:Q)\u7/ C> 2

UCRL-JC-107491
PREPRINT

Implementing Functional .anguages
to Exploit Locali-y

Rich Wolski
John Feo
and
David Cann
Lawrence Livermore National Laboratory
Livermore, CA

This paper was prepared for submittal to
the Third IEEE Symposium o1 Parallel
and Distributed Processing Conference

Dallas, Texas, December -5, 1991

June 3, 1991

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the

author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed. or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily coastitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Implementing Functional Languages to Exploit Locality

Rich Wolski, John Feo, and David Cann

Computer Research Group (L-306), Lawrence Livermore Nat. Lab.,
P.O. Box 808, Livermore, CA 94550

Abstract: In the quest for high performance, no obstacle has been as
persistent or unyielding as memory latency. It was hoped that dataflow’s
fine-grain asynchronous model of execution might defeat the memory
latency problem. Unable to realize efficient fine-grain systems, the
dataflow community is now studying medium-grain and coarse-grain
implementations which, like conventional execution models, suffer the
effects of memory latency. In this paper, we describe a functional language
implementation that automatically exploits locality on cache-coherent
multiprocessors. Our system achieves performance improvements
reaching 20% for some programs. This study lends further support to the
superiority of the functional paradigm for parallel processing.

1. Introduction

In the quest for high performance, no obstacle has been as persistent or unyielding as
memory latency. Computer scientists have devised countless hardware and software
schemes to ameliorate its effect, including: compiler-time reorganization of instruction
streams, multiple functional units, cache memories, hierarchical memory systems,
hierarchical processor topologies, microtasking, multiple-thread architectures, and
dataflow. Parallel computing systems have further exasperated the problem. As systems
grow, so do the physical distances between processors and memories. Physicists speculate
that the hard limit for on-chip to off-chip memory delay is approximately 1 to 10 [Stone91].
Over the next decade we can expect to see ratios in the 1 z0 20 or 1 to 30 range. Effectively

exploiting large multiprocessor systems requires a careful balance between parallelism

and locality.

It was hoped that dataflow’s fine-grain asynchronous model of execution might defeat
the memory latency problem. Since this model naturally identifies all instructions that
can execute, there are always a large number of instructions ready to fire. It was thought
that processors would be kept continually busy, effectively hiding memory latency.
Unfortunately, fine-grain dataflow exposes too much parallelism [Bohm85, Culler90l.
System resources are quickly swamped. Unable to develop an effective throttling
mechanism, the dataflow community is now studying medium-grain and coarse-grain
implementations which, like conventional execution models, suffer the effects of memory

latency.

Sisal [McGraw85] is a general-purpose functional language being developed at
Lawrence Livermore National Laboratory and Colorado State University. The semantics
of functional languages adheres to the principals of mathematics. Sisal programs are a set
of mathematically sound, side effect free functions. The programmer defines “what” is to
be solved and not “how” it is to be solved. The Sisal compiler and runtime system are
responsible for executing the program on the target architecture in the most efficient
manner. The challenge, tﬁerefore, is to build machine specific Sisal systems that can
effectively exploit the particular hardware of each target machine. On cache-coherent
multiprocessors, the language system must tightly control where instructions execute;

otherwise, programs will suffer a large number of cache misses resulting in poor

execution times.

Current Sisal implementations for shared-memory multiprocessor systems employ a
medium-grain, dynamic dataflow execution model [Feo90]. Task scheduling occurs at
runtime without global control or knowledge of prior scheduling decisions. Consequently,
locality is not exploited. In this paper, we report the changes we made to the Optimizing
Sisal Compiler (OSC) and runtime system to automatically exploit locality on cache-
coherent multiprocessors. These changes improved performance, but increased the
complexity of both the compiler and the runtime system. The question we want to answer is
“does the gain in performance justify the greater compiler complexity and runtime

overhead?” As we shall see, the answer to this question is “Yes!”

In sections two and three we describe the original Sisal implementation and the
changes we made. Section four compares the performance of the original and enhanced
systems on four example programs run on a Sequent Symmetry (a cache-coherent

multiprocessor). In section five we consider what we nave learned and discuss future

work.

