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Abstract: The Pseudoknot Problem is an application from molecular biology that computes

all possible three-dimensional structures of one section of a nucleic acid molecule. The prob-
lem spans two important application domains: it includes a deterministic, backtracking

search algorithm and floating-point intensive computations. Recently, the application has
been used to compare and to contrast functional languages. In this paper, we describe a se-
quential and parallel implementation of the problem in Sisal. We present a method for writ-
ing recursive, floating-point intensive applications in Sisal that preserves performance and

parallelism. We discuss compiler optimizations, runtime execution, and performance on
several multiprocessor systems.

1. Introduction

The Pseudoknot Problem [2] is a modification of a three-dimensional molecular biology

application. The program exhaustively searches a state space of structures, built from nu-

cleotides stored in a database, to build all possible three-dimensional structures of one sec-

tion of a nucleic acid molecule. Only structures that satisfy certain constraints are returned.

Both the database and the structural constraints are built into the program. Recently, the
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Government or the University of_California, and shall not be used for advertising or product endorsement purposes.



application has been used to compare and to contrast functional languages [3]. The problem

is appropriate for language comparison for several reasons:

1. The problem spans two important application domains; it includes a deterministic,

backtracking search algorithm and floating-point intensive computations. The search path

extends 23 steps and includes five branch points. The C version of the program executes 6.9

million floating point operations and 190 thousand square root and trigonometric functions.

2. The width of the search tree is quite large for even small problems. A particular ex-

pression of the problem may expose too much parallelism degrading performance.

3. The program includes both stack and array data structures. In a parallel environ-

ment, the traditional operations on these structures must be defined without introducing

race conditions and excessive copying. ~

4. The Computation includes opportunities for lazy and eager evaluation. The program

may compute a nucleotide’s position in a structure when it is added to the structure, or it

may compute the position only when needed.

. In this paper, we present a sequential and a parallel version of the Pseudoknot Problem

written in Sisal [4], a high-performance functional language developed by Lawrence Liver-

more National Laboratory and Colorado State University. The performance of the sequential

version was first reported in [3]. The objective of the Sisal Language Project is to develop

high-performance functional compilers and runtime systems for commercially available com-

puter systems. The language developers have focused on large-scale scientific application

codes. Currently, mature Sisal compilers exist for single processor and shared-memory mul-

tiprocessor systems, including the family of Cray computers, Sun and SGI systems, and iBM

and Macintosh PCs. On such systems, Sisal codes can execute as fast as codes written in im-

perative programming languages [1].

We are experienced at writing Sisal programs with many more floating-point operations

than necessary to solve the Pseudoknot Problem; however, we have little experience writing

recursive and/or stack-base programs. This paper is the first substantive report on the

expression, optimization, and execution performance of a recursive, stack-based Sisal

program. In section two we present a sequential and a parallel implementation of the

pseudoknot problem written in Sisal. While we can compile the latter for sequential

execution, we wrote two versions of the program to minimize the sequential execution time.

Section three discusses compilation and runtime issues and gives the execution times of the



programs on several multiprocessor computer systems. In section four, we summarize stud

present our conclusions.

2. Sisal implementation

The pseudoknot program returns all possible three-dimensional structures of one section

of a nucleic acid molecule by adjoining nucleotides one at a time Since the order in which we

can add nucleotides to the structure is known, the search is determinant. Figure 1 depicts a

partial search tree and gives the names of the Sisal routine called at each level. The parame-

ter indicates the type of nucleotide, A, C, G, or U, considered at that level. Before adding a

nucleotide to the structure, the program decides whether the addition-violates the con-

straints of the problem. If the addition is legal, the program adds the nucleotide to the struc-

ture and descends to the next level; otherwise, the program considers an alternative nu-

cleotide at the same level. If there are no other alternatives, the last nucleotide added to the

structure is removed and the program ascends to the previous level. When the search

reaches level 23, a solution has been found by definition. The program saves the structure,

removes the last nucleotide, and pops back one level. Note that multiple alternatives exist

only at steps 16, 17, 18, 20, 21, and 22. These steps represent the branch points in the search

space. Pruning occurs only at steps 18 and 22, where the addition of a nucleotide may violate

the problem’s constraints.

2.1 Sequential implementation

While we could have implemented the sequential program as a simple sequence of in-

structions, we decided to write a recursive, depth-first search program. This implementation

is similar to the original C program and the programs written in other functional languages.

The recursive program was not difficult to write in Sisal; however, we did have to think

carefully about the data structures we used and memory management issues.

