. There are three sections on the top of the terminal

showing the receive station’s position, the balloon’s position, and the distance

and orientation to the balloon. The instrument position section also shows

the speed and heading of the balloon. The orientation section also contains

information about the antenna’s current mode of operation and position. The

instrument section in the middle shows the time of last update in position from

the E-sonde.

Below the RX Postion section is the voltages from the E-sonde and

the time of last update of the voltages. The voltage updates come in sets of

four voltages and get updated as each type of voltage packet arrives. So the

update shows one of the four groups of voltages were updated, but not which

one. Under the instrument position is the system menu that will be describe

in section 3.4.2 on page 67. Under the antenna information section on the top

left is a section showing the GPS time from the system and the system time

along with the ID of the last instrument packet sent.

At the bottom of the screen on the left is the status of logging. On

indicates that logging of packets will occur. Off indicates that logging will

not occur. The status display shows which state the main receive loop of the

system in in. The radio and gps sections show whether or not a communication

port is open. The system time is continuosly updated and shows the time of

the receive system.

67

The section in the lower right corner shows how many packets were

received and how many were succesfully decoded. The last packet heading

shows when the last packet was received regardless of whether it had a good

or bad checksum and type. The last line in the lower right shows the receive

power level of incoming packets and what rate the level will be checked. Since

the program can not receive incoming packets while the power level is being

checked the rate can be disabled.

3.4.2 Program Operataion

Figure 3.4: Screenshot of balloon rx program running..

In this section the details of how to operate the balloon rx section will

be covered. The first thing the user wants to do when starting the program

68

is fill out any appropriate command line options. The most common would

be -h to get what the options were. The result of typing the -h option is

shown in section 3.4.3 on page 71. The command line options can change the

communication ports used by the program, the default log file name, and turn

on loggging automatically.

Once the program is up and running the firs thing to do is make

sure the RX Position section in the upper left shows the current information

for the location of the receive station. There are two ways to change this

information. The first is to edit the values in a file called position.cfg and

restart the program. The second way is to hook a GPS up to the comm. port

designated for the GPS and press “G” on the menu. This will tell the program

to read the position in from the GPS and save the new value to the position.cfg

file. If the position information is wrong for the receive station the on-screen

calculations for distance and heading will be wrong. If antenna tracking is

planned the antenna will probably point in the wrong direction as well. The

received data and logs will not be affected by this information being incorrect.

After setting the receive stations position, the next step is to manually

align the antenna and turn on automatic tracking. The program starts with

the antenna in manual mode. In this mode by pressing the 2,4,6,8 or 5 keys

the antenna’s azimuth and elevation can be set. The 5 key centers the antenna

at zero elevation and zero altitude. Each press of the other keys increases or

decreases the elevation or azimuth by ten degrees. Once the antenna is pointing

at the balloon launch location the automatic antenna tracking can be turned

on by pressing the “A” key. Pressing “A” again will place the antenna back in

69

automatic mode. The antenna position indicator will update automaticlly in

auto mode each time the program decides to update the values. The program

will update the values and send the new position command to the antenna

when there is a difference between the current setting and the new setting of

one degree or more.

While in manual mode each time a key is pressed a new altitude or

azimuth command is sent to the LX200 with the new value. If the old command

is not finished being processed by the LX200 it will beep and ignore the new

command. If this happens the user can simply press the opposite movement

command and then press the desired one again once it has moved.

Once the system is ready and the E-sonde is turned on then the

user can select the “I” command to begin receiving telemetry packets. As the

packets come in information on the screen should begin to update with the new

time stamps adn the total and good packet counts should start to increase. If

the “H” key is pressed the receive mode will pause, but the counts and last

displayed data will remain. If the “S” key is pressed the counts will be reset.

On the display the voltage values can be used to check out the what

the E-sonde is experiencing envriomentally and how the battery voltages are

holding up. The instrument position section will give an indication of how the

GPS is doing. In particular the Num sat and HDOP section show how well

the GPS is locked by giving the number of satellites and horizonal precision

information. Also of use is the two time indicators in the middle right part

of the screen. From looking at these two times the user can quickly see if the

GPS and system time have been synchronized by the NTP daemon.

70

Before launch the user wants to make sure that logging has been

turned on. If the command line option was not given to force it on then by

presing “L” the logging will be turned on. Its status is showin in the lower left

corner of the screen.

Once the E-sonde is launched the user can montitor its ascent rate by

checking the DeltaZ field in the upper center part of the screen. The ground

speed and heading are useful for tracking where it is going. When the balloon

breaks the DeltaZ will change signs and increase in magnitude to about 10 m/s.

For the three flights in the summer of 2004 the average ascent speed was about

6 m/s.

The “P” command is used to set the interval at which the radio

modem’s received power level is checked. This was useful during intial testing

of the system while in the raw GPS mode, but was not used during subsequent

flights. The feature was used while driving the package around to find out

what the maximum distance was. Since the user could see the value decreasing

before it started losing packets, its was easier to determine where the cut off

happened. The problem is that the program will drop packets while trying

to get the power value from the modem. During actual storm flights it was

undesireable to lose any packets.

Once the flight has ended pressing the “Q” key will exit the program.

Another useful thing to do is to open a terminal in the same directory as the

balloon rx program and execute a “tail -f ¡logfile¿” to view the log file as it is

written. What’s useful is to watch for the MAX1 strings and look for larger

than normal voltage values to see if the E-sonde is seeing large e-field chanes.

71

3.4.3 Program command line options

The listing below shows the programs command line options and what

their usage is.

Usage: balloon_rx -hd <-l filename.log> <-c comm. port>

<-g gps port> <-a lx200 port>

-h Display this help screen.

-d Debug enable mode

-l Turn on logging default is InstID_MMDDYYYY.log

-f logfilename Use a different logfile name.

-c comm. port Port to use for radio.

default is /dev/ttyS0

-g gps port Port to use for GPS postion updates.

default is /dev/ttyS1

-a lx200 port Port to use for antenna

default is /dev/ttyS1

The options are self-explanatory and describe ealier. The one option

that is obsolete is the -d debug option. The problem is that the program uses

the ncurses library to control the display and the debug statements are printed

to standard out. So as soon as the screen is updated all the information is

overwritten.