2.0 The Original System

To date, Sisal implementations exits for a variety of shared-memory multiprocessor
systems, including the Sequent Balance and Symmetry, Encore Multimax, Alliant FX/80,
and Cray X-MP and Y-MP. These implementations are highly efficient. Sisal programs
now run on these machines as fast as equivalent Fortran programs [Feo090, Cann90,
Cann91la, Cann91b]. With the exception of several optimizations to improve vectorization
on the Alliant and Cray architectures, all the implementations are essentially equivalent.
Of greater interest is the fact that the Sisal programmer need not be concerned with the

differences in the machines' architectures.

2.1 The Compiler

The Optimizing Sisal Compiler (OSC) translates Sisal source code into a hierarchical
dataflow graph and then applies a series of optimizations. Ultimately, the optimized graph
is translated into C and the native C compiler is called to generate machine code. The
Sisal compiler goes to extreme effort to eliminate the data copying that is so prolific in
functional language implementations that religiously adhere to side effect free semantics.
In general, a simple reordering of operations combined with the insertion of code to
precompute aggregate sizes eliminates the need for most copying while preserving
program semantics [Feo90]. Runtime reference counting is used when compile time
analysis fails. The reordering of operations also reduces the number of reference count
operations required to preserve and recycle storage at runtime. We have shown that all
these techniques are on the average 98% successful (Cann91b]. Besides optimizing and
compiling the code, the compiler is responsible for packaging for expressions and
inserting code to build activation records and invoke parallel execution. A for expression
is a loop without carried dependencies of any kind; the individual iterations can execute in
parallel in any order. The compiler and the runtime system are responsible for

organizing the iterations into subtasks best suited for the hardware of the target machine.

2.2 Parallel loop support

To reduce overhead, the runtime system makes orly modest demands of the host
operating system. At program initiation, a command lire option specifies the number of
operating system processes to be instantiated. We call these processes workers, and their

number remains constant throughout execution. We assure that the host operating system

will bind the workers to the same processors for the duration of the program, regardless of
preemption and system load. The workers themselves act like drones in a hive: they
repeatedly carry out work on behalf of the queen (the program). The work takes the form of
lightweight threads. The Sisal compiler packages the threads into parameterized
functions, and inserts code to distribute the work via a shared run-queue. Access to the
run-queue is on a first-come first-serve bases, so the pattern of work distribution across the

machine is random.

The number of threads formed from a for expression is a command line option which
defaults to the number of workers. Except in expressions with unequal amounts of work in
each iterations, we have found no advantage in creating more threads than workers. For
example, when smoothing a 1000x1000 byte image using 10 workers, the system breaks the
work load into 10 chucks (each of which smooths 10,000 bytes of the image). The expectation
is that each worker will pick up only one thread, resulting in an even distribution of the
work. In rare circumstances a worker will fail to pick up a thread, causing a load
imbalance. Since the run-queue is shared, there is no guarantee that a worker will
consistently process the same portion of the image on successive iterations. Obviously, this

thwarts the exploitation of locality and was the first part of the system that we changed.

The system described above controls parallelism according to a master-slave model.
The master is responsible for distributing parallel work, while the slaves wait for
activation records describing the various threads to arrive in the shared run-queue. They
then race to extract the work, and complete the specified computations. Then they return for
more work. The activation records identify the compiler packaged functions to be
executed, the required arguments, and the domain of execution (iteration subranges, etc.).
Returning to the previous example, the master would initialize 10 activation records, link
them to form a list, and equeue the list on the run-queue (see Figure 1). If the compiler can
determine that the bounds of a parallel loop do not change throughout the computation, it
introduces code to build and initialize the list only once. The list is saved and re-used
whenever the loop is executed. This is an important runtime optimization which saves the

master from allocating, initializing, and deallocating th2 list of activation records more

than once.

next record / next record / next record

lower bound: 1 lower bound: 101 lower bound: 901
upper bound: 100 upper bound: 200 ... upper bound: 1000
loop body: Body1() loop body: Body1() loop body: Body1()
done: FALSE done: FALSE done: FALSE