There are three important data structures in the program: 1) the database of nucleotides,

2) the stack maintaining the current structure, and 3) the list of solutions. The original 

program implements the database as an array of nucteotides. It defines a nucleotide as a

variant structure to accommodate the differences between the four types without introducing

multiple data types. Although Sisal supports the equivalent of variant records, we chose to

represent a nucleotide as a real, two-dimensional array. The difference between the four

nucleic types manifests itself in the number of columns in the fifth row. Since array type



definitions in Sisal are independent of size and shape, we can define a single data type for all

four nucleic types. It is important that all nucleotides have the same data type because Sisal

functions are not polymorpkic. The program calls the same function at different sites with

different nucleic types. For example, the program calls we_dumas with a nucleotide of type

U at level 1, but with nucleotide of type C at level 3.

As the program descends and ascends the search tree, nucleotides are added to and re-

moved from the stack which maintains the current structure. We implemented the stack as

an array, and used the array routines array_addh and array_remh to push and pop nu-

cleotides. Since Sisal implements n-dimensional arrays as an array of pointers to (n-1)-di-

mensional arrays, the stack is actually an array of pointers to the nucleotides in the

database. No nucleotide is every copied; only addresses are copied. Moreover, Sisal passes

all arrays by reference, so the stack is not copied at each call site. Copying can occur only-

when the stack is pushed or popped, and then only if the stack’s reference count (numlJer of

outstanding consumers) is greater than one. If we can limit the number of consumers that

modify the stack to one in every scope, the program will not copy.

Consider the Sisal code2 for functions pseudoknot_domains aud wc_dumas,

"function pseudoknot_domains(k, stack,

if k = 0 then

reference(k, nucleotide, stack,

elseif k = 1 then

wc_dumas (k, nucleotide, stack,

elseif k = 2 then

helix3 (k, nucleotide, stack,

returns solutions_type)

.... solutions)

.... solutions)

.... solutions)

end if

end function

2 To improve ~eadability, We present only pseudocode, and not actual Sisal code.



function wc_dumas(k, nucleotide, stack, ..., solutions

returns solutions_type)

if pseudoknot_constraint(nucleotide, stack .... ) then

let new_stack := array_addh(stack, nucleotide)

in pseudoknot_domains(k+l, new_stack ..... solutions)

end let

else

solutions

end if

end function % wc_dumas

Pseudoknot_domains is the program’s central function. It is a conditional statement that

calls the function to be executed at each stage of the search. It is called originally from the

main program with k = 1 and an empty stack. The functions reference, wc_dumas,

G37_A38, helix3, and helix5 are all similar; P_O3 is different and is discussed-later.

Notice the recursive call to pseudoknot_domains in the/et statement in wc_dumas.

In pseudokno’t_domains, for a given value of k, there is only one consumer of stack.

In wc_dumas there are two consumers of stack, but only the second modifies the stack and

it is gua.ranteed to execute after the first. Thus, the array_addh operation executes in place

without copying. Moreover, .the recursive call to pset~doknot_domains is the only con-

sumer of new_stack and so, it is passed with a reference count of one.

It might appear that the stack must be copied at the branch points of the search, but this

is not so. Consider the following sequential implementation of P_O3

function P_O3(k,

returns

for initial

i

solutions

set_of_nucleotide,, stack,

solutions_type)

:= O;

:= solutions_in

while i < array_size(set_of_nucleotide)

i := old i + i;

nucleotide := set_of_nucleotide[i];

solutions := P_O3a(k, nucleotide,

returns value of solutions

end for

end function % P_03

solutions_in,

repeat

stack ..... old solutions)

where the code for P_O3a is similar to the code for wc_dumas and the other functions.

Since each instance of the loop body is a consumer of stack, the object is not mutable by



P_O3a; consequently, the array_addh operation within P_O3a will copy the stack. We can

eliminate the copy by explicitly passing the stack from iteration to iteration. This change re-

quires that P_O3a returns both a stack and a solution list, and that it pop off the nucleotide

that it pushes onto the stack before returning. With these changes, the code for P_O3 and

P_O3a is now

function P_O3(k, set_of_nucleotide, stack_in,

returns stack_type, solutions_type)

for initial

i := O;

stack := stack_in;

solutions :=solutions_in

while i < array_size(set_of_nucleotide)

i := old i + i;

nucleotide := set of nucleotide[i];

stack, solutions :=

P_O3a(k, nucleotide, old stack,

returns value of stack

value of solutions

end for

end function % P_03

repeat

.... old

solutions_in,

solutions)

function P_O3a(k, nucleotide, stack, solutions ....

returns stack_type, solutions_type)

if pseudoknot_constraint(nucleotide, stack .... 

let

stackl

stack2,

solutions

in

array_remh(stack2),

end let

else

stack, solutions

end if

end function % P_O3a

:= array_addh(stack, nucleotide);

then

:= pseudoknot_domains(k+l, stackl ..... solutions)

solutions

Of course, we must make similar changes to wc_dttmas and the other functions to maintain

program consistency.

