i

UCRL- 102440, Rev. 1
PREPRINT

A Report on the Sisal Language Project

John T. Feo,
David C. Cann
Lawrence Livermore National Laboratory
Livermore, CA

and

Rodney R. Oldehoeft
Colorado State University
Fort Collins, CO

This Paper was Prepared for Submittal to the
Journal of Parallel and Distributed Computing,
December 1990

July 1990

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the

understanding that it will not be cited or reproduced without the permission of the
author.

LYo —" |

published in the following:

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING , v. 10(#4) pp. 349-366 1990

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees. makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefui-
ness of any information, apparatus, product, or process disclosed. or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products. process, or service by trade name, trademark. manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
these of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes,

A Report on the Sisal Language Project *

John T. Feo
David C. Cann

Computer Research Group (L-306), Lawrence Livermore Nat. Lab.,
P.O. Box 808, Livermore, CA 94550

Rodney R. Oldehoeft

Department of Computer Science, Colorado State University
Fort Collins, CO 80523

Abstract: Sisal (Streams and Iterations in Single Assignment Language) is a
general-purpose applicative language intended for use on both conventional and
novel multiprocessor systems. In this report we discuss the project's objectives, phi-
losophy and accomplishments, and state our future plans. Four significant results
of the Sisal project are: compilation techniques for high performance parallel ap-
plicative computation, a microtasking environment that supports dataflow on con-
ventional shared-memory architectures, execution times comparable to Fortran,
and cost-effective speedup on shared-memory multiprocessors.

1.0 Introduction

Sisal (Streams and Iterations in a Single Assignment Language) is a general-purpose ap-
plicative language intended for use on both conventional and novel multiprocessor systems. The
project began as a collaborative effort by Lawrence Livermore National Laboratory, Colorado State

University, University of Manchester, and Digital Equipment Corporation.

Sisal, a derivative of Val [4], was defined in 1983 [28] and revised in 1985 [29]. Since then the
language definition has not changed, providing a stable testbed for implementors, programming

language researchers, and users. The project's objectives are:

1. define a general-purpose applicative language,
2. define a language-independent intermediate form for dataflow graphs,

3. develop optimization techniques for high performance parallel applicative

computing,

4. develop a microtasking environment that supports dataflow on conven-

tional computer systems,
5. achieve execution performance comparable to Fortran, and

6. validate the applicative style of programming for large-scale scientific ap-

plications.

These goals address issues in programming languages, compilers, operating systems, per-
formance, and software engineering. The first three are typical of dataflow projects. The last
three set the Sisal effort apart — they reflect the computing environment at Lawrence Livermore
National Laboratory and other government facilities. In particular, the focus on conventional
systems is in sharp contrast to other dataflow language projects that assume hardware support.
Our intention is to define a language and an intermediate form independent of architecture, and
then develop code generators and run time systems for specific target machines. This approach
has paid off handsomely as Sisal is running today on: uniprocessors, conventional shared-mem-
ory multiprocessors [26, 37], the Cray X/MP [27], the Warp [19], the Connection Machine [15], the
Mac II [32], and a variety of dataflow machines [2, 20].

Why the interest in applicative languages at the national laboratories? Scientists there, and
elsewhere, realize that the next generation of single processor systems will not deliver the magni-
tude of increase in computing power that they require. They understand that they must parallelize

their codes and move to multiprocessor systems. However, despite the availability of such systems,

the number of scientific parallel applications in use today remains virtually zero. The reason:
conventional parallel programming languages thwart programmer productivity and hinder
analysis. They fail to separate problem specification and implementation, fail to emphasize mod-
ular design, and inherently hide data dependencies. Compilers that automatically parallelize
programs written in sequential languages are a solution [38, 391, but we believe that these lan-
guages restrict the formulation of parallel algorithms and will always deter the automatic ex-

ploitation of parallel architectures [48].

Applicative languages provide an easy-to-use and clean parallel programming model that fa-
cilitates algorithm development and simplifies compilation. In an applicative program the value
of any expression depends only on the values of its subexpressions and not on their order of evalua-
tion. Applicative semantics only allow programmers to define data dependencies among opera-
tions. The scheduling of operations, the communication of data values, and the synchronization of
concurrent operations are the responsibility of the run time system.' The user does not (in fact can
not) manage these system operations. Relieved of the most onerous chores of parallel program-

ming, the user is free to concentrate on algorithm design and application development.

Although ease of programming is important, at the national laboratories performance is the
bottom line. If applicative languages are to gain adherents in the scientific community they must
achieve execution speeds comparable to Fortran on state-of-the-art supercomputers. Since current
dataflow machines are not capable of supercomputer performance, we have defined Sisal and IF1
[43] (our intermediate form) independent of architecture, and have developed a run time system
that supports dataflow on conventional shared-memory computer systems typical of today's super-

computers.

In Section 2, we discuss Sisal's characteristics and features. In Section 3, we describe the Sisal
compiler and its optimization techniques for high performance parallel applicative computing. In
Section 4, we describe a microtasking environment that supports dataflow on conventional
shared-memory computer systems. In Section 5, we show that Sisal programs can execute as fast
as Fortran programs on conventional single processor systems, plus automatically exploit con-

ventional shared-memory multiprocessor systems. In Section 6, we discuss our future plans.

2.0 Sisal Language Summary

Sisal is a strongly typed, general purpose applicative language that supports data types and op-
erations for scientific computation, and has a Pascal-like syntax to minimize learning time and

enhance readability. Sisal has several important semantic properties. First, all functions are

mathematically sound — there are no side effects. Second, Sisal programs are referentially trans-
parent. Since names are bound to values and not memory locations, there is no aliasing. Third,
the language is single-assignment — a name is assigned a value only once. In general, a Sisal
program defines a set of mathematical expressions where names stand for specific values, and
computations progress without state. These properties make the transformation from source code to

dataflow graph trivial.