Figure 1 — A List of Activation Records

Figure 2 shows the pseudo-code for that portion of the master and slave processes from
the original Sisal implementation that manipulate the shared run-queue. Note that both the
master and the slaves require exclusive access to the run-queue, which is realized by a
single global lock. The slaves “spin” waiting for the master to change the head of the run-
queue to point to the first activation record. After the activation records are enqueued, all
the slaves rush to acquire access and grab a record. As an optimization, the master holds
out the first record and executes it first. Then, while waiting for the other threads to
complete, the master attempts to dequeue records from the run-queue as if it were a slave.
Each record has a done flag (initialized to false). When each thread completes the done
flag in the respective record is set to true. When all the done flags for the loop are true, the
master continues on to the next phase of computation. Note that the master only
temporarily assumes the role of a slave. All the workers master and slaves) use their own
stacks to execute the threads. Because Sisal does not ailow the intermediate results of a
parallel loop to be visible outside the defining iteration, deadlock among the workers is not
possible. This stack-based system is different from the system described in [Fe0o90]. It

eliminates the need for a blocked queue and context switches.

2.3 Storage subsystem

In addition to managing parallel loop execution, the runtime system supports a
dynamic storage subsystem optimized for the data structures found in Sisal. The original
system is a boundary-tag system with multiple entry-points to a circular list of free blocks.
A worker picks an entry-point on the basis of its own integer identifier. The free list
search 1s parallelized for increased performance as is the deallocation process. To
increase the speed of allocation and deallocation, an exact fit caching mechanism lies
between the boundary tag system and the requesting worker. It uses a working set of
different sizes of recently freed blocks, where blocks of -he same size form a sublist. To

eliminate synchronization overhead, each worker has its own cache. This results in

Master ()

if activation records have not peen built then
build activation records

end if

lock (shared run queue lock)

enqueue all records except the first

unlock (shared run queue lock)

execute the routine specified ir the first record

set the done flag in the first rzecord to TRUE

do while there is a done flag -hat 1is FALSE
Slave process ()

end do

Slave ()
do forever
Slave_process ()
end do

Slave process ()
do while the run queue 1is not empty
lock (shared run queue lock)
if there is a record on the run gqueue then
dequeue a record
unlock (shared run gqueue lcck)
call the routine specifiec in the record
set the done flag in the :seccrd to TRUE
else
unlock (shared run queue lcck)
end if
end do

Figure 2 ~ Pseudocode for the Master and Slave processes

faster execution, but can cause exact-fit misses if the size desired is in another worker's

cache.

To benefit later discussions, we briefly describe how the original system builds a
matrix in parallel. In Sisal, such a structure is by definition a vector of vectors. This
allows the definition of ragged arrays and improves copy elimination analysis, but at the
cost of increased storage management. When an array ‘s built by a for expression, the
master allocates the outermost vector before parallel execution begins. Then the slaves
allocate their range of row vectors on the fly. Later, the last user of the matrix recycles all
the pieces, making sure that each deallocated vector lands in the exact-fit cache of its

originating slave. This helps to evenly distribute the free storage and reduce contention

for the shared boundary tag subsystem during subsequent allocations attempts. For the
smoothing example, the matrix created on iteration { is read on iteration i + 1 and then
deallocted. The freed storage is used on iteration i + 2 to build the new matrix. We will see
that this unnecessary memory management activity has high execution overhead and

thwarts the exploitation of locality.

3.0 Modifications to exploit locality

Because Sisal insulates the programmer from the target machine, it places the burden
for mapping and tuning each program on the language system. The key to automatically
exploiting locality in Sisal programs is to schedule the producer and consumers of a data
object on the same processor. In the case of an aggregate object, we want to distribute the
aggregate's components across the processors, and schedule the producer and consumers of
each component to the same processor. Throughout the following discussion, we will use
the term data object to refer to a primitive data object; that is, a non-aggregate object. Since
the original Sisal implementation schedules producers and consumers dynamically
without knowledge of previous scheduling decision, we implemented a new scheduling

policy.

Many of the problems commonly encountered in scientific computing iterate through
sequences of parallel loops. The iterative or outer control loop executes until some
convergence criterion is satisfied. On each iteration, the inner parallel loops is invoked to
realize the actual computational work. In general, each successive parallel loop takes the
results of the previous parallel invocation as input. For example, consider the problem of
image smoothing. The main iterative loop invokes a parallel loop and then tests for the
satisfaction of convergence. Each successive parallel loop refines the results of the
previous iteration. To exploit locality in this example, it is important to insure that each
processor refines the same portion of the image on each iteration. The shape of each region,
or partition, of the array effects the amount of information that must be communicated
between regions [Abraham90]. While previous work on the topic of partition shape
demonstrates a theoretical advantage to using non-ractangular polygons for certain
problems, evidence indicates that the extra control overhead required negates any
reduction in communication overhead. For now, we have chosen not to change the existing

Sisal partitioning mechanism (which partitions objects into rectangles).