3.4.4 Program Function map

Figure 3.5 shows a list of the program function names and what there

general purpose is. In appendix F on page 106 a listing showing what file

each particular function can be found in. The progam is designed to reuse as

much code as possible from the balloon tx program. In addittion to not having

to rewrite much of the code, the functions are consistent in format for both

programs.

72

antenna ctrl.

functions

 update_lx200()
 move_lx200()
 open_lx200()
 close_lx200()

radio modem
control
functions

 init_radio();
 get_signal_power()
 open_radio_rx()
close_radio()

data file
handling
functions

 writecfgfile()
 readcfgfile()
 csv_format()
 waypt_format()
 writelogfile()

 rx_drawmainscreen()

user inteface
functions

 initscreendata()
 updatescreendata()
 init_keyboard()
 close_keyboard()
 kbhit()
 readch()

GPS data
functions

open_gps_rx()
close_gps()
 atohex()
 nmea_checksum_check()
 parse_nmea_gga()
nmea2gpspos()
get_new_gps_pos()

calculation
functions

find_checksum()

 check_time_elapsed()
 theta_deg()
 gpsdist_mi()

data processing
functions

 rx_decode_pos()
 ad_decode_pos()
 rxdata_chksum_check()

balloon_rx
program

Figure 3.5: Block diagram of balloon rx program function names and purpose.

73

3.4.5 Program revision control and compile instructions

The balloon rx program files have the same RCS system used in the

balloon tx program. Details can be found in section 3.3.3 on page 63. The

program is built with the same makefile used by balloon tx which can be found

in appendix F on page 104 along with a diagram of the dependencies.

3.5 Instrument Test Programs

Describe 1s data capture test program and what it can be used for.

3.6 Graphical Balloon Tracking

Figure 3.6: Telemetry and tracking map screen during a flight.

74

Describe GPS drive and how it is used to track the balloon.

3.7 Preflight Procedures

Discussion of things to do before launch.

3.8 Data Analysis Programs

Describe the python programs to extract time from PPS signal and

create a CSV file with the voltages aligned to time.

Describe Mike’s weird time system.

Describe the time check.c program an why it’s useful in checking the

results of the python program.

CHAPTER 4

Testing and Calibration

1 2 3 4 5 6 7 8

x 10
4

0

1

2

3

4

5

6

7

8

9

10

E−sonde board 3 transfer function Vout/Vin

Frequency Hz

V
ou

t/V
in

Figure 4.1: Plot of transfer function for e-field sensor board.

Describe the frequency response for the E-field board and how it was

tested.

75

76

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1

2

3

4

5

6

7

8

9

10

E−sonde board 3 transfer function Vout/Vin

Frequency Hz

V
ou

t/V
in

Figure 4.2: Transfer function plot of e-field board showing detail up to 20 kHz.

CHAPTER 5

Flight Results

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

al
tit

ud
e

(m
)

Flight time (s)

Flight: 2004−08−06

GPS
Psensor

0 2000 4000 6000 8000 10000 12000
−20

−10

0

10

20

30

T
em

pe
ra

tu
re

 (
C

)

Flight time (s)

Figure 5.1: Comparison of altitude from GPS and pressure sensor with tem-
perature.

Describe correlation between GPS alt. and press. sensor calculated

alt.

Show formulas to calculate altitude from Pressure sensor.

77

78

0 1000 2000 3000 4000 5000 6000 7000
2000

3000

4000

5000

6000

7000

al
tit

ud
e

(m
)

Flight time (s)

Flight: 2004−08−14

GPS
Psensor

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

T
em

pe
ra

tu
re

 (
C

)

Flight time (s)

Figure 5.2: Comparison of altitude from GPS and pressure sensor with tem-
perature.

79

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1000

0

1000

2000

3000

4000

5000

al
tit

ud
e

(m
)

Flight time (s)

Flight: 2004−08−18

GPS
Psensor

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
5

10

15

20

25

30

T
em

pe
ra

tu
re

 (
C

)

Flight time (s)

Figure 5.3: Comparison of altitude from GPS and pressure sensor with tem-
perature.

80

Describe discrepancy in 2004 08 06 graph.

CHAPTER 6

Data Analysis

24.2 24.25 24.3 24.35 24.4 24.45
−1

−0.5

0

0.5

1

1.5

2
x 10

4 LMA dist.(m) vs. SEtotal(V/m) 2004−08−18 20:18 UTC

Time (s)

V
/m

 o
r

m

SE
x

SE
y

SE
z

SE
total

LMA dist

Figure 6.1: E-fields vs. LMA distance for August 18,2004 20:18:24.

Find a few more example of LMA data correlating with sonde e-field

changes.

Describe what is happening in each picture.

81

APPENDIX A

System Configuration

A.1 Communication Ports

/dev/ttyS2

4800 8N1

/dev/ttyS3

4800 8N1

GPS

Controll
Program

device/
parameters

/dev/ttyS0

Prometheus PC−104 Board

OS/BIOS

balloon_tx

balloon_tx

ntpd

Serial Port

Com2

Com1

Com3

Com4

Direction

/dev/ttyS1

38400 8N1

19200 8N1

Radio Modem

VT100 Terminal
(minicom)

Figure A.1: Serial port configuration diagram for E-sonde.

82

GPS

Rx

Tx

Splitter
Serial

Serial
to
Fiber

Rx

TxTx

Rx
Fiber
to
Serial

Serial

Rx

Tx

Combiner

Alternate
connection
to GPS to
read current
position

Device/
Parameters

radio modem

35 m of Fiber

Com1

Com2
LX200 az−el ctrl

/dev/ttyS0
19200,N,8,1

/dev/ttyS1
9600,N,8,1

/dev/ttyS1
4800,N,8,1

Control ant.
positiion

Read GPS position

Receive telemetry
data from sonde

Port

Com1

Com2

Com2

Functiion

Figure A.2: Serial port configuration diagram for receive station.