A Sisal program is a collection of separately compiled files called compilation units. Each
compilation unit includes a list of declared function names visible outside the unit, a list of corre-
sponding function definitions, and possibly the definitions of additional functions. A function
can take zero or more arguments and must return one or more values. The type of each argument
and result value is declared in the function's definition header. A function only has access to its
arguments and there are no side effects. Each function invocation is independent; functions can—

not retain state between invocations.

Sisal handles exceptions by producing special error values.! Although an efficient implemen-

tation may require special hardware, error values have three advantages:

1) their presence alerts the user to an exception,
2) they permit the computation to continue, and

3) correct data is preserved to the extent possible.

The value error is a proper element of every Sisal type. Conditions that produce errors include:
underflow, overflow, divide by zero, subscript out of bounds, and conditional expressions whose
test clauses are in error. The semantics of the language defines rules for propagating error val-
ues. Every effort is made to preserve data not in error. For example, an array is error if it includes

error values, but the elements of the array are still accessible.

Sisal includes the standard scalar data types: boolean, character, integer, real, and double
precision. It also includes the aggregate types: array, record, union, and stream. All arrays are
one-dimensional. Multi-dimensional arrays are defined as arrays of arrays. The type, size, and
lower bound of an array is a function of execution. The components of a multi-dimensional array
may have different lengths and lower bounds, resulting in jagged arrays. Arrays are created by

gathering component elements, "modifying” existing arrays, or catenation. Table I gives exam-

1 Errors are supported in the interpreter and the native code compiler being developed at Lawrence Livermore National
Laboratory; they are not supported in Osc, the native code compiler developed at Colorado State University and discussed in

this paper.

Operations Comments Operations Comments
returns array of x gather array stream_append(A, B) append B to A
array{1:1, 2, 3] create array stream_first(A) first element of A
array_fill(1, N, 0) create array of Os stream_rest(A) tail of A
Al1: 0] replace A[1] with 0 stream_empty(A) empty stream ?
AllB catenate A and B AllB catenate A and B
Table I - Array Create Operations Table II - Stream Operations

ples of each. The explicit, concise form of these operations greatly simplifies memory prealloca-

tion and update-in-place analysis.

A stream is a sequence of values of uniform type. In Sisal, stream elements are accessible in
order only; there is no random access to elements. Table II lists the stream operations in Sisal. A
stream can have only one producer, but any number of consumers. By definition, Sisal streams
are non-strict — each element is available as soon as it is produced. Run time systems must support
the concurrent execution of a stream's producer and consumers. As such, streams can express

pipelined parallelism and are a natural medium for program input and output.

Sisal supports both sequential and parallel loops. The for initial expression, illustrated in
Figure 1, resembles sequential iteration in conventional languages, but retains single assign-
ment semantics. It comprises four segments: initialization, loop body, termination test, and result
clause. The initialization segment defines all loop constants and assigns initial values to all
loop-carried names. It is the first iteration of the loop. The loop body computes new values for the
loop names, possibly based on their previous values. The rebinding of loop names to values is im-
plicit and occurs between iterations. Loop names prefixed with old refer to previous values. The
termination test may appear either before or after the body. If it appears before, the body might not
execute; if it appears after, the body will execute at least once. The returns clause defines the re-
sults and arity of the expression. Each result is either the final value of some loop name or a reduc-
tion of the values assigned to a loop name during loop execution. Sisal supports seven intrinsic re-
ductions: array of, stream of, catenate, sum, product, least, and greatest. The order of reduction is

determinate.

The for expression, illustrated in Figure 2, provides a means to specify independent iterations.
The semantics of the expression does not allow references to values defined in other iterations.

The for expression comprises three parts: a range generator, a loop body, and a returns clause. The

5

for initial for i in 1, N

i :=1; x := A[i] * B[i]

x := Y[1] returns value of sum x
while i < n repeat end for

i :=o0ld 1 + 1;

x = old x + Y[i]

returns array of x

end for

Figure 1 - For Initial expression Figure 2 - For expression

range generator is a dot or cross product of a set of sequences or scatters (see Table III). An
instance of the loop body is executed for each index, value, or n-tuple. The returns clause defines
the results and arity of the expression. Each result is a reduction of values defined in the loop body
(array of, stream of, catenate, sum, product, least, or greatest). The range generator specifies the
order of reduction and defines the size and structure of aggregate objects. For example, the expres-

sion

for i in 1,n cross j in 1,m
returns array of (i + 3j)
aend for

returns a two dimensional array of n rows and m columns. At first, many Sisal programmers
fail to understand the subtleties of this syntax. A common mistake is to write the transpose of an

(n x m) matrix as

for i in 1,n cross j in 1,m
returns array of X[j, 1i]

end for
The correct expression is

for i in 1,m cross j in 1,n
returns array of XI[j, i}
end for

To allow for mutually recursive functions and to encourage modular design Sisal includes
global and forward function definitions. Although Sisal pefmits recursive function definitions, it

does not permit recursive definitions of value names. The compiler enforces a strict “definition

Operations Comments
for xin A a scatter
foriinl,n a sequence
forxin AdotyinB a dot product of two scatters
foriinl,ncrossjinl, m the cross product of two sequences

Table III - Range Generators

before use” policy on all value names. One consequence of this policy is that users must specify the

order in which elements of recursive aggregates are computed. Consider the array definition