To summarize, we decided to divide parallel loops into rectangular partitions and then
schedule the dependent partitions from successive iterations on the same processor.
Consequently, intermediate results will reside in the appropriate processor caches between
iterations. The enhanced system preserves data locality only for applications in which
data generated by the i-th iteration of the producer are used by the i-th iteration of the
consumer. We refer to this as i-to-i locality. While a more substantial compile-time
analysis of array subscripts will allow us to support more complicated producer—consumer
relationships (for example, matching the i-th iteration of the producer with the j-th iteration
of the consumer), we believe that most scientific codes can benefit from an i-to-i matching.
Moreover, before making wholesale changes to the compiler, we wanted to gain a feel for
the potential performance improvements that could be had through subscript analysis. The

results of this study indicate that a more general system that supports i-to-j locality is

warranted.

3.1 Binding Work to Workers

To bind parallel work to specific workers, we chose to implement a distributed run-
queue (one queue per worker). We then modified the runtime system to schedule related
producer and consumer computations to the same worker. In the enhanced system, the
master builds the activation records as in the original system, but now distributes the
records among the various worker run-queues in a predefined order—an order preserved
across iterations. Each worker first checks its own run-queue for an activation record,
and then, if empty, checks the shared queue for work. Figure 3 shows the modified master
and slave pseudocode for the distributed run-queue version. Changes from the original

version are shown in italics.

3.2 Preallocation of aggregate data structures

Even though our distributed run queue implementation enabled Sisal to exploit cache
locality for a large range of scientific applications. initially we did not see the
performance improvement that we had anticipated. After studying the problem for some
time, we concluded that the overhead associated with tte runtime memory management
functions was obscuring the performance improvements. As explained in Section 2.2, OSC
allocates data objects on demand, and deallocates data objects as soon as all their
consumers have completed. Further, OSC implements 1ll objects as collections of data

structures linked by pointers. For example, a two-dimens.onal array consists of three data

Master ()
if activation records have not been built then
build activation records
end if
do for each slave
lock the slave's queue
enqueue a record in the slave's queue
unlock the slave's gqueue
end for
if there are any remaining reccrds then
lock (shared run queue lock)
enqueue all records except the first
unlock (shared run queue lock)
end if
call the routine specified in tae first record
set the done flag in the first record to TRUE
do while there is a done flag that is FALSE
Slave_process()
end do

Slave_process ()

do while this slave's queue and the shared run gqueue are not empty
if there is a record in this slave's queue then
dequeue that record
else

lock (shared run queue lock:

if there is a record in the shared run queue then
dequeue a record
unlock (shared run queue lock)

else

unlock (shared run queue lock)
goto end do
end if
end if

call the routine specified in the record
set the done flag in the record to TRUE
end do

Figure 3 — Pseudocode for the enhanced Master and Slave processes.

structures for each row (an array row header, and array storage header, and the storage
itself) and another set of three structures for a vector of row pointers which associates the
rows at the outer dimension. Allocating and deallocating an entire aggregate object can be
computationally expensive, and can force the program data out of caches as memory
management data structures are accessed. We realized that we would have to eliminate

most, if not all, of the memory management operations frym the inner parallel loop.

Fortunately, Sisal's functional semantics make it possible for OSC to prebuild data
objects. In the smoothing example discussed above, OSC analyzes the array indexing
patterns and data dependencies to determine that a 1000x1000 byte image is produced
during each iteration. Furthermore, each iteration only requires the 1000x1000 byte image
produced during the previous iteration to form the new image. Thus, the compiler
introduces code to allocate two 1000x1000 byte arrays before the process begins and at the end
of the iterative loop to switch between the two arrays. Consequently, all memory
management operations occur outside the work loop. Of course, not all applications
conform to a model in which data structures remain uniform in size throughout the
computation, but when they do, or if the size shrinks from a maximum that can be deduced
(as in Gaussian Elimination), the semantics of Sisal provides enough information for

storage preallocation.