83

APPENDIX B

Pebble Linux Installation and Setup

VERSION 1.5 APRIL 28, 2005

Pebble Install and Configuration for Prometheus E-balloon System

====== ======= === ============= === ========== ========= ======

Overview:

This document describes how to install the Pebble Linux

distro. on the compact flash. It then explains how to

further configure the system for balloon flight operations.

Why Pebble Linux?

Pebble Linux was chosen for several reasons. The two main ones

are that it’s small and it’s designed to run on a compact

flash(CF). Compact Flashes contain a limited number of write

cycles, so it is important to not have the filesystem continually

writing small bits of log data to the flash. Pebble creates a ram

disk for the log files and mounts the flash as read-only.

The down side of pebble is that it’s designed for a router

and has many security modules and firewalling stuff loaded by

default that are not needed for the balloon package. The other

problem is that it contains the 2.4.xx kernel by default and the

balloon system would be better off with the real time features of

the 2.6.x kernels.

The good news is that Pebble is a Debian based distro. and the

packages on it can be easily updated/removed/added with the

apt-get command.

One word of caution though is that when apt-get is run it can pull

down 100 Meg of package listings. So if you put it on a small

partition less than 64 Meg and try to update the database it will

fill up the flash.

Pebble can be found at www.nycwireless.net/pebble/

84

Theses installation instructions were based on the pebble.README

file.

Section 1: Installation: (best done as root user)

1.1) Put the CF disk into the USB CF reader. The disk will show up

under linux typically as /dev/sda, but it depends what other drives

are on the system. It could show up as /dev/sdc or other. For

this reason, the commands below show /dev/sdX.

WARNING: It is extremely important to get the right device, as you

will be partioning and formatting it. If you get the wrong device,

you will be partitioning it. In the worst possible case, you may

reformat and repartion your main hard-drive. Linux will let you do

this, and it will keep running ... for a while! You can find out

what device the flash is mounted as from doing a dmesg command or

looking at /var/log/messages to see what device the CF was assigned

to. At this point if the CF is new there will be no partitions on

it. So the first thing to do is run something like

cfdisk /dev/sdX or fdisk /dev/sdX

Create 2 partitions. For a 1 GB we used something like

/dev/sdX1 80M

/dev/sdX2 920M

Set the boot flag on /dev/sdX1 so lilo can boot from it.

Here is what Prometheus flash partition table looks like on a 1 GByte

flash.

(fdisk with the -p option)

Disk /dev/sdc: 1024 MB, 1024966656 bytes

32 heads, 63 sectors/track, 993 cylinders

Units = cylinders of 2016 * 512 = 1032192 bytes

Device Boot Start End Blocks Id System

/dev/sdc1 1 79 79600+ 83 Linux

/dev/sdc2 80 993 921312 83 Linux

1.2) Create a file system for each partition. Currently ext2 was used

for simplicity, but there is a new filesystem called JFFS2 designed

for compact flashes that may work better. (Sticking w/ ext2 until

further notice)

85

mkfs.ext2 /dev/sdX1

mkfs.ext2 /dev/sdX2

Alternately, mkfs -V /dev/sdX1 will work. It defaults to ext2.

1.3) Mount the new partitions to the host system.

mount /dev/sdX1 /mnt/cf1

mount /dev/sdX2 /mnt/cf2

It helps to make sure you already have the mount point directories

on the host system.

[cd /mnt; mkdir cf1; mkdir cf2; chmod 755 cf?]

Can try chmod 777 cf? to see if you can do more without being root.

It seems, for example that the tar command doesn’t work well when

you’re not root. So the 777 is probably useless and 755 is good

enough.

Type "mount" afterwards to check that it worked.

The "mount" command will only work if you have the /mnt/cf? entries

in your /etc/fstab file.

To make mounting easier, you can modify /etc/fstab by adding these lines:

This is done on the host system not the prometheus system.

USB PROMETHEUS FLASH

/dev/sdX1 /mnt/cf1 auto defaults 0 0

/dev/sdX2 /mnt/cf2 auto user,rw,noexec,noauto 0 0

Note that sdX1 is mounted w/ defaults. If you mount it noexec, then

no commands can be executed on it. Therefor, for example, you can’t

run lilo on it, which you’ll need to do. The error in this case is

exceedingly unhelpful "Permission denied". Even if you have the

directories on cf1 set to rwx and even if you are root, the "noexec"

option in fstab trumps all of that and prevents lilo (or any other

command on the flash) from running.

1.4) Unpack the pebble tar file onto the new mount point.

(This needs to be done as root)

cd /mnt/cf1

[change to the directory into which you want to untar the file]

tar --numeric-owner -jxvf /<downloaded dir path>/pebble.vXX.tar.bz2

e.g., as of April 2005, it’s

tar --numeric-owner -jxvf /<downloaded dir path>/pebble.v41.tar.bz2

86

This will place all the pebble files into their correct sub

directories on the compact flash. Note --numeric-owner is part

of the incantation to make this happen.

1.5) Update and install lilo on the CF

cd /mnt/sdX1/etc

cp lilo-standard-hdc.conf lilo.conf

(Note) for console output to com1 there is a lilo-serial.conf

file you can use instead. (Additional note) --

/etc/lilo.conf is standard with any lilo distro. However

lilo-serial.conf is not generic. It is included with pebble,

so when you untar pebble onto the flash, you’ll find

/etc/lilo-serial.conf In fact, since you are hand-editing

lilo to do the right thing, which .conf file you start with

doesn’t matter. When you finally have the .conf file in the

form you like it, it must be copied to to /etc/lilo.conf on

the flash before it can be used by lilo. Lilo doesn’t know

about lilo-serial ... it’s just there as an example.

Here is a working lilo.conf for serial port boot:

###

#

NOTE: boot and disk below must be set to wherever your distro

is currently mounted (while you’re installing LILO). Don’t mess

with anything else unless you really know what you’re doing.