1
X(i, j) = { 1 J
X(i,j-D+X(i-1,j) 2

i

(1)

in
~ e

The Sisal expression

X := for i in 1, n cross j in 1, n
returns array of
if (i = 1) | (3
1

else

1) then

x[il j_ l] +X[i = 1! j]
end if
end for

is illegal. A legal Sisal expression for Equation (1) is

X := for initial
i = 1;
row := array fill(l, n, 1):

while i < n repeat

H-
1

old i + 1;
row := for initial
j = 1;
x =1

while j < n repeat

j :=01ld j + 1;
x := old x + old row[]]
returns array of x
end for
returns array of row
end for

Notice that the order of computation is explicit. In a functional language that permits recursive

definitions, such as Id [31], the equivalent expression is

X = makearray (1, n)
{ if (i == 1) or (j == 1) then
1
else
X[i, 3 - 11 + X[1i - 1, 3]

Here the order of computation is implicit, resolved at run time by the availability of results.

Although it obscures parallelism at the source level, excluding recursive definitions simpli-
fies language implementation. First, we do not need special hardware such as full-and-empty bits
to delay reads at run time. Second, we do not need sophisticated analysis routines or special hard-
ware to detect recursive definitions that deadlock. Third, the system can bound parallelism with-
out restriction because deadlock is impossible. On the matter of clarity, consider Equation 1. If we
maximize parallelism, the computation sweeps across the matrix from the top left-hand corner to
the bottom right-hand corner in a diagonal wave — the computations along a diagonal are data in-
dependent and can execute in parallel. But the parallel nature of the expression is not apparent
from the Sisal code. However, if the Sisal run time system schedules all the loop bodies simultane-

ously and has each wait for its inputs, we will realize the parallelism hidden in the source code.

Strict adherence to applicative semantics may introduce substantial execution costs, possibly

negating the effects of parallelism. Consider the Sisal expression
X = Y[1: 3]

Strict adherence to single-assignment semantics requires construction of a new array identical to
Y except at index location 1. If the expression is the last consumer of Y, the copy is unnecessary.

Worse yet consider the Sisal expression

for 4initial

i = 1;
n := 50000;
A := array[l: 1]
while i < n repeat
i:=o01d i + 1:;
A := array_addh(old A, i + old i)

returns value of A
end for

A strict applicative implementation of the array addh operation requires construction of a new
array each iteration, resulting in the copy of O(n2) values. On the Sequent Balance 21000 , for

n = 50000, the Sisal expression executes in about 1 hour, while the equivalent Fortran code

integer A(50000)
do 5 1 =1, 50000
5 A(1) = 1

executes in less than half a second. Since there is only one consumer of A, the array addh opera-
tion on the next iteration, the copying is superfluous. In the next section we present analysis proce-
dures that identify these and other instances where copy operations are not needed to maintain ref-

erential transparency.

In the last example, even if we build the array in place, the run time system may still have to
copy the array every iteration to find room for the new elements. Again, in the worst case, we will
copy O(n?) values. We can eliminate the copying by calculating the size of the final array and
preallocating memory. For expressions can also generate extraneous copying when constructing
aggregates. Since the loop bodies are data independent, they may be executed by independent pro-
cessors. On completion of the expression, the run time system will have to gather (copy) the partial
results. In the next section we describe compile time techniques that insert operations into the code

to compute the size of most aggregates and preallocate memory.

3.0 The Compiler

In this section we present an overview of our current Sisal compiler (called Osc) and provide a
brief enumeration and illustration of its optimization subphases. Osc successfully eliminates un-
necessary copying, and greatly reduces storage management overhead for most Sisal programs.

In the discussions, we assume the reader has a working knowledge of reference counting and its

Sisal

v

Sisal

v

Parser

Parser

v

v

Sisal

Parser

IF1LD

§— libraries

v

IF10PT

v

IF2MEM

v

IF2UP

v

IF2PART

v

CGEN

v

include files —P» CC

executable

@— libraries

Figure 3 - Sisal language processing

use in storage management [12], and dataflow graphs and their use in compilation [18, 25]. We
also assume the reader has an understanding of conventional optimization techniques [5], includ-

ing interprocedural analysis [6].

Osc, an extensive rework of a prototype developed for the Hep multiprocessor [35], is a state-of-
the-art optimizing compiler. Figure 3 diagrams its phases and subphases of operation. The front
end compiles Sisal source into IF1 [43], an intermediate form defining data flow graphs adhering
to applicative semantics. An IF1 program consists of one or more acyclic graphs made up of simple
nodes, compound nodes, graph nodes, edges, and types. Nodes denote operations, edges transmit
data between nodes, and types describe the transmitted data. Simple nodes represent operations
such as addition, division, and array and stream manipulation. Compound nodes encapsulate
one or more subgraphs to define structured expressions such as conditionals, for initial, and for

expressions.

10

Because the production of quality code requires complete information, the second phase of com-
pilation (IF1LD) forms a monolithic IF1 program. The monolith is then read by a machine inde-
pendent optimizer (IF10PT) that applies conventional optimizations such as function expansion,
invariant code removal, common subexpression elimination, constant folding, loop fusion, and
dead code removal. Except when presented with recursive calls or user directives, all functions, by
default, are in-lined to form a single dataflow graph. The common subexpression eliminator
looks outside branches of conditional statements in an attempt to find more common subexpres-

sions. See [45] and [10] for further discussion of these optimizations.