Once we added this optimizations to prebuild two copies of aggregate objects and switch
between them, we observed the performance benefits from locality that we expected. For
example in the case of Gauss-Jordan without pivoting (discussed in Section 4.1) we
originally observed ;)nly a 12% improvement using the enhanced system. After
implementing the memory optimization we realized a 20% improvement. We
hypothesized that the 8% loss in performance was either a result of the extra execution time
required to do memory management, or the extra space in the cache that is required (for
both code and data). Figure 4 details a comparison of the difference in execution times for
OSC running Gauss-Jordon without pivoting. The solid columns show the difference in
execution time for OSC without memory management ‘using prebuilt data structures).
The hashed columns show the execution time difference for OSC with memory
management. All the data is for Gauss-Jordon without pivoting. Since the time
differences are relatively equal, we surmise that the loss in performance is due to extra
execution overhead and not cache interference. We feel it is important to note that memory

management overhead can easily overshadow the benefits of exploiting data locality.

10

Execution Time Difterence (seconds)

11

Memory Management Comparison

1.0
Bl Execution Time Difference w/o Memory Management
-
: AR
Execution Time Difference w/ Memory Management . ,7;://?;7:,2;-’,/ 7 0.8
- F kK B2
. EVA ERA Af;/(EA A f../ 7
YN NANA LB
EAXNANAAN KR
B A N A A WA o6
71 B/ EA A A 71 A A
B e AW IR A X,
] i *2 B 1 B i B B i/ A
Ko 2o 28 20 2F Zh- 2R
- B ¥ B B B B o S W % v
Y W I Y X 7
B MV MW R W v
A AR ¥
A AW A N
EVA L] 1 f 1 A B N A e
,g./;./-{/‘.y/;./\/-/ 4 B M A b A1 0.4
b SR B P A e N7 WA E A A o
7 3 7 7 B B B W Y R B o e Y
7 BB A bR T & A B 2 B B 7] oY e
B %7 A W B W A B A W A W A X
] i B 1 B4 7] B A A Bl B B B A Y
7l i 27 ¥ 1 i A A v WA S B <% i34
N Y B W i B B W B B B W Y W EE
; _'./i.-’/.;/."/».::/.:-,/-;f;/' A ,'f-,/’/-fﬁ—/ A
N Rk A Ak AR
7 0¥ ?‘./';,4?/7:./ I 71 A 7 ':7’?/ A ,.4*,‘-/'%/.‘:‘%
.4 E; ¥/ 1 B B ¥ .—"/’ 1 B B fo N A ‘:;';;./ tA 0.2
A A B B A Y A A B W Y ¥ Y T
e B ZEZE7E R CEZEZE -2k 22 22k R CEZEZ
rvpezleoli o7 R R G R TR CECE 2N 2B Y
R CEZE L L 2 YR ZE 2 CEZEZ
R E CE JEZE ZE 2 CE K ZE 2 S ZE 22
%/ » ;’; //:14 ;(/_-/f-./:/ 1 87 YA #/—,.;ff;/ & n'«f/
N LR (A %A /_,//;/ Pl ¥ A 1% \;-/r:./‘,/;.-/‘-,//y:././
2 ¢ Y 3 i3 E5 = 3 2 % e 3 = &4 “ 3 = B T
AWM, Y Y R) 2|,
20 30 40 50 60 70 80 S0 100110120130140150160170180190200210220230240250300
Problem Size
Figure 4 -- Memory Management Execution Times
4.0 Results

To evaluate the cost of exploiting locality we tested the enhanced system on four
applications: Gauss-Jordan with and without pivoting, a 5-point stencil, and a particle-in-
cell code. The four applications were written in double-precision arithmetic. We ran all
the experiments on the Sequent Symmetry at Southern Methodist University. This
machine has 20 Intel 80386 processors, 32MB of main memory, and a 32K copy-back cache
per processor. The system includes Weytek floating-point coprocessors and automatically
maintains cache coherency. For each experiment we used 10 processors and to account for
normal variations in execution time we took the average over 5 runs. We report the
percentage improvement in execution time of the enhanced version of OSC over the

original system which we define as:

(original execution time enhanced execution time)
original execution time

Improvement =

Owing to the functional semantics of Sisal, we could not prescribe a particular order of

execution or organization of subtasks. All we could do was express the algorithms and rely

on the compiler and runtime system to organize the computation in such a manner to

exploit the Symmetry's hardware to best advantage.