By explicitly removing the nucleotide pushed onto the stack before the call to pseudo-

knot_domains, P_O3a returns the same stack that it was passed. More importantly, there



is now a single consumer of the stack in every scope. The compiler recognizes this fact and

generates code to update the stack in place. The Sisal program executes with a single

stack~all pushes and pops executing in place. Note that the Sisal code is no more complex

than the equivalent imperative code in which the programmer also explicitly pushes and

pops nucleotides onto and offthe stack.

The third data structure of importance is the solution list. It is an array of solutions, or

stacks. At level 23, the runtime system copies the stack and appends a pointer to the copy to

the solution list. Remember that the stack is an array of pointers, so only memory addresses

are copied. Note that the. copy is unavoidable and language independent--the stack must be

saved at this point. As with the stack, we single-threaded the solution list to eliminate any

unnecessary copying; however, some copying might still occur. Since the number of solutions

is not known, neither the compiler nor the runtime system can preallocate storage for the so-

lution list. When the size of an array is unknown prior to definition, the Sisal runtim~ sys-

tem preallocates n bytes of storage for the array (a runtime parameter with a default value of

100). As array elements are computed, they are written to the storage. If the storage is

exhausted before the array is defined fully, the runtime system preatlocates a greater

amount of storage, copies the array elements already defined from the old storage to the new

storage, recycles the old storage, and continues.

The final memory management issue regards scalarization. The program computes a

large number of atomic positions: x, y, and z coordinates. Storing the coordinates as a record

or an array results in the allocation and deallocation of a large number of small data objects.

To avoid this cost, the program passes all coordinates as scalar values.

2.2 Parallel implementation .

Parallel work occurs at the branch points of the search space. We exploit this parallelism

by substituting a for expression in place of the for initial expression in P_O3,



function P_O3_L(k,

returns

let

sltns :=

in

stack_in,

for sltn

end let

end function %

set_of_nucleotide, stack_in, solutions_in, ...

stack_type, solutions_type)

for nucleotide in set_of_nucleotide

sol_O := array solutions_type [];

stack, sltn := P_O3a(k, nucleotide, stack_in,

returns array of sltn

end for

sol_O

in sltns returns value of catenate sltn end for

P_O3_L

Each search branch rooted by a nucleotide in the set will execute concurrently. The system

will give each thread its own copy of the stack; again only memory addresses are co~ied.

This copying is unavoidable since each thread must be able to modify its stack independent of

the other threads. Each sequential thread manipulates its stack in place without copying.

Given the large number of possible search paths, we must be careful not to create too

magy parallel threads. Ideally, we want to use P_O3_L at each call site and have the system

decide whether or not to search the alternate paths sequentially or in parallel. Unfortu-

nately, the current Sisal runtime system does not throttle parallelism. The decision as to

how to execute the loop bodies of a for expression is made at compile time and depends on the

loop’s nesting level, the number of loop bodies, the size of the body, and the granularity of the

target machine. On our target machines and for the given instance of the problem, we found

that calling P_O3_L at level 16 and P_O3 at levels 17, 18, and 20 gave the best performance.

The static encoding of parallelism in a Sisal program is unsatisfactory; future Sisal. runtime

systems should automatically throttle parallel work permitting programmers to write more

general code.

3. Performance

Here we report on the performance of the Sisal codes on a four processor SGI IRIS 340

and a sixteen processor Cray C-90. In the final version of the paper, we will also include a

twelve processor .SGI Challenge and possibly other machines that may become available to us

in the coming months. For each test, we give the compiler and runtime parameters, the

compile time, the execution time, and the data space used. The compile time includes both



user and system time. The execution times of the programs are reported in knots. The 11n~t

gives the relative speed with respect to the execution speed of the sequential C program. To

run at "100 knots" means to run at exactly the same speed as the sequential C program. All

runs were double-precision. We used the Sisal compiler OSC 13.0 in all cases.

The compiler options for the sequential and parallel programs in all cases were, respec-

tively,

-cpp -seq -O -externC atan2

and

-cpp -O -externC atan2.

The first option calls the C preprocessor before calling the Sisal frontend. The option -seq

compiles the Sisal code for sequential execution. Code to spawn parallel work m~d manage

shared resources among worker processes is not inserted in the C code generated by the Sisal

compiler. -O turns on all Sisal optimizations. The oexternC flag provides a convenient.

mechanism to link in C library routines. A similar flag is available for Fortran library rou-

tines. These flags are one component of the Sisal Foreign Language Interface..

For sequential runs, the only runtime flag we used was -r. This flag instructs the Sisal

rur~time system to generate a statistics file. We report herein the execution times and data

space sizes from that report. For parallel runs, we used the -r, -w, and-ls flags. The second

and third flags define the number of workers and the number of loop slices.