After the machine independent optimizations, a build-in-place analyzer (IF2MEM) preallo-
cates array storage where compile time analysis or run time expressions can calculate their sizes
[41]). The result of this analysis is a semantically equivalent program graph in IF2 [47]. IF2 is a
superset of IF1, but is not applicative because it supports operations that directly reference and ma-
nipulate "abstract” memory (called AT-nodes). The next phase of compilation (IF2UP) does up-
date-in-place analysis [10]. The analyzer restructures some graphs, while preserving program
correctness, to help identify (at compile time) operations that can execute in-place and to improve
chances for in-place operation at run time when analysis fails. The analysis routines are based
on work done at Yale University [21]. We discuss these two phases in detail in the next two subsec-

tions.

After update-in-place analysis, we invoke a parallelizer called IF2PART to define the desired
granularity of parallelism. The analysis is based on estimates of execution time and other pa-
rameters. The user can change these parameters at compile time to have some control over the par-
allelization. Currently, IF2PART only selects for expressions and stream producers and con-
sumers for parallel execution. Only for expressions with estimated costs greater than a threshold
and nested no deeper than a defined parallel nesting level (the default being all levels) are se-
lected. We do not exploit function-level parallelism because our experience has shown that most
non-parallel functions are too small to justify the overhead of task creation and synchronization.
Note that a function's parallel subtasks (namely, the included for expressions and stream produc-
ers and consumers) will be selected for parallel execution. IF2PART is a simplification of work
by Sarkar [42]. Many experiments and possible elaborations await future work, especially as we

target more unusual architectures.

In the last phase, CGEN translates the optimized IF2 graphs into C code, which is then compiled
using the local C compiler to produce an executable program. Preprocessor directives provide the
definition of target-dependent operations and values. Library software, linked during this phase

of compilation, provides support for parallel execution, storage management, and interaction with

1

the user. We chose C as an intermediate form to shorten development time, increase system porta-
bility, and allow experimentation with future optimizations by manual editing. However, the
quality of the available C compiler can limit overall performance; hence, for the Sequent Balance
we wrote a simple machine dependent optimizer, which works at the assembly language level, to

improve register utilization and reduce code size.

3.1 Build-in-place analysis

This optimization, IF2MEM, attacks the incremental construction problem introduced in the
previous section. The algorithm is two-pass in nature. Pass one visits nodes in data flow order,
and builds, where possible, expressions to calculate array sizes at run time. These expressions are
IF1 code fragments; they are inserted in the graphs before the nodes producing the arrays whose
sizes they define. We call these nodes potential AT-nodes. Their definition is a function of the
semantics of the array constructor and the size expressions of its inputs. Determining the size of
an array built during loop execution requires an expression to calculate the number of loop itera-
tions before the loop executes. Deriving this expression is not possible for all loops. The final func-
tion of pass one is to push, in the order of encounter, the potential AT-nodes onto an AT-node con-

version stack. This stack drives the second pass of the algorithm.

Pass two, considering only potential AT-nodes, inserts nodes for memory preallocation and
manipulation, converts the potential AT-nodes to AT-nodes, and appropriately wires memory ref-
erences among them (inserting edges transmitting pointers to memory). If the node under consid-
eration is the parent of an already converted node, it can build its result directly into the memory
allocated to its child, thus eliminating the intermediate array. If the node is not the parent of an al-
ready converted node, it must build its result in a "new" memory location. Note that the ordering
of nodes in the AT-node stack guarantees processing of children before parents. As a final respon-
sibility, pass two must add P mark pragmas (edge annotations) to those edges carrying arrays

built-in-place. These annotations specify that arguments to array constructors were built in-place.

Consider the Sisal expression
A || array_£ill{(1,N,0)

and its unoptimized IF1 graph

12

Figure 4 is the result of applying IF2MEM to the expression (assuming N > 1). In pass one, the
AFill node and then the ACat node are assigned size expressions and pushed onto the AT-node
conversion stack. The two size expressions are N and array_size(A) + N, respectively. In pass
two, the nodes are considered in reverse order. Because it is not the parent of an AT-node, the ACat
node requires new memory. IF2MEM builds a graph fragment to allocate this memory (using
ACat's size expression), changes the ACat node into an ACatAT node and builds an edge from the
graph fragment to the node. Next, the AFill is popped from the AT-node conversion stack. Since it
is now the parent of an AT-node child (the ACatAT node), IF2MEM does not build a fragment to al-
locate storage for its result, but instead builds a code fragment to derive the location of its result in
the storage already allocated to its child. The fragment shifts the base address of the storage by the
size expression associated with the first input to the ACatAT node: array_size(A). Pass two com-
pletes by converting AFill to AFillAT, wiring a reference from the shifted address to the node, and
placing a P mark on the edge linking the converted nodes (communicating that the AFillAT node

built its result in-place).

3.2 Update-in-place analysis

This optimization, IF2UP, attacks the aggregate update problem introduced in the previous
section. Also, it serves to enhance the build-in-place analysis described above. That is, IF2UP
treats an array as two separately reference counted objects: a dope vector defining the array's
logical extent and the physical space containing its constituents. IF2MEM only produces IF2
computations to preallocate physical space and direct the placement of constituents; it does not
preallocate dope vectors or optimize their access. As subcomputations place constituents in the
preallocated memory, dope vectors cycle between dependent nodes to communicate the current
status of the regions under construction. As a result, multiple dope vectors may reference the same
or different regions of the physical space and the individual participants in the construction will
produce new dope vectors to communicate the current status of the regions to their predecessors.

Without update-in-place optimization, each stage in construction will copy a dope vector.