4.1 Gauss-Jordon Linear System Solver without Pivoting

The first program we chose to examine was an in-place Gauss-Jordon linear system

solver without pivoting. This algorithm solves the linear system
Aex=b

Since this is a regular problem with no communication between partitions (only the pivot
row is shared), we expected to see a large performance improvement for this program. We
considered systems from 10 to 400 equations. The Sisal program is comprised of an outer
sequential loop executed n times and an inner parallel loop executed O(n2) times, where n
is the number of equations. On each iteration of the outer sequential loop, the master selects
the next pivot row and passes it to the inner parallel loop. Each worker then reduces its
slice of A and b by that row. Since we ran on 10 processors, each slice of A is n/10 rows by n
columns and each slice of & is n/10 elements. Notice that only the pivot row is fetched from

main memory; the rest of the system is distributed among the processor caches.

Figure 5 shows the percentage improvement for Gauss-Jordon without pivoting as a
function of problem size. At first, the improvement in performance increases as the
problem size grows, increasing the ratio of execution time versus loop overhead. The
improvement then levels off at approximately 20%. As the problem size grows, it
eventually spills from the cache increasing the number of accesses to main memory.
Consequently, the observed improvement of the enhanced over the original system
decreases beginning with problem size 130x130. For this size problem we are exploiting
84% of the cache. Recall that Sisal maintains both the current and previous copy of A and b
array; thus for a 130x130 size problem, each worker owns 2 ¢ (13 ¢ 130 + 13) double-

precision elements for a total of 27KB.

2.2 Gauss-Jordon Linear System Solver with Full Pivoting

Next we added full pivoting to the Gauss-Jordon solver. As each worker reduces its
slice of A on iteration i, it records the largest element in the slice not in a previously
selected pivot row. On completion of the reduction phase each worker passes the largest

element it found and the row index of that element to the master The master then selects

Improvement

Gauss-Jordon Without Pivoting

0.3

0 100 200 300 400

Problem Size

Figure 5 -- Gauss-Jordon Non-pivoting Improvement

the new pivot row, say row j, by finding the largest of these elements. Before initiating the
next reduction phase, the master places the largest element on the main diagonal by
interchanging rows j and i + 1. Note that the selection of the pivot row in the Sisal
algorithm is distributed over the workers, thereby, minimizing communications. The
only values written and read from main memory are the 10 maximum values, the 10 row

indices, and rows I and j.

Figure 6 shows the percentage improvement for Gauss-Jordon with full pivoting. We see
the same shaped curve with a maximum improvement of approximately 12%. We expect a
smaller percentage improvement in the case of full pivcting contrasted with no pivoting
because the former increases the number of instructions executed without increasing
proportionally the opportunities to exploit locality. Figure 7 compares the differences in
execution times of the two algorithms. Since the heights of the columns are essentially
equivalent, we conclude that the advantage of the enhanced system over the original
system is constant. Thus, the loss in improvement in the pivoting case is due primarily to

Increase execution times and not increased bus traffic.

—f— Improvement

13

14

Gauss-Jordon With Pivoting

Improvement

0.3
0.2 A

juawaaoiduw

200 300 400

Problem Size

100

Figure 6 -- Gauss-Jordon Pivoting Improvement

Comparison of Execution Time Difference

1.0

o o
o o

4 0.4

-0.38

©
(@)
' f//////////xfz/x////

RO

//////////////////////////////////;

J5 T e ST e b Do oo i b At

////////////////////////////////////

L et T b sl Ry ol ik b A it o s B

7/////////.//.////////////////////////////

s IO b otk it ik el s g e DA Rt N4

...//.//.//////////////f////////////////////

o b LT e b et i et B e R M 2

7///x

o v i o B L e o SN s o S ArR Al

.n///////////////////////////////////////;&

iew el (7 it n? P 3 v EFRLFSRIAT L SOt NI i) P

;///////.//////////////////////////////////

gl gt S Uk V> Bkl FLT w1 b

7////////////////////////////////////4&

o, v i o b b -

/////////////////////////////////////

<SR g e bk T Sl B T

f//////////////////////////////////&

Foond U rind i Aty e by ek bt s el

//.//f////////////f//////////....//.