Table 1 gives the performance for the sequential and parallel Sisal code on a four proces-

sor SGI IRIS 340. The processors are 33MHZ MIPS 3000 chips with 64KB caches. The ma-

chine has a total of 64MB of main memory. The SGI runs under the IRIX 4,0.5 System V op-

erating system. We used the C compiler gcc 2,5.8, and compiled all C programs at optimiza-

tion level -O. The pseudoknots achieved by the Sisal program are respectable, but the worst

¯ that we have seen. The small cache size of the SGI machine may be hurting the Sisal per-

formance. We saw similar performance with respect to the C code on a Sun4 with a 64K

cache [3]. The C code generated by the Sisal program is voluminous causing Sisal programs

to have worse instruction cache performance than equivalent C programs [5].

We suspect that the parallel code performs significantly worse on one processor than the

sequential version because of copying, but we have not confirmed this suspicion. Perfor-

mance on more than two processors was improved by slicing the for expression in P. O3 L in

ten slices (one slice per search path at level 16). This number of slices resulted in a better¯



load balance, and only slightly increased the runtime overhead. Even so, the speedup is be-

low average for the SGI machine. Notice the slight increase in space per additional worker.

Table 2 gives the performance for the sequential and parallel Sisal code on a sixteen pro-

cessor Cray C-90. This system is a vector supercomputer with 16GFlops peak performance.

Long vector computations run fast on this machine; everything else runs significantly below

peak performance. The system has 128MW of main memory arranged in 64 banks per

processor, and no cache. The operating system is UNICOS 7.C. We used the C compiler cc

4.0.2.8, and compiled all C programs at optimization level -02. The parallel program runs

slightly worse on one processor than the sequential program. We believe the degradation is

small because the Sisal compiler splits the for expression in P_O3_L into two loops: a

concurrent-vector loop and a concurrent loop. The former compute~ the coordinates of the.

nucleotides appended to the structure at step 16, and passes the coordinates in an array to

the second loop. The second loop then descends the alternate search paths in parallel. ~ince

we use a for initial expression at step 16 in the sequential version, this optimization is not

available. Increasing the amount of vector work in the parallel code compensates for any loss

in performance due to parallel runtime overhead.

.Given the small size of the computation" and small vector lengths, the Sisal program ex-

hibits good performance and speedup. The data space is larger than on the SGI, but still

small. Note that on the Cray, all words are 8 bytes long. Neither increasing the number of

parallel threads (calling P_O3_L at step 17) nor increasing the number of loop slices im-

proves performance; in fact, performance degrades due to increase runtime overhead. Simply

put, there is insufficient work to keep more than three C-90 processors busy.

4. Conclusions

In this paper, we have discussed a sequential and parallel implementation of the Pseudo-

knot Problem in Sisal and presented performance numbers on. several multiprocessor sys-

tems. We have presented a method to write recursive programs in Sisal that preserves per-

formance and parallelism. In the sequential code, we single-thread the data structures ma-

nipulated by the program enabling the Sisal togenerate code that updates the data struc-

tures in place despite recursive calls. In the parallel code, we use a for expression to imple-

ment the highest branch point in the search tree, and then single-thread the data structures

along each concurrent search path. The parallel program generates a sufficient number of

concurrent threads to fully utilize our target machines; however, the paralleli_sm is not dy-



namic. We have shown that with some insight, it is possible to write recursive, floating-point

intensive parallel programs in Sisal that achieve good performance and speedups on com-

mercial multiproces sor systems.
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Figure 1 - A partial search tree with Sisal function calls



C

Sisal (sequential)

Sisal (parallel)

Sisal (parallel, -lsl0)

Compile Time

696,0+7.3s

234.8+18.2s

255,6 + 19.3 s

255.6+19.3s

P1

I00 knts

70.9 knts
125 KB

55.0 knts
130 KB

54.4 knts
130 KB

Execution Speed/Memory

P2 P3

95,5 knts
132 I~

95,5 knts
132 KB

119.3 knts
134 KB

127.3 knts
134 KB

P4

126.5 knts
135 KB

152.2 knts
136 KB

Table 1 - Performance on the SGI IRIS 340

C

Sisal (sequential)

Sisal (parallel)

Compile Time

P1 P2

37.37 + 0.68 s 100 knts
|

93.3 knts
86.91 + 4.07 s 229 KB

88.9 knts 164.7 knts
106.19 + 6.21 s 255KB 259KB

Table 2 - Performance on the Cray C-90

P3

Execution Speed/Memory

P4

215.4 knts
263KB

243.5 knts
267 KB

P5

280 knts
270