13

ASize

integer buffer

(DefArrayBuf) A

y
(MemaAlloe) ASize

ShiftBuf

1 N o
AR

AFillAT
P

v VvV v

ACatAT)

Figure 4 - Optimized IF2 graph for memory preallocation

As an additional benefit, IF2UP eliminates most reference count operations. Reference
counting can be a source of wasted computer time and parallel bottlenecks [37]. A prototype
reference count eliminator developed at LLNL on the average eliminated 67% of reference count
operations in Sisal programs while opting, as a priority, to preserve parallelism among operations
[46]. In contrast, IF2UP eliminates up to 98% of explicit reference counting in larger programs,
ordering nodes using artificial dependence edges without regard for lost parallelism [8]. In
practice this loss in parallelism potential has been small and of no effect in current imple-
mentations [10]. As a result, the inefficiencies of reference counting largely disappear, but the
mechanism is preserved. Moreover, the few remaining occurrences do not merit special hardware

support.

14

from IF2Mem

* Phase 1 Phase 2 Phase 3
) Reference Inheritance
NoOP Insertion Mark Assignment
_ Read-Write Set Construction
Graph Decoration |-) —] Ownership Analysis
i) Node ReOrdering
Usage Classification) Graph Cleanup
Reference Count Elimination

to IF2Part

Figure 5 - The internal operation of IF2Up

IF2UP also recognizes single-consumer streams to allow generation of support code with fewer
critical sections. This is important because, in the most general instance, a stream may be the re-
sult of catenating many streams, each with its own producer, and there may be many consumers of
the entire stream or substreams. The run time support for such an object is extensive. Elements are
in linked lists attached to stream control blocks, that are themselves linked because of catenation
operations, and each stream element needs a reference count since there are multiple consumers.
However, programmers usually do not use concatenation to form streams, and most streams have
only one consumer. Here a simple circular buffer suffices with minimal synchronization be-

tween the producer and the consumer.

Figure 5 diagrams the internal operation of IF2UP. It takes as input an IF2 program and pro-
duces a semantically equivalent IF2 program. Phase one (subphases 1, 2, and 3) prepares each
graph in the program for analysis. Phase two (subphases 4, 5, 6, and 7) eliminates unnecessary
reference count operations. Phase three (subphases 8, 9, and 10) eliminates unnecessary copy op-

erations and identifies single consumer streams. The subphases operate as follows:

1. NoOp insertion: Here we simply insert NoOp nodes (data duplicators) to decouple copy logic
from all nodes modifying aggregates. This isolates copying to a single node type to simplify later
analysis. After this subphase, all modifiers work in-place and the inserted NoOps uncondition-
ally copy the consumed aggregates. The goal of the remaining subphases is to identify the unnec-

essary NoOp nodes.

2. Graph decoration: This subphase annotates edges transmitting aggregates with pragmas that
explicitly express a program's worst-case reference count behavior. The assignments naively as-

sume all nodes will execute in parallel, which requires that all consumers reference count their

15

inputs. The three reference count pragmas of interest are sr for setting counts, pm for increment-

ing counts, and cm for decrementing counts.

3. Usage classification: Here we classify each edge transmitting aggregates as either write or
read depending on destination node semantics and port of entry. A write-classified edge, in con-
trast to a read-classified edge, transmits aggregates destined for in-place modification (provided
conditions guarantee correctness) or placement within other aggregates. This subphase assigns
W marks to write classified edges, and leaves read-classified edges unmarked. To classify
usage across graph boundaries, we examine functions in topological order and traverse graphs
bottom-up. This allows classification of actual arguments based on formal argument classifica-

tions and the classification of compound node inputs based on subgraph usages.

Consider the Sisal function

type TwoDim = arrayl[array[integer]]:
function Main (i,j: integer; A: TwoDim
returns TwoDim, integer)
Af[i,j: 0.0], A[3,i]
end function

and its unoptimized IF1 graph

AElement
i

AReplace AElement

<+ -

\ 4
C AReplace)
F

Without optimization, both replace operations might require copying. Figure 6 shows the program

graph after the first three subphases. Subphase one inserted two NoOp nodes and marked the re-

place operations to execute in place, as indicated by the RO marks. Subphase two annotated the

16

graph with the pm, cm, and sr pragmas. Subphase three marked the edges carrying aggregates to

write operations with the W marks.

4. Reference inheritance: This subphase eliminates implicit reference counting® where safe, to
improve run time opportunities for copy avoidance when modifying inner dimensions of nested
arrays. In unoptimized form, a replacement operation implicitly decrements the reference count
of the constituent it replaces (assuming the constituent is an aggregate). However, preserving this
constituent until the time of replacement can sometimes cause copying. During reference inheri-
tance we restructure some replacement operations to give the implicit references to operations

working on the replaced constituents.

5. Read-write set construction: Here to simplify the remaining subphases in phase two, we build
sets summarizing the usage of aggregates and their constituents. For each aggregate output of a
node we build a local read and write set pair. The former identifies the read-classified edges at-
tached to the output and the latter identifies the write-classified edges attached to the output. Then
for each aggregate output that is either not the result of a dereference node or part of a reference in-
heritance transformation, we build a global read and write set pair. A global read set identifies
both the output's immediate read-classified references and those of its constituents. Similarly, a

global write set identifies both the output's write-classified references and those of its constituents.

6. Node reordering: This subphase defines a new partial ordering that maximizes opportunities
for reference count and copy elimination without violating the original data dependencies. Where
possible, we insert artificial dependence edges, without concern for lost parallelism, to force read-
ers of an aggregate and its constituents to execute before modifiers of the aggregate and its con-

stituents. The previously allocated global read and write sets drive this subphase of analysis.