L kit et et 1S M AR

//////////////////////////

< ik .Jr. shilontol o ot -

///////////////////////ﬁ

T d i v it 121 B

///////////////xx///
- ,././////////ﬁ////ﬁ,.
////////////
?//////4

| ..7////./.

L

-

a
~

~

= Non Pivoting Difference
Pivoting Difference

(spuooas u|) aouaitsyjiq SWl] UOIIN23X]

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250300

Problem Size

Figure 7 -- Execution Time Difference Between Pivoting and Non-pivoting Gauss-Jordon

2.3 A Five-Point Stencil

The third problem we studied was a five-point stencil. Stencils of various complexities
appear in many scientific computations. Here we consider a simple stencil which
calculates the weighted average of the center element with its north, south, east, and west
neighbors. The algorithm is comprised of an outer iterative loop and a parallel inner loop.
The outer iterative is executed until a convergence criterion is satisfied. The inner
parallel loop computes

(4.0 Al I+ ALG-1,j1+ AL+l + Ali,j-11 + Al j+1D)

Ale,j] 8.0

for 2 <ij < n. Note that the boundary elements do not change.

The program exhibits less data locality than the previous two examples. To smooth a
row of A requires the row above it and the row below it; but since the Sisal runtime system
slices A into chunks, only the rows on slice boundaries have to be communicated between
processors; consequently, each processor reads and writes two rows per iteration. Because
the computation per element is short, for thin chunks, communication delays form a

significant portion of the overall execution time.

For this example program, we varied the number of rows from 20 to 400. By increasing
the number of rows, we made each slice of the array successively thicker, increasing the
proportion of computations to communications. Since increasing the number of columns
does not change the proportion of computations to communications, we kept the number of
columns fixed at 80. Figure 8 summarizes the results for the five-point stencil. We see the
same shaped curve as before, but with a maximum improvement of 9%. As before we use
approximately 80% of the cache before beginning to spill out; however, the decrease in

improvement as the problem size grows is more gradual than in Figures 5 and 6. We have

no explanation for this disparity.

2.4 Particle-in-Cell

The final program we chose to examine was a particle-in-cell calculation. It is an
extension of a PIC code developed at Los Alamos National Laboratory. The program
simulates the evolution of a system of charged particles confined to a rectangular
cvlinder. The particles are subject to only electromagnetic forces. A two-dimensional

erid is superimposed on the cylinder and the electric pctential is calculated at each grid

Improvement

Five-Point Stencil

0.3
0.2 1
l —— Improvement
0.1 1
0.0 ™ T - T T y T T
0 100 200 300 400 500

Problem Size

Figure 8 -- Five-point Stencil Improvement

intersection. Particles contribute to and are affected only by the potential at the four grid
points defining the enclosing cell. At each time step, the algorithm calculates the
acceleration, velocity, and new position of each particle. [t then computes the new electric
potential at each grid intersection. The program's parameters are: the number of time-

steps, the number of particles, and the grid dimensions.

We wrote the Sisal code such that the particle array is evenly distributed across the
processors. Each processor calculates the contribution of its particles to the grid. The
master then merges these grids to compute the composite force at each grid intersection.
The workers read this grid to calculate the new acceleration, velocity, and positions of their
particles. Thus for each iteration each worker writes and reads a grid from main
memory. Note that the particles never move from their assigned processor. In this
implementation the grids move, but the particle data structures remain fixed. Although the

computation per slice is large, if the grid partitions are too fine, communication costs will

dominate.

Figure 9 shows 100 time-step runs for 500, 1000, and 2000 particles on a 25x25 point grid.
For these numbers of particles, a 25x25 grid is fine enough to affect, but not dominate, the

program's overall execution time. The percent in improvement of the enhanced over the

16

Particle-In-Cell

0.08

0.06

0.04

B mprovement

Improvement

0.02

0.00 +
500 1000 2000
Problem Size

Figure 9 -- Particle-In-Cell Improvement

original version is approximately 8%. Of the four programs we tested, this is by the far the
largest and most complicated. It is a real code that exercises all aspects of the Sisal
compiler and runtime system. Since we realized a nontrivial improvement, we are

encouraged to adopt the enhanced system and pursue more sophisticated techniques for

exploiting locality.