#

boot = /dev/sdX

disk = /dev/sdX

bios = 0x80

compact

delay = 1

serial=0,38400n8

image = /boot/vmlinuz-2.4.26-pebble

root = /dev/hda1

append="console=ttyS0,38400n8"

label = pebble

read-only

NOTE2: The append="console..." and serial commands make lilo

correctly output boot messages to the serial port. That way, you

can use a remote serial cable to watch the sonde boot once it’s

buttoned up # Without this, you can’t tell what the sonde is doing

87

until the ethernet comes up. Which means you can’t debug it at all!

April 05. There is the potential that some of these settings are

still not quite right. We find when the flash boots that sometimes

it spews garbage out the serial port. This can be caused by an

error in lilo.conf or by having the laptop listening into the sonde

set to wrong baud rate (or other serial parameter)

###

chroot /mnt/cf1 lilo

This runs lilo on the CF. Without the chroot it will run it on your

host system! The chroot command is tricky. Read info coreutils

chroot for more discussion. Here is a spontaneous essay about

chroot, so you use it wisely.

Chroot mystifies some people. You may think that it literally

changes what kernel you are running or something really tricky.

In fact, it only redefines the "root" of your filesystem. An

example of a use for this command helps it make sense. Normally

"Root" is the directory /.

However, let’s say you are working off of a compact flash on

/mnt/flash but booted from the hard drive at /. You can change your

"root" from harddrive to flash by chroot /mnt/flash Then cd /etc

actually puts you in /mnt/flash/etc rather than /etc.

Why is this necessary? Let’s say you want to run lilo to make a

compact flash bootable. Could do /mnt/flash/sbin/lilo. However, lilo

by default looks for /etc/lilo.conf. Thus, even though you were

running lilo on the flash, it would still pull the lilo.conf from the

hard-drive. Doing a chroot /mnt/flash /sbin/lilo runs the lilo on the

flash and pulls lilo.conf from /etc on the flash.

1.6) The system should now boot and configuration from the console can

be done.

umount /mnt/cf1

umount /mnt/cf2

remove the CF and put it into the balloon sonde.

At this point it should boot and you should see a login prompt.

Login as root.

1.7) Configuration after booting and logging in. There should be no

root password so just log in as root and begin editing the

88

following files.

vi /etc/network/interfaces

comment out the #iface eth0 inet dhcp

add

iface eth0 inet static

address 10.0.100.xxx -where XXX is 56 testing,

181-186 esonde_x

netmask 255.255.255.0

network 10.0.100.0

broadcast 10.0.100.255

gateway 10.0.100.1

vi /etc/resolve.conf

add

nameserver 10.0.100.1

vi /etc/modules

add

natsemi

dscudkp

comment ALL the other modules. (If you don’t you’ll get a lot

of errors on boot and won’t get to the login prompt)

The dscudkp usually doesn’t load

because you need to use the -force on the insmod usually due to

it being compiled on a different kernel. The dscudkp is the

driver for the A/D D/A IO on the prometheus. The specifics for

this driver will be discussed later in this doc.

vi /etc/ntp.conf

For the gps timekeeping add the following line.

server 127.127.20.0 mode 2 burst prefer.

This IP address should be checked. The point is that it will

synch the sonde clock with an NTP server if the sonde is

connected via ethernet. This means it will bring the sonde

close to correct time.

ln -s /dev/ttyS3 /dev/gps0

this creates a link between the gps driver for NTP and the

serial port COM4.

89

vi /etc/inittab

remove the nocat lines

1.8)Run

passwd - to set the root password

ssh-keygen - sets up sshd keys

mkdir /wxdata

chmod ugo+rw /wxdata

vi /etc/fstab

/dev/hda1 / ext2 defaults,noatime,ro 0 0

proc /proc proc defaults 0 0

tmpfs /rw tmpfs defaults,size=10M 0 0

/dev/hda2 /wxdata ext2 defaults,rw,exec,noatime 0 0

apt-get install ntp minicom setserial

This will install the full ntp packge with the gps drivers.

minicom and setserial are also installed.

shutdown -r now or reboot

1.9) The system should now be accessible from across the network.

ping 10.0.100.xxx

scp balloon_tx root@10.0.100.xxx:/wxdata

ssh root@10.0.100.xxx

Where xxx is the assigned ip address.

1.10) Building the DSCUD drivers (from the host machine,not esonde)

NOTE: We are now recommending that you use DSCUD58. The

procedure in dscud_build.txt supercedes the procedure in section

1.10 here.

a) untar the driver package LINUX-DSCUD57.tar.gz

(available at http://www.nmt.edu/~rsonnenf/research/research.html)

This runs on the Pebble 2.4 kernel.

b) go into the gcc3 directory and run install.sh

this will build the files and put the library files in

/usr/local/dscud5 on the host machine

90

/lib/modules/misc

c)scp /lib/modules/misc/dscudkp root@10.0.100.xxx:/lib/modules/misc

d) scp /usr/local/dscud5/load.sh root@10.0.100.xxx:/etc/init.d/dscud

e) ssh to the e-sonde and run depmod -a

1.11) log into the esonde either by SSH or console

cd /etc/init.d

chmod +x dscud

cd /etc/rc2.d

ln -s /etc/init.d/dscud S99dscud

* This will allow the driver to load when the system is booting

* You may want to clean out all the S?? files that you don’t want

running at runlevel 2 as well.

* The S99 sets the run priorities. The init scripts start with S1

and work up through 99 being the last.

1.12) Serial Port setup

vi /etc/setserial.conf

/dev/ttyS0 uart 16550A port 0x03f8 irq 4 \

baud_base 115200 spd_normal skip_test

/dev/ttyS1 uart 16550A port 0x02f8 irq 3 \

baud_base 115200 spd_normal skip_test

/dev/ttyS2 uart 16650V2 port 0x03e8 irq 9 \

baud_base 115200 spd_normal skip_test

/dev/ttyS3 uart 16650V2 port 0x02e8 irq 15 \

baud_base 115200 spd_normal low_latency

Make sure /etc/rc2.d has a S13setserial and it’s executable.

** You are now ready for flight **

Currently (Summer2004) the balloon_tx program was started by hand

before flight. Mostly this was done because the startup parameters

were being tweaked on each flight. This should be automated though.

There is a danger that the balloon might get launched without this

program running, in which case tracking becomes more difficult.