7. Reference count elimination: This subphase proceeds in two independent steps. The first,
called phantom elimination, eliminates reference counting that unnecessarily preserves aggre-
gates across graph boundaries — we need only preserve aggregates imported to two or more graphs.
The second, called edge neutralization, eliminates referencg count pragmas on inputs to some
read operations based on the execution order derived during node reordering. As in the previous
subphase, this step is a function of the usage sets. Consider node R that reads aggregate A transmit-
ted by edge E. The analyzer removes the cm pragma annotating E if an artificial dependence edge
occurs between R and a member of A's local write set. It also erases the pragma if an artificial de-

pendence edge occurs between R and all members of A's global write set. If A's global write set is

3 Implicit reference count operations are implicit in the management of nested aggregates, and not explicitly represented
in the program graph.

17

empty, then A is, or is part of, a read only aggregate and does not require reference counting. In
removing E's cm pragma, the analyzer decrements the value associated with its antagonistic pm

or Sr pragma.

Continuing the example started above, Figures 7 and 8 show the program graph after reference
inheritance and the remaining subphases of phase two, respectively. The dashed arrows represent
artificial dependence edges. The NO pragma on the outermost AReplace node instructs it not to
decrement the reference count of the replaced row. Analysis gave this reference to the AElement
node dereferencing the i** row to improve the chances for in-place modification of the row at run

time.

8. Mark assignment: Here we assign mark pragmas defining data access rights and drive
them across graph boundaries and through function graphs and subgraphs of compound nodes.
Intuitively, this subphase partially interprets a reference count optimized program, not to realize
execution, but to derive information about aggregate mutability and appropriately record it in the
graphs. We use R marks to annotate edges known to transmit mutable aggregates and r marks to
annotate edges known to transmit potentially mutable aggregates. In the case of arrays and
streams, the R and r marks apply only to dope vectors. We use O marks to annotate edges known
to transmit arrays with mutable physical space and streams with a single consumer. We use un-
known marks to annotate edges known to transmit immutable data; this is equivalent to un-

marked edges.

This phase of the optimization begins at the program entry point and visits all nodes in data
flow order. All call paths are followed except those that form a cycle. The assigned marks are a
function of an edge's reference count pragmas, source node semantics, and source node input
marks. With regard to functions, if two or more call sites propagate different marks to the same
formal argument, we label the callee unstable. After examining all call paths to an unstable
function entry point, we remark the arguments causing the instability with r marks. The ana-
lyzer handles for initial expressions similarly; it remarks with an r any loop carried value whose
initial mark is different from the mark assigned by the redefinition of the value in the body. We
assume arguments to the main function from the outside world are mutable. Note that for simplic-
ity, this subphase of analysis assumes that physical space of an array or stream dereferenced from

another aggregate is immutable.

18

I pm=3

w i j w
cm=-1 cm=-1l cm=-1 cm=-1

v v
@ o0p) @lem@ @lem@ NoOp
sr=1 w

pm=1 pm=1 . sr=1
i

pm=1

cm=-1 cm=-1 cm=-1

AElement : AElement
w w i
RO RO
v \ AR
C AReplace) C AReplace) NO
sr=1 L w sr=1 L w
cm=-1 V cm=-1 V
Figure 6 - Example Program after SubPhase 3 | Figure 7 - Example Program after SubPhase 4
A
i w
3 RO | | N 3
s ' L
E--‘ AElement NoOp * §.
E sr=1 5
s s i
Len AElement } e AElement
~— Wl o
RO | |}
C AReplace 3 NO C AReplace j NO
sr=1 W sr=1 W
v RO v

Figure 8 - Example Program after SubPhase 7 | Figure 9 - Example Program after SubPhase 10

19

9. Ownership analysis: This subphase attempts to compensate for the previous phases' inability
to assign O marks to edges transmitting extracted arrays or streams. Further, this subphase iden-
tifies streams with single consumers. In the current implementation, however, the analysis is
conservative. This subphase only assigns an O mark to an array if it can assign it to all arrays in
the program. Similarly, it only identifies a stream as having a single consumer if it can identify
that all streams in the program have single consumers. To assign O marks to all arrays in a pro-
gram, the analyzer attempts to verify that during execution the reference count of each array's
physical space will remain at one. Because this is a function of dope vector copying, which is the
only means of incrementing physical space reference counts, the analyzer need only analyze the
marks assigned to NoOp nodes. If those that only copy dope vectors have input edges with R marks,
then all arrays in the program will have mutable physical space at run time. Similar analysis

identifies single consumer streams.

10. Graph Cleanup: This subphase simply removes cm pragmas annotating the inputs of ﬁnnec-

essary NoOp nodes.

Completing our example, Figure 9 shows the final program graph. Because the outermost
NoOp is now the final consumer of A, it is marked to execute in place (the RO pragma). On the
other hand, because of the possibility of row sharing, subphases 8 and 9 marked the innermost

NoOp for run time copy avoidance (the rO mark).

3.3 Code Generation

CGEN translates optimized IF2 graphs into C code. With two exceptions, each IF2 function graph
is directly mapped into an equivalent C function. The first exception concerns the for expressions
selected for parallel execution by IF2PART. Here CGEN removes each selected expression from
its enclosing computation, leaving in its place a run time system call to instantiate its parallel
execution. The body of each expression is then compiled into a generic function, which takes
iteration bounds as arguments. The second exception concerns expressions that produce and
consume streams. CGEN also removes these expression from their enclosing computations,
leaving run time system calls to instantiate their parallel execution. The compiler then packages
them as separate functions. In both of the above cases, synchronization primitives are added to

coordinate parallel execution.

It is the responsibility of CGEN to recognize the pragmas inserted during IF2 optimization and

generate the appropriate code. Reference count operations, where required, are compiled directly

into the resulting C code. Memory preallocation operations are compiled into dynamic storage

allocation requests and pointer manipulations.

