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Lightning's costs to society

Lightning kills approximately 100 people/year in US
*(1959-1996: NM 85 deaths and 181 injured).
eCauses fires in homes, mines and ammunition depots.

*Costs $4-5 Billion/yr in disrupted power lines, destroyed
electronics.

Broader benefits of lightning research

eUnderstanding of lightning effects on climate change
(N20 production)

Improved lightning rods
*[ightning resistant aircraft
e[ightning warning systems / tornado warnings?

*Global lightning location networks Courtesy of Richard Sonmenteld

New Mexico Tech Physics Dept



Magnetic Loop
Antenna

Climatology: The National Lightning Detection
Network (NLDN)
Full-time, real-time coverage of the continental US.
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Lightning statistical parameters

40 flashes/second on Earth.

[ peak=100,000 amps
V_cloud=100 Megavolts
Charge transfer Q=20 coulombs
E= 1 Gigajoules

Current rise-time 1 microsec

P peak = many Terawatts
Channel radius r=1 cm

Stepped Leader velocity <0.001c
Dart Leader velocity 0.1c
Return Stroke velocity 0.5¢

(From Uman, “All About

g Courtesy of Richard Sonnenfeld
b New Mexico Tech Physi¢s Dept

Lightning )

(NASA Photo)




Questions on Charge & Charge Transport

e Charging

— How are charges distributed in storms?

— How are charges created on hydrometeors?
e Discharging

— How does the plasma channel propagate to ground and
inside clouds?

— How does a lightning flash redistribute the hydrometeor
charges?

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Progress of the plasma i ‘iﬂ’m N
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3
L. Salanave, “LLightning and Its
Spectrum” (1980),
| Lo /l Courtesy of Richard Sonnenfeld
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Lightning Launched
Upward from Structures

From: L. Salanave, “Lightning and Its
Spectrum”, Univ. of Arizona Press, (1980).

Courtesy of Richard Sonnenfeld
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Lightning Launched
Upward from Structures

5 Figure 4 14 Early phases in development of upward propagating negative leader

From: L. Salanave, “Lightning and Its
Spectrum”, Univ. of Arizona Press, (1980).

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Triggered Lightning

S g RN S ety

Extend a wire

into a storm at
about 300 m/s

Can be used to
study lightning
effects

Bring the
lightning to your
home /airplane /
computer /
power plant.

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Triggered Lightning (Unintentional)

Aircraft at Kamatsu Air Force Base (Courtesy of Prof. Zen Kawasaki).

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept




Commercial aircraft at Kamatsu Air Force Base (Courtesy of Prof. Zen Kawasaki)

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept




Lightning Connection Process —
Upward Leaders

|

Return
Stroke

§ (b) (d) (e)
—15ps————15ps—f—5ps——05ps—]

*URE 2.3 Sketch of the luminous processes that occur during at-
ument of a lightning stepped-leader to an object on the ground.

From: P. Krider, “Physics of Lightning”, From: Rakov and Uman, “Lightning: Physics
Natieatl Ac’ademy Press, (1986). and Effects”, Cambridge U. Presse, (2003).

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



High-speed
video of
stepped-

leader

(from Dir.
Mathew
McHarg

USAFA)

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Questions on Charge & Charge Transport

e Charging

— How are charges distributed in storms?

— How are charges created on hydrometeors?
e Discharging

— How does the plasma channel propagate to ground and
inside clouds?

— How does a lightning flash redistribute the hydrometeor
charges?

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Electric field detection (ground based)

“E100” Field meter
Prof. W. Winn,
New Mexico Tech

Bottom View of Analeg l/3  Rotation

E-Field

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept
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Electrical Activity of a Small Mountain Storm
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Electrical structure of storms
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Questions on Charge & Charge Transport

e Charging

— How are charges distributed 1n storms?

— How are charges created on hydrometeors?
e Discharging

— How does the plasma channel propagate to ground and
inside clouds?

— How does a lightning flash redistribute the hydrometeor
charges?

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Collisional Inductive Charging
(Elster-Geitel charging)

 High electric fields polarize * Mechanism can occur in
water drops warm clouds or cold (sub-
e Cloud droplets scatter off of freezing) clouds

raindrops or graupel

(a) (b) @
4
1
1
I ]
4
¥ 4

---\

@-->

Fig. 3.11. Inductive charging of rebounding particles. Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept
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* The negative charge center in storms 1s always
found around the —10C Isotherm.

e This 1s taken to mean that charging 1s somehow
associated with the freezing of ingested water.

- From P.R. Krehbiel,
F— The Electrical Structure of Thunderstc
storms National Academy Press (1986)

+

New Mexico

Florida

Winter
storms

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Questions on Charge & Charge Transport

e Charging

— How are charges distributed in storms?

— How are charges created on hydrometeors?
e Discharging

— How does the plasma channel propagate to ground and
inside clouds?