Section 2: Duplicating a working system onto other compact flash

91

cards:

2.1) It is fairly easy and straightforward to create a duplicate of a

CF. There is a command called ’dd’ which will create a byte by

byte image of a CF.

In order to do this use the following command:

dd if=/dev/sda of=image_file.out bs=512

The if= is the input device to be copied.

of= is the output device or file.

bs is the number of blocks to copy at a time. 512 is standard

for most hard drives and CFs.

- The above command will create a file of the same size of the

compact flash.

- It is best to do this as the root user.

- /dev/sda is the device where the compact flash is.

- The device should not be mounted.

- The process can take a long time on a 1GB flash hooked to USB 1.1

- Make sure you have enough room on the local hard drive to store

the file image.

- It is recommended that you encode the file with the date of the

image, such as pebble_20050203.img

2.2) The process can be reversed by issuing the following command:

dd if=image_file.out of=/dev/sda bs=512

The CF can be un-formatted, but must be the same size or greater.

The boot sector and partition table are part of the image so it

should be rady to boot as soon as the command returns.

Section 3: Advanced methods of creating images

You want to save space on the local hard drive or time by only copying

part of the CF. You may also want to move to a CF of different size.

3.1) You can copy only a single partition with the dd command

with the followling:

92

dd if=/dev/sda1 of=image_sda1_20050203.img bs=512

This creates an image file with just the first partion.

On the e-ballon the first partion may only be 64 MB.

3.2) Now you want to create a CF that is only 256 MB.

a) Put the new CF in the CF reader/writer.

b) use cfdisk /dev/sda

- create the new partiotion to the size you want.

- set the first one as bootable.

c) use lilo to make the CF bootable as outlined in section 1.

d) use mkfs.ext2 /dev/sda2 to format the second/data partition

e) mount the second partition: mount /dev/sda2 /mnt/cf2

f) copy any files such as balloon_tx to /mnt/cf2

3.3) This will build a smaller or large CF with the partion one

setup with the pebble boot image. When it boots it should

mount the second partition from the fstab table in partition

one.

3.4) Beware that not all 1GB flashes are the same exact size even

though they say they are 1GB. When copying images from one

brand to another make sure they have the same byte counts

when dd runs.

3.5) If they are different then the technique in this section can

be used instead of duplicating the entire CF.

Revison History:

==

Version 1.0 by J.Battles

(created original document)

Version 1.1 by R.Sonnenfeld

Version 1.2 by W.Walden

Version 1.3 by R.Sonnenfeld

Version 1.4 by R.Sonnenfeld

(adding versioning info on DSCUD)

Version 1.5 by J.Battles

(Reformatted code. Clarified and cleaned up a few issues.)

93

APPENDIX C

DSCUD Driver Installation

##

Instructions for DSCUD 5.8 Installation on Prometheus

##

1) Download LINUX-DSCUD58.tar.gz file from

http://www.diamondsystems.com/support/software

2) Download a kernel soucre from

http://www.kernel.org/pub/linux/kernel/v2.4/

that matches the current version on pebble.

Currently 2.4.26 so you would get linux-2.4.26.tar.bz2

note:Switch to root after step 2.

3) Move the kernel to the /usr/src directory

mv linux-2.4.26.tar.bz2 /usr/src

4) Untar the kernel in /usr/src on the host system.

cd /usr/src

tar -jxvf linux-2.4.26.tar.bz2

5) Next we are going to start a kernel build, but not finish it so the

driver install program can find what it needs.

cd linux-2.4.26

make menuconfig

when the screen comes up select Exit and then say Y to save.

make dep

6) cd /(where you put the DSCUD file and want to unpak it.

7) tar -zxvf LINUX-DSCUD58.tar.gz

8) cd dscud-5.8

9) cd gcc3 (This is assuming you have gcc version 3.x.x on your

system. You can check with gcc --version. If you 2.x.x then do a

cd gcc2 instead.

94

10) tar -zxvf dscud-5.8.tar.gz

11) cd dsucd5

12) ./install.sh

13) Hit enter.

14) Now you will see a list of kernel version on your system. Enter

the number that corresponds to

) Kernel 2.4.26 (/usr/src/linux-2.4.26)

Hit enter again.

15) It should now compile and build the driver. You should see

something like:

--> Compiling kernel module for your system <--

rm -f dscudkp.o

gcc -c -o dscudkp.o dscudkp.c -O2 -D__KERNEL__ -DMODULE \

-I/usr/src/linux-2.4.26/include -D__SMP__ -DSMP

--> Installing module dscudkp.o in /lib/modules/misc <--

mkdir -p /lib/modules/misc

cp dscudkp.o /lib/modules/misc/

Step Three: Final Instructions

The dscudkp kernel module has been installed in

/lib/modules/misc/. You must copy this

file to the same location on your target system.

The load.sh script will load the kernel module so

that it can be used by the driver. You must run

this script each time the Linux system boots. See

the README file for help with this.

Driver installation complete.

16) Copy the file to the Prometheus target with:

scp /lib/modules/misc/dscudkp root@10.0.100.xxx:/lib/modules/misc

scp /usr/local/dscud5/load.sh root@10.0.100.xxx:/etc/init.d/dscud

17)) ssh to the e-sonde and run depmod -a

95

This finishes installing and building the new drivers.

A few other files were built that need to be installed on the host

development system.

18) mkdir /usr/local/dscud5

cp dscud.h /usr/local/dscud5

cp libdscud5.a /usr/local/dscud5

19) In the Makefile for any programs using the dscud5 lib the order

of the libs must be changed so that -lm is after the other

libraries. Otherwise, you will see compile erros like the

following:

: undefined reference to ‘pow’

collect2: ld returned 1 exit status

The make file should look have a line that looks like this:

LIBS = -L/usr/local/dscud5 -ldscud5 -lrt -lm

The reason for this is that the new dscud5 library makes use of

the pow() funciton defined in the math library and so must be

linked before the math library.

This problem only occurs on programs linked with the -static

option to the gcc compiler as in the case of balloon_tx.