4.0 The Run Time System

The run time software supports the parallel execution of Sisal programs, provides general pur-
pose dynamic storage allocation, implements operations on major data structures, and interfaces
with the operating system for input/output and command line processing. The system was first de-

scribed in [33], and considerable evolution has occurred.

Sisal run time support makes modest demands of the host operating system. Support for paral-
lel execution is in the form of threads or lightweight processes (similar to those provided by the
Mach operating system [3]). The run time system maintains two queues of executable tasks: the
Ready List and the For Pool. Execution begins at the function Main. At program initiation, run
time options and the formal parameters of Main are read from the command line. For non-stream
values, inputs are read at initiation and results are written at termination in Fibre format [44], a
text form that describes scalar and structured Sisal values. For stream parameters and results,
associations are made with files, and special stream producing (input) and consuming (output)
threads are added to the Ready List for processing during execution. The run time system
allocates stacks for threads on demand, but every effort is made to reuse previously allocated
stacks and thus reduce allocation and deallocation overhead. Stack overflow is not monitored,
however, and can result in program termination. The programmer can use a run time option to
adjust stack size when anticipating overflow. The weakness of Sisal input/output is in the

construction of simple interactive Sisal programs; solutions are under investigation.

4.1 Threads

At program initiation a command line option specifies the number of operating system pro-
cesses to instantiate for the duration of the program. These processes, called workers, are constant
in number and look for work to do in the form of threads, whose number vary over the program'’s
execution. While general purpose thread support is available from other sources (see [7] for exam-
ple), our thread management subsystem is optimized for Sisal and does not rely on vendor-sup-

plied software.

Figures 10, 11, and 12 show the various activities a worker may engage in as it seeks work pro-

vided by Sisal execution, and identify the major data structures needed to support parallel execu-

Initialize Workers = No For Pool Work

* and
Work No Ready List Work
<4 P
For Pool Storage List
P —
No Work Empty
Not Em
Workers Pey l
Idle
< Work Obtain,
Ready List > s Traverse,
No Work Deallocate

Figure 10 - Worker's State Diagram

tion. A worker persists in one of three modes of operation depending on whether it has recently

handled for work, ready list work, or is idle because neither kind of work is available.
4.1.1 For Pool Threads

A worker examines the For Pool for a piece of a for expression to execute. A "for slice” (one or
more consecutive for bodies) is obtained and the thread stack already held by the worker is used to

execute the code for the slice. Now one of three events can occur:

1. The slice may terminate normally. If the slices of this for expression are
depleted, the worker places the thread in which the for expression occurs on
the Ready List and returns to the For Pool; otherwise, the worker returns to
the For Pool for another slice of the expression. By persisting in executing
for slices, a worker avoids deallocating and allocating stacks in which to

execute.

2. More work (a nested for expression) may be encountered. A new entry is

made in the For Pool, containing these values:
a. the address of the loop,
b. the initial lower bound,

the upper bound,

(]

d. the size of the for slice, and

Thread Block |€——————— For Pool Insert
Slice
Blocks For Work
Found
Slice
Work
Obtained

For Pool Get or .

«4——] Extract . Keep Stack > Run Slice
No Work
No Slice
Completes
Enqueue Parent Yes P
on Ready List < Last Stice !
Figure 11 - For Pool State Diagram
Work Free Thread For Pool
Extraneous Stack Blocks Insert
Thread For Work
Blocks Found
No Work Thread
o Wor :
Ready List Obtained Run Thread
Dequeue

Thread

Completes
No Last Child
Free Stack - Thread ?

S~

Enqueue Parent
on Ready List

Figure 12 - Ready List State Diagram

Yes

e. the address of the descriptor for the thread in which the for expres-

sion occurs.

Depending on a compile time option, the size of the for slice is either con-
stant or specified by "guided self-scheduling” [40]. The original for expres-
sion becomes a blocked thread to be reactivated when the new for expression

completes.

3. The slice may block because dynamic storage is unavailable, in which case

the slice becomes a blocked thread and the worker returns to the For Pool for

more work.

4.1.2 Ready List Threads

Threads appear on the Ready List as a result of being made executable by other events. A for
expression may complete, enabling the thread in which it appears to become runnable; or storage
may become available, enabling a thread that blocked due to lack of storage to run. At program
initiation, a single thread for the main function is placed on the Ready List. All Ready List entries
have allocated thread stacks attached, so a worker in this mode of processing does not need its own

stack. Upon obtaining a thread, execution begins. Once again, three events are possible.

1. If the thread terminates normally, the worker checks the parent context
thread to see if it is waiting only for this thread to complete. If it is, the
worker places the parent thread on the Ready List, deallocates the obsolete
stack, and returns to the Ready List for more work; otherwise, it deallocates

the obsolete stack and returns to the Ready List.

2. A for expression may be encountered. The worker handles it in a fashion
similar to For Pool processing. Note that the worker must return to the

Ready List for more work since it has no stack of its own.
3. The thread may block, in which case, the worker returns to the Ready List
for more work.

4.1.3 Qverlapped Storage Deallocation

If a worker in either of the preceding modes finds no work to do, it returns to the central state
shown in Figure 10. If neither For Pool nor Ready List threads are available, the worker examines
the Storage Deallocation List for deferred storage deallocation work. This list has entries for hier-

archically structured aggregates, such as multidimensional arrays, which are no longer in use.

24

If these structures were deallocated as soon as they were not needed, we could potentially introduce
sequential code sections in parallel constructs, degrading parallelism. See [9] for an example of
this phenomenon. Moreover, by deferring the traversal and deallocation of hierarchically struc-
tured aggregates, a program may complete without doing it at all. If unavailable storage idles
enough threads, at least one worker will eventually idle and deallocate the needed space.