5.0 Conclusions and future work

The results of our study show that Sisal language systems can exploit locality and that
the improvement in performance outweighs the increase in the complexity of the compiler
and runtime system. Consequently, we believe a more comprehensive effort to exploit
locality in Sisal and other functional languages is warranted. To achieve the same degree
of locality in imperative parallel programming, is very difficult [Warren91]. This study
lends further support to the superiority of the functional paradigm for parallel processing.

Remember that all we did was express the algorithms, the rest was done automatically by

the compiler and runtime system.

17

We see little reason to support nonrectangular partitions. The overhead of managing
such partitions in the Sisal system would be great, as predicted for any real system by
Abraham and Hudak (Abraham90]. The computation to communication ratio for
nonrectangular partitions would have to be substantially better than the ratio for
rectangular loops to justify the increase management costs. There is also the question of
increased scheduling costs as the number of partitions increase. Presently, the enhanced
system supports only i-to-i producer—consumer relationships. We recognize the
importance of supporting general producer—consumer relationships, and believe that the
subscript analysis techniques used by automatic parallelizing compilers can help solve the

general problem. We are currently investigating the applicability of these techniques.

While most commercially available multiprocessor systems have a two-level memory
(cache and main memory), future large-scale systems will almost certainly employ more
than two levels of memory. Much more sophisticated methods than the ones described here
will be required to effectively exploit locality on these machines. For example, the BBN
TC2000 has cache, local, shared, and interleaved memory. We are currently developing
and testing a prototype system based on the distributed run-queue model for the TC2000.
We hope to report on this work shortly.

Acknowledgements

We would like to thank Southern Methodist University for use of their Sequent
Symmetry. This work was supported (in part) by the U.S. Department of Energy under
contract number W-7405-Eng-48 to Lawrence Livermore National Laboratory, the
Mathematic Sciences Program of the Office of Energy Research (U.S. Department of

Energy), and Lawrence Livermore National Laboratory s Massively Parallel Computing

Initiative.

References

[Abraham90] Abraham, S.G. and Hudak, D.E. Compile-time Partitioning of
Sequentially Iterated Loops to Minimize Cache Coherency Traffic, Proc.
ACM Int. Conf on Supercomputing, 1990.

18

[Bohm85]

[Cann91a]

[Cann91b]

[Cann90a]

[Cann90b]

[Culler90]

[(McGraw85)

[Feo90]

[Stone91]

(Warren91}

Bohm, A.P.W., J. Gurd, and J. Sargeant. Hardware and Software
Enhancement to the Manchester Dataflow Machine. Proc. IEEE Spring
Computer Conference, February 1985, pp. 420-423.

Cann, D.C. Vectorization of an Applicative Language: Current Results and
Future Directions,Proc. COMPCON 91, San Francisco, CA, February 25,
1991, pp. 396-402.

Cann, D.C. Retire FORTRAN? A Debate Rekindled, submitted to Proc.
Supercomputing 1991, Albuquerque, NM, November, 1991.

Cann, D.C. J.T. Feo, and DeBoni, T.M., SISAL SISAL 1.2: High
Performance Applicative Computing, Proc. 2nd IEEE Symposium on
Parallel and Distributed Computing, Dallas, TX, December, 1990.

Cann, D.C. and J.T. Feo. SISAL versus FORTRAN: A Comparison using
the Livermore Loops. Supercomputing '90, New York, NY, November 1990.

Culler, D.E. Managing Parallelism and Resources in Scientific Dataflow
Programs, MIT Technical Report LCS/TR-446 (Ph. D. dissertation), MIT,
Cambridge, MASS, March 1990.

McGraw, J. R. et. al. Sisal: Streams and iterations in a single-assignment
language, Language Reference Manual, Version 1.2. Lawrence Livermore
National Laboratory Manual M-146 Rev. 1), Lawrence Livermore

National Laboratory, Livermore, CA, Mar:h 1985.

Feo, J.T. D.C. Cann and R.R. Oldehoeft, A Report on the SISAL Language
Project, Journal of Parallel and Distributed Computing, vol. 12, 10
(December 1990), pp. 349-366.

Stone, H, Keynote Address, IEEE 5th Int Parallel Processing Symposium,
Anaheim, CA, April 1991,

Warren, K.H. and Brooks, E.D. Gauss Elimination: A Case
Study,Proc., COMPCON 91, San Francisco CA, February 25, 1991, pp. 57-61.

19