20) Version of tools used during this instruction manual:

Development platform: Slackware 10.1 running Linux 2.6.10.6

gcc: gcc (GCC) 3.3.5

GNU ld version 2.15.92.0.2 20040927

glibc-2.3.4

GNU Make 3.80

binutils-2.15.92.0.2

96

APPENDIX D

NTP Daemon Checkout Procedures

NTP Pre flight check procedure.

1) Make sure gps is attached and sending good data to COM4 /dev/ttyS3

2) Type ntpq at command prompt as root

3) type the peers command at the ntpq> prompt.

ntpq> peers

remote refid st t when poll reach delay offset jitter

===

*GPS_NMEA(0) .GPS. 0 l 8 64 37 0.000 -754.53 49.693

LOCAL(0) LOCAL(0) 10 l 3 64 37 0.000 0.000 0.001

You should get something similar to the above. The thing to check is that

1) the GPS_NMEA(0) line is present.

2) The stratum (st) is set to 0

3) The jitter column is less than 4000 ms. 4000ms is the max.

jitter. the deaomon will handle before ignoring the clock driver.

values of 50-200 are in the normal range.

The next command to check is

ntpq>clockvar

status=0000 clk_okay, last_clk_okay,

device="NMEA GPS Clock",

timecode="$GPGGA,224346,3403.9667,N,10654.4480,W,1,07,1.7,1453.7,M,-23.7,\

M,,*4F",

poll=3, noreply=0, badformat=0, baddata=0, fudgetime1=0.000, stratum=0,

refid=GPS, flags=0

Here you should see the last line from the gps under "timecode=$GPGGA.."

You can check the status fields for any erros in helping to debug.

97

noreply= gives a count of how many times the ntpd tried to poll the gps

and didn’t get a response.

Notes:

- The ’date’ command can be used to see what the current time is.

-Use ’date -s hh:mm’ to set the time as close as possible to UTC. This

will speed up the time lock on.

About ntp.conf in /etc

Should have a config line that looks like:

server 127.127.20.0 mode 2 burst prefer

127.127.20.0 - sets ntpd to use NMEA serial gps /dev/gps0

gps0 should be a link to /dev/ttyS? wher ? is 0-3

mode 2 - Use NMEA GGA string for time.

burst - when checking time use 2s burst intervals. Time is set faster.

prefer - Use as statum 0 (highest) level clock driver.

98

APPENDIX E

Log and Data File Naming Convention and Format

Log file format for balloon_tx program

The program creates two type of log file. One master file for all the

position and slow scan data and one for fastscan data.

GPS positon and slow A/D format (stored on balloon device compact flash)

file naming convention:

hostname_MMDDYYYY.log

MM - Month starting at January=01

DD - Day starting at 01

YYYY - Year in 4 digits (ex. 2004)

Example of GPS log file:

pebble_02152004.log

Log file for pebble machine started on Feb. 15, 2004

<<Data in Logfile with loss of GPS signal note no 2nd POS line>>

Mon Feb 16 21:26:49 2004

POS,pebble,21,26,49.00,34.066216,N,106.907402,W,1446.9,1,09,01.1,2c^M

AD1,pebble,21,26,49.03687,-00.3708,000.0009,000.0674,000.0043,16^M

AD2,pebble,21,26,49.03687,000.0745,000.0302,-00.0677,-00.0247,17^M

AD3,pebble,21,26,49.03687,-00.0049,-00.0070,000.0037,-00.1279,10^M

AD4,pebble,21,26,49.03687,-00.1294,-00.2075,-00.2426,-00.1593,1b^M

AD1,pebble,21,27,26.03746,-00.3647,000.0012,000.1266,000.1657,14^M

AD2,pebble,21,27,26.03746,000.1492,000.1868,000.3711,000.6699,30^M

AD3,pebble,21,27,26.03746,-00.0018,-00.1923,-00.3259,-00.4291,0f^M

AD4,pebble,21,27,26.03746,-00.4071,-00.5048,-02.1924,-03.3752,18^M

<<end of logfile>>

<<Data Logfile with multiple program restarts on same day>>

99

Mon Feb 16 21:26:49 2004

POS,pebble,21,26,49.00,34.066216,N,106.907402,W,1446.9,1,09,01.1,2c^M

AD1,pebble,21,26,49.03687,-00.3708,000.0009,000.0674,000.0043,16^M

AD2,pebble,21,26,49.03687,000.0745,000.0302,-00.0677,-00.0247,17^M

AD3,pebble,21,26,49.03687,-00.0049,-00.0070,000.0037,-00.1279,10^M

AD4,pebble,21,26,49.03687,-00.1294,-00.2075,-00.2426,-00.1593,1b^M

AD1,pebble,21,27,26.03746,-00.3647,000.0012,000.1266,000.1657,14^M

AD2,pebble,21,27,26.03746,000.1492,000.1868,000.3711,000.6699,30^M

AD3,pebble,21,27,26.03746,-00.0018,-00.1923,-00.3259,-00.4291,0f^M

AD4,pebble,21,27,26.03746,-00.4071,-00.5048,-02.1924,-03.3752,18^M

Mon Feb 16 21:39:06 2004

POS,pebble,21,39,11.00,34.066174,N,106.907433,W,1431.7,1,08,01.4,26^M

AD1,pebble,21,39,11.03608,-00.3683,000.0012,001.3995,002.1896,21^M

AD2,pebble,21,39,11.03608,002.8766,003.9557,005.5457,009.0012,39^M

AD3,pebble,21,39,11.03608,-00.0034,000.3992,000.7239,000.6100,11^M

AD4,pebble,21,39,11.03608,000.7703,001.3589,002.6794,007.7908,41^M

POS,pebble,21,39,38.00,34.066174,N,106.907463,W,1428.3,1,08,01.4,34^M

AD1,pebble,21,39,38.03628,-00.3671,000.0009,000.1178,000.0867,20^M

AD2,pebble,21,39,38.03628,000.1584,000.1364,000.0632,000.1282,1c^M

AD3,pebble,21,39,38.03628,-00.0037,-00.1682,-00.2487,-00.3552,18^M

AD4,pebble,21,39,38.03628,-00.3555,-00.4477,-00.5612,-00.3174,1f^M

<<end of logfile>>

Log string formats:

POS or position:

POS,Inst ID,UTC Hour,Min,Secs,Latitude,Hemisphere,Longitude,Hemisphere,

Altitude (m),gps fix,num sats,hdop,checksum

*The time for the POS string comes from the GPS.