Currently, overlapped storage deallocation is not implemented.

42 Storage Management

Sisal relies on dynamic storage allocation for many data values such as arrays and streams,
and for internal objects such as thread descriptors and execution stacks. To support this, we needed
a mechanism that was fast, efficient, and parallelizable. A two-level method evolved that has

proven satisfactory.
4.2.1 Parallel Boundary Tag Method

The standard boundary tag scheme [22] was augmented with multiple entry points to a circular
list of free blocks. We have an array of pointers, each addressing a zero-size free block on the list.
A worker selects a pointer based on its own integer identifier, thereby spreading list entry con-
tention across the array. The free list search was parallelized, even though blocks are sometimes
completely removed from the list. Likewise, deallocation involves coalescing physically adjacent

but logically distant blocks in parallel.
4.2.2 Exact Fit Cacheing using Working Sets

To increase the speed of allocation and deallocation, an exact fit cacheing mechanism was
interposed before the boundary tag scheme for most storage operations [34]. It uses a working set of
different sizes of recently freed blocks (blocks of the same size are chained in a sublist). As in the
working set method for virtual memory management [14], a ““clock” which ticks at each alloca-
tion is compared with a timestamp stored when each size is allocated or deallocated. This occurs as
an allocation request looks for an exact fit and finds a mismatch. If a size is too "old" (the defini-
tion of "old" is a run time option), all blocks in the sublist are recycled to the boundary tag pool. If
an exact fit is found, that block is unlinked, and the timestamp is updated in the new first sublist
block. If this was the only block of this size, the list of differently-sized blocks reduces in size by
one. If no exact fit is found, an allocation occurs from the boundary tag pool. Our first implemen-

tation used a single shared exact-fit cache for all workers. To eliminate synchronization over-

head, each worker now has its own cache. This results in faster execution, but can cause exact-fit

misses if the size desired is in another worker's cache.
4.2.3 Storage Deadlock

Contention among threads for dynamically allocated storage is the only source of possible
deadlock in Sisal. A thread that cannot obtain needed storage becomes blocked and is reactivated
when later deallocations occur. The last worker to become idle because there is no work to do
checks for the presence of threads blocked for storage. It empties all the exact-fit caches to maxi-
mize boundary tag coalescing, and seeks one or more threads to place on the Ready List. If this
fails, the program stops with a deadlock message. A run time option specifies the total amount of

storage to manage, and a larger value usually solves the problem.

43 Run Time Support for Arrays

Arrays in Sisal are one-dimensional data values of elements of the same type. Our implemen-
tation places elements in contiguous, dynamically allocated storage, sometimes followed by space
for dynamic growth. Arrays are strict in this implementation; a thread containing a for expres-
sion that produces an array, blocks until that expression has been processed. Since arrays are dy-

namic in size, bookkeeping information is kept in a dope vector:

Pointer Pointer Reference
of elements to physical space to first element Count

Multidimensional arrays are arrays of dope vectors pointing to other such arrays; the last dimen-

sion is a one-dimensional array of base type. The layout of the physical space is:

Reference Expansion Size Array Free
of bytes Count Count of free space elements space

Both the dope vector and the physical space require reference counts because more than one
thread may have access to the dope vector and more than one dope vector may point to the physical
space (subarrays of the original). In Section 2 we explained that arrays can grow during execu-
tion. Although build-in-place analysis can compute the final size of most arrays and preallocate
storage, in those cases where it can not, we reduce copying by allocating free space. The size of the
extra storage is the product of a run time option value and the number of times the array has been

copied owing to expansion.

44 Run Time Support for Streams

In Sisal streams must be non-strict. Typically an iteration produces values, and another itera-
tion consumes them. As already mentioned, to implement parallelism, stream producing and
consuming iterations are packaged by the Sisal compiler as sequential loops in separate threads.
They are instantiated with stacks and placed on the Ready List for processing by workers. If a
consumer thread attempts to use a value not yet produced, it blocks. Likewise, to prevent excessive
consumption of memory, a producer thread blocks if it gets some number of elements ahead of the
slowest consumer. To prevent continuous blocking and unblocking, producers and consumers
awake only after some number of values have been consumed or produced, respectively; these

numbers are run time options with defaults.

In the most general case, a stream value may be a concatenation of many constituent streams,
each with its own producer thread and one or more consumer threads operating at different points
in the overall value. The implementation is complex. A stream has a descriptor with an attached

list of extant values. Descriptor components are:

Pointer # of living Pointers to first and
to producer thread consumer threads last blocked consumer threads
Pointers to first # EOS Link to next descriptor
and last extant elements extant elements Signal in concatenation

The attached elements each require a reference count since all consumers must see all elements.
The cells for all stream elements in a Sisal program come from a special pool, not from general-
purpose dynamic storage. All element types can be accommodated because non-scalar values are

pointers to dynamic storage throughout the implementation.

IF2UP analyzes a program using streams to decide if a stream has a single consumer and is
not a concatenation of substreams. Under these conditions (which are almost always true) we use a
much simpler structure ~ a fixed-size circular buffer. No reference counts are needed, and syn-
chronization is simple and minimal. As expected, this organization yields superior performance

compared with the general version.

5.0 Performance Results

To evaluate the current status of Sisal, we compared the execution performance of equivalent
Sisal and Fortran versions of the Livermore Loops and four large scientific programs on a
Sequent Balance 21000. The four scientific programs were: Gauss-Jordan elimination with full
pivoting, RICARD, SIMPLE, and an instance of parallel simulated annealing. Four of the five
Sisal codes ran as fast as the equivalent