Exercise 7.4: Conway's Game of Life
Given: a two-dimensional array, Board, of integer cell values, zero for a dead cell and positive nonzero for a live one;
Given: the boundaries cells around the edge of Board are always dead;
Given: the rules by which a non-boundary cell lives or dies:
if three or fewer neighbor cells are alive, then cell dies;
if five or more neighbors cells are alive then cell dies;
if four neighbor cells are alive, then increment current cell value;
Compose: a program that plays evolves the Board array until some input number of steps are completed, and returns an array of all the values taken on by Board.
%==========================================================================
define main
% John Conways Game of Life. Values of the Board cells are 0, for dead
% cells, or positive integers for live cells.
% Each cell has 8 neighbors; boundaries always contain dead cells.
% On each iteration, the cells are updated as follows:
% -- If a cell has more than four live neighbors, then it should die.
% -- If a cell has fewer than four live neighbors, then it should die.
% -- If a cell has exactly four live neighbors, then
% if it is deal, then it should be born;
% if is alive, then it should stay alive.
% -- If a cell stays alive in a step, its value incremented by one.
% The simulation of life iterates "Iterations" times.
% The board rows are all indexed from 1 to N, and the columns are all
% indexed from 1 to M; M and N may not be equal.
type OneDim = array [ integer ];
type TwoDim = array [ OneDim ];
type ThreeDim = array [ TwoDim ];
%==========================================================================
function decide( B : TwoDim; I : integer; J : integer returns integer )
% This function decides which cells should live or die.
%----------------------------------------------------------
function test( B : TwoDim; p, q : integer returns integer )
% This embedded function deterimines if a given cell is
% currently alive; it returns numeric values, 1 for alive
% and 0 for dead, so its results can be added by its
% caller to similar results for other cells.
if B[p, q] > 0 then 1 else 0 end if
end function % test
%----------------------------------------------------------
% count the neighbors of cell [I,J]
let Neighbor_count := test(B,I-1,J-1) + test(B,I-1,J) + test(B,I-1,J+1) +
test(B,I, J-1) + test(B,I, J+1) +
test(B,I+1,J-1) + test(B,I+1,J) + test(B,I+1,J+1)
% change its state, if necessary
in if ( Neighbor_count >= 5 ) then 0
elseif ( Neighbor_count = 4 ) then B[i,j] + 1
elseif ( Neighbor_count <= 3 ) then 0
end if
end let
end function % decide
%==========================================================================
function evolve( B : TwoDim returns TwoDim )
let
Num_Rows := array_size(B);
Num_Cols := array_size(B[1]);
First_row := B[1];
Last_row := B[Num_Rows];
Core := % evolve the central portion of B
for I in 2, Num_Rows-1
Mid_row := % evolve the central portion of row I
for J in 2, Num_Cols-1
returns array of decide(B,I,J)
returns array of Mid_row
end for;
Long_Core := % add the left and right boundaries to each core row
for m in 2, Num_Rows-1
Long_Row := array_addl( Mid_row, 0 );
returns array of array_addh( Long_Row, 0 )
end for
in % add the top and bottom boundary rows to the long core
array_addl(array_addh(Core,Last_row),First_row)
end let
end function % evolve
%==========================================================================
function main( Iterations : integer; Board : TwoDim returns Three_Dim )
for initial
Count := Iterations;
B := Board;
while ( Count > 0 ) repeat
Count := old Count - 1;
B := evolve( old B );
returns array of B
end for
end function % main
%==========================================================================
Previous Section