A/D string:

AD?,Inst. ID,UTC Hour,Min.,Sec.,Voltage channel[0,4,8,12],V ch.[1,5,9.13],

V ch.[2,6,10,14],V ch.[3,7,11,15],checksum

*The time for the ADx strings come from the CPU system time.

Maximum Votage string:

MAX1,Inst ID,UTC hour,min,sec,max ch0.,max ch1.,max ch2.,max ch3.,checksum

100

*The max value represents the maximum voltage (either positive or negative)

that was encoutered while reading the fast A/D channels. The time stamp

is the time it was transmitted and not the precise time where it occured.

The values are reset after transmission.

Fast A/D format (stored on balloon device compact flash) ending in .edat

file naming convention:

hostname_MMDDYYYY_HHMM_VVV.edat

MM - Month starting at January=01

DD - Day starting at 01

YYYY - Year in 4 digits (ex. 2004)

HH - Hour (0 -23 UTC)

MM - Minute (0-59 UTC)

VVV - 3 digit file format version number. Currently 001.

Files are currently about 8.5M in size.

A new file is generated for each minute.

The file is composed of multiple two second data records

created with the following structure.

#define FAD_SAMPLES 20000

#define FAD_SAMPLE_RATE 10000

struct ad_capture{

struct timespec time_start;

struct timespec time_stop;

short overflow;

DSCSAMPLE ad0[FAD_SAMPLES];

DSCSAMPLE ad1[FAD_SAMPLES];

struct timespec time_start1;

struct timespec time_stop1;

DSCSAMPLE ad2[FAD_SAMPLES];

DSCSAMPLE ad3[FAD_SAMPLES];

struct timespec time_start2;

struct timespec time_stop2;

DSCSAMPLE ad4[FAD_SAMPLES];

101

DSCSAMPLE ad5[FAD_SAMPLES];

struct timespec time_start3;

struct timespec time_stop3;

DSCSAMPLE ad6[FAD_SAMPLES];

DSCSAMPLE ad7[FAD_SAMPLES];

};

time_start 8 bytes

time_stop 8 bytes

overflow 2 bytes

ad[0-7] 2 bytes * FAD_SAMPLES = 40000 each or 320000 total

Log file format for balloon_rx program

Raw GPS receive mode:

#POS, GPSRAW, hrZ,min,sec.xx,Lat,N,Long,W,Alt(m),rx mode,num sats,

hdop,checksum

Examples:

POS,GPSRAW,21,13,05.00,33.981312,N,107.187920,W,3232.2,6,00,12.5,7e

POS,GPSRAW,21,13,16.00,33.981503,N,107.187973,W,3232.2,6,00,12.5,7c

POS,GPSRAW,21,13,17.00,33.981522,N,107.187973,W,3232.2,6,00,12.5,7e

The time comes from the GPS UTC time.

rx_mode is 0= no fix available and 1 = non-differential GPS fix

num sats is the number of satellites the GPS is tracking.

hdop is the horizontal dilution of preciscion in meters.

* There appears to be a bug in the balloon_rx program. The rx_mode

should be either a 0 or 1 not a 6. Also the hdop of 12.5 meters would

correspsond to a satellite of 6 not 0. So there apears to be a problem

in the raw gps GGA string decoding and log writing.

Other file formats are the same for POS,AD?,and MAX1 strings as above.

Way Point file used by GPSDRIVE program to track the balloon:

Instr. ID:alt=<altitude>m latitude longitude

Examples:

102

Esonde03:alt=03231m +33.982182 -107.188141

Esonde03:alt=03231m +33.982182 -107.188141

Esonde03:alt=03232m +33.982162 -107.188156

*The latitude and longitude are converted to there proper plus and

minus values based on the hemispher character. The first field is

actually the waypoint label as far as the GPSDRIVE program is

concerned.

Matlab output files:

Since matlab can’t handle characters very well when trying to

convet the entire file into a matrix the text in the string type were

replaced with numbers, the instr. ID’s removed,and the lat. and long.

were converted to their plus and minus values. Other than those

changes,the stirngs remianed the same.

String coversion list:

0 = POS

1 = AD1

2 = AD2

3 = AD3

4 = AD4

Examples:

0,18,39,22.00,33.982197,-107.188133,3229.3,1,07,01.5

1,18,39,22.009,-00.0459,+00.0937,+00.0816,+00.3004

2,18,39,22.009,+00.0206,-00.7253,+00.5827,+01.6620

3,18,39,22.009,+05.1613,+05.8903,+08.4318,-08.6043

4,18,39,22.009,+05.2209,+03.1706,+00.8654,+00.5862

Naming convension:

Instr ID_MMDDYYYY.mat

Instr ID is the name of the transmitting instrument.

MMDDYYY is the the month, date and year of the start of

when the file was written.

Esonde03_08182004.mat

103

APPENDIX F

Makefile, Function locations, and File Dependencies

CFLAGS = -I/usr/local/dscud5 -D_THREAD_SAFE -pthread -ggdb \

-D_LINUX -march=i486 -static

LIBS = -L/usr/local/dscud5 -ldscud5 -lrt -lm

CFLAGS2 = -ggdb -D_LINUX

LIBS2 = -lm -lrt -lncurses

all: balloon_rx balloon_tx

balloon_rx : balloon_rx.o nmea.o balloon.o

gcc -o balloon_rx balloon_rx.o nmea.o balloon.o $(CFLAGS2) $(LIBS2)

balloon_tx : balloon_tx.o nmea.o prometheus.o balloon.o

gcc -o balloon_tx balloon_tx.o nmea.o prometheus.o balloon.o \

$(CFLAGS) $(LIBS)

balloon_rx.o : balloon_rx.c

gcc -c balloon_rx.c $(CFLAGS)

balloon_tx.o : balloon_tx.c

gcc -c balloon_tx.c $(CFLAGS)

nmea.o: nmea.c nmea.h

gcc -c nmea.c $(CFLAGS)

prometheus.o: prometheus.c prometheus.h

gcc -c prometheus.c $(CFLAGS)

balloon.o: balloon.c balloon.h

gcc -c balloon.c $(CFLAGS)

clean :

rm balloon_tx *.o

104

nmea.c,.h

balloon.c,.h

prometheus.c,.h

balloon_rx.c

balloon_tx.c

Figure F.1: Block diagram of file dependencies.