- How does a lightning flash redistribute the hydrometeor
charges?

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Electric field spectrum
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The 1nverse problem

E-field measurements on the ground show a rich
spectrum from 0.001 Hz — 500 MHz

E-field features are understood in general terms,
and the lower frequency features are understood as
“charge transport”.

Knowledge of charge allows precise prediction of
fields. The inverse 1s not true.

How to solve the inverse problem?
— Cheat — use other info.
— Get full vector information (needs a balloon)

— Get multi-station charge measurements

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept
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The 1nverse problem

E-field measurements on the ground show a rich
spectrum from 0.001 Hz — 500 MHz

E-field features are understood in general terms,
and the lower frequency features are understood as
“charge transport”.

Knowledge of charge allows precise prediction of
fields. The inverse 1s not true.

How to solve the inverse problem?
— Cheat — use other info.
— Get full vector information (needs a balloon)

— Get multi-station charge measurements

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



August 2004 Launch
of delta-E Sonde

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept




or 1ield-cha - 10,000 Samples/s
" — 16-bits/Sample,
— Measure 8 channels
e E-field (Channels 0-3)

e Timing (Channel 4)
e B-field (Channels 5-7)

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept
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CG Flash with multiplicity of 10 — Balloon observation, Aug 18, 2004
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Measuring field change for each return stroke.
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Calculating vector to
Charge centers

Note steady
progression away from
Ground-strike point
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Mean strike point (NLDN)
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LLMA Plot for IC flash “C”
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LLMA Plot for IC flash “C”
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Distributed Charge Analysis for IC flash “C”
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Distributed Charge Analysis for IC flash “C”

Planview
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Comparing Expectation and Experiment for flash “C”
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1) Coulomb’s Law
2) Method of images to handle ground “plane”
3) Charge conservation

4) LMA 1indicates location of channel

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Lumped charge analysis —

A large charge -Aq 1s placed on new LMA RF sources.
-Agq moves with the sources

-Aq 1s constant

An opposite charge Aq remains behind

Distributed charge analysis —
A small charge -0q is placed on new LMA RF sources.

-0q 1s added to each new source, but never removed from
the previous source.

A growing opposite charge -0q remains at the initial LMA
source.

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



For certain flashes, the greatest field changes
occur at times one would not predict by
looking at the LMA data alone.

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Altitude vs. time
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Altitude vs. time
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Flash B:
19:59:08 UT

Courtesy of Richard Sonnenfeld
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Planview

Flash B
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Earth-referenced E-field FlaSh B
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How to fix this?

There must be a nearby positive charge that the
LMA 1s not seeing

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



Earth-referenced E-field FlaSh B
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E, (kV/m)

Earth-referenced E-field Flas
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Earth-referenced E-field FlaSh A Distributed Charge Analysis
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Large E-field changes can occur during “RF
quiet” periods. They are consistent with

growmg + charges near the flash 1nitiation
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The 1nverse problem

E-field measurements on the ground show a rich
spectrum from 0.001 Hz — 500 MHz

E-field features are understood in general terms,
and the lower frequency features are understood as
“charge transport”.

Knowledge of charge allows precise prediction of
fields. The inverse 1s not true.

How to solve the inverse problem?
— Cheat — use other info.
— Get full vector information (needs a balloon)

— Get multi-station charge measurements

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



A dozen simultaneous measurements
greatly constrain the problem
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The “Fairly Large Array”
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Charge Transfered During
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Summary

Electric field measurements have historically
contributed much to the understanding of
lightning.

We are developing multiple instruments aimed at
overcoming the electrostatic “inverse problem”

and watching the charge transport in a lightning
flash

Our 1nitial results are consistent with a model 1n
which each lightning flash leaves a constant
amount of charge / unit length of channel

Close-by measurements might allow us to see a
charge concentration at the channel tip which one

Courtesy of Richard Sonnenfeld
WOUld eXpeCt tO SCC. New Mexico Tech Physics Dept



Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



60

30

-30

-60

High Resolution Full Climatology Annual Flash Rate
90

SNV DROODOD =N~

-150 -120 -90 -60 -30 0 30 60 90 120 150

LIS and OTD data
published by

From Hugh Christian et al
NASA GHCC

Courtesy of Richard Sonnenfeld
New Mexico Tech Physics Dept



High Resolution Full Climatology Annual Flash Rate

8
6
4
2
1

.8
.6
4
2
A

d
New Mexico Tech Physics Dept




Collisional Non-Inductive Charging

* Contact potential
difference of ~100 mV
observed between wet ice
and dry 1ce.

e [ce crystals scatter off of
‘riming graupel’ (hail with
a freezing surface layer)
and acquire charge

e Mechanism requires cold
(sub-freezing) clouds
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Adapted from Takahashi, (1978)
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