Correlated High Speed Video, Medium Range E-Field, and B-field observations of Sprites

Richard Sonnenfeld

Department of Physics and Langmuir Laboratory, New Mexico Tech

Takeshi Kammae, H.C. Stenbaek-Nielsen Geophysical Institute, University of Alaska

Matthew G. McHarg Space Physics & Atmospheric Research Center and Physics Dept., US Air Force Academy Steven A. Cummer, Gaopeng Lu, & Jingbo Li Electrical and Computer Engineering Department, Duke University

William W. Hager Department of Mathematics, University of Florida R. K. Haaland

Physics and Engineering Dept. Ft. Lewis College

(Some) Prior Work

- Sprites associated with large +CG flashes (Boccippio et al., Science 1995)
- Brightness proportional to current, driven by field (Pasko, et al., JGR 1997)
- Sprites delayed up to 120 ms from parent flash (*Li, Cummer, et al., JGR 2008*)
- VLF (B-field) measurements see effect from sprite itself in ~10% of cases
 (Cummer, Inan et al., GRL 1998)

AE14A-02

3

Goals

Measure time between lightning flash and sprite initiation.

Correlate E-field and B-field.

Look for current signature of sprite in Electric field records.

Look for electrostatic signature of sprite.

Langmuir Electric field Array

Network of eight field-change stations

Langmuir Electric field Array

GPS disciplined timing Digitize with three different sensitivities.

Sample period is 20 microsec. 10 mV/m < E < 400 kV/m

Sprite "A"

Time Delays from first Field change to first light

7/15/10 5:22:01.710 **B** 5:27:09.694 5:32:57.564 5:45:14.489

5:55:54.807

6:41:36.081

7:00:31.844

A 7:06:09.808

34.34 -102.21 68.0 kA 5.3 34.24 -102.10 80.0 kA 1.5 1.8 34.36 -102.31 33.0 kA 34.16 -102.16 8.0 kA 5.0 34.38 -102.08 51.0 kA 3.3 34.02 -103.40 78.0 kA 1.5 34.00 -103.32 53.0 kA 1.5 111.0 kA 33.80 -103.93 0.5 8

Sprite "B"

D=470 km

7/15/10 5:27:09.695 UT

85

80

75

70

65

60

 $v = 10^7 \text{ m/s}$ $I_{PEAK} = 30 \text{ kA}$ Q = 45C $M = 650 C \cdot km$

Sprite "B": Clear sprite signature in E¹²

lefa2-20100715-S

Sprite "B": E-field signature

20100715-S

Waveform highly reproducible. Thus not a nearby flash (or a cow).

E-field signature

20100715-S

Sprite "B": EM signature

lefa2-20100715-S

Time (sec since 05:27 UT)

Sprite "B": EM signature

lefa2-20100715-S

Current (kAmps) 40 20 0 0.2 Electrostatic Inductive 0.15 Radiation Total 0.1 E-field (V/m) 0.05 0 -0.05 -0.1 5 10 15 0

E-field terms on vertical Sprite channel, from 470 km

Time (ms)

E-field terms on vertical Sprite channel, from 470 km Current (kAmps) 40 20 0 0.2 Inductive Term only 0.15 0.1 E-field (V/m) 0.05 ()-0.05 -0.1 5 10 15 0 Time (ms)

Conclusions

Clear sprite E-field signature in 1 of 9 sprite flashes.

E-field and B-field signatures similar. E-field effects look proportional to current. No electrostatic effects observed. All sprites were "prompt" (delays < 5 millisec). Distance dependence of E and B is 1/r. B = E/c as expected.

AE14A-02

Event "A"

lefa2-20100715-S

Duke VLF Station

Instrumentation

Description	Time Resolution
Telescopic video (Phantom7)	80 µs
Langmuir Electric Field-change array	20 µs
Duke VLF facility	10 µs
National Lightning Detection Network	t 1000 μs