Function Locations for balloon_tx program

file: balloon_tx_funcs.txt

balloon_tx.c

writedatafile()

buildtxstring_ad()

tx_gps_pos()

get_and_tx_slow_ad()

balloon.c

writelogfile()

ser_readline()

get_new_gps_pos()

find_checksum()

buildtxstring()

open_gps_rx()

open_radio_tx()

close_gps()

close_radio()

nmea.c

atohex()

nmea_checksum_check()

parse_nmea_gga()

prommethues.c

prom_ad_init()

105

prom_ad_scan()

prom_fad_init()

prom_fad_start()

prom_dio_init()

prom_set_dio()

prom_get_dio()

prom_calibration()

prom_sample_to_voltage()

prom_find_max_voltage()

Function file locations

file: balloon-rx_funcs.txt

balloon_rx.c:

//Antenna pointing

update_lx200()

move_lx200()

//Program data handling functions

rx_decode_pos()

ad_decode_pos()

nmea2gpspos()

gpsdist_mi()

theta_deg()

check_time_elapsed()

writecfgfile()

readcfgfile()

rxdata_chksum_check()

csv_format()

waypt_format()

// Program GUI functions

rx_drawmainscreen()

initscreendata()

updatescreendata()

init_keyboard()

close_keyboard()

kbhit()

106

readch()

balloon_h:

writelogfile()

ser_readline()

get_new_gps_pos()

find_checksum()

buildtxstring()

hexstr2int()

//Comm related functions

init_radio()

get_signal_power()

open_gps_rx()

open_radio_tx()

open_radio_rx()

close_gps()

close_radio()

open_lx200()

close_lx200()

nmea_h

atohex()

nmea_checksum_check()

parse_nmea_gga()

107

APPENDIX G

Balloon E-field,B-field, and Coordinate System

108

109

110

111

112

113

REFERENCES

[Beasley et al., 2000]Beasley, W. H., kenneth B. Eack, Morris, H. E., Rust, W. D.,
and MacGorman, D. R. (2000). Electric-field changes of lightning observed
in thunderstorms. Geophysical Research Letters, 27(2):189–192.

[Coleman et al., 2003]Coleman, L. M., Marshall, T. C., Stolzenburg, M., adn P. R.
Krehbiel adn W. Rison, T. H., and Thomas, R. J. (2003). Effects of charge
and electrostatic potential on lightning propagation. Journal of Geophysical

Research, 108(D9):12–1 thru 12–27.

[Cooray, 2003]Cooray, G. V. (2003). The lightning flash, volume 34 of IEE power

series. Instittution of Electrical Engineers, London, United Kingdom.

[Krehbiel et al., 1979]Krehbiel, P. R., Brook, M., and McCrory, R. A. (1979). An
analysis of the charge structure of lightning discharges to ground. Journal

of Geophysical Research, 84(C5):2432–2456.

[MacGorman and Rust, 1998]MacGorman, D. R. and Rust, W. D. (1998). The elec-

trical nature of storms. Oxford University Press, New York, NY.

[Marshall et al., 2005]Marshall, T., Stolzenburg, M., Maggio, C. R., Coleman, L. M.,
adn T. Hamlin, P. R. K., Thomas, R. J., and Rison, W. (2005). Observed
electric fields associated with lightning initiation. Geophysical Research

Letters, 32(L03813).

[Marshall et al., 1995]Marshall, T. C., Rison, W., Rust, W. D., Stolzenburg, M.,
Willett, J. C., and Winn, W. P. (1995). Rocket and balloon observations
of electric field in two thunderstorms. Journal of Geophysical Research,
100(D10):20815–20828.

[Rakov and Uman, 2003]Rakov, V. A. and Uman, M. A. (2003). Lightning: physics

and effects. Cambridge University Press, New York, NY.

[Shao and Krehbiel, 1996]Shao, X. M. and Krehbiel, P. R. (1996). The spatial and
temporal development of intracloud lighting. Journal of Geophysical Re-

search, 101(D21):26641–26668.

114

	LIST OF TABLES
	LIST OF FIGURES
	Instrument History, Theory, and Goals
	Thunderstorm Electric Field Measurement History
	Basic Thunderstorm Charge Distribution Models
	E-sonde Theory of Operation
	Science Goals of the E-sonde Project

	System Hardware
	Overview
	Complete E-sonde System

	Sonde Layout External
	Sonde Package
	Sonde User Interface

	Sonde Layout Internal
	E-field Sensors
	Sensor Layout
	Electrode Design

	E-field Sensor Board
	Charge Amplifier Basics

	A/D
	A/D Signal Conditioning Board
	CPU and Storage
	Magnetometer
	GPS
	Power Control Board
	Radio TX/Sensor Board
	Amplifier Board
	Batteries
	Interface and Control

	Software
	Operating System
	System Time NTP Daemon
	Transmit Control Program
	Program description
	Program command line options
	Program revision control
	Program dependencies

	Receive Program
	Program Purpose
	Program Operataion
	Program command line options
	Program Function map
	Program revision control and compile instructions

	Instrument Test Programs
	Graphical Balloon Tracking
	Preflight Procedures
	Data Analysis Programs

	Testing and Calibration
	Flight Results
	Data Analysis
	System Configuration
	Communication Ports

	Pebble Linux Installation and Setup
	DSCUD Driver Installation
	NTP Daemon Checkout Procedures
	Log and Data File Naming Convention and Format
	Makefile, Function locations, and File Dependencies
	Balloon E-field,B-field, and Coordinate System
	REFERENCES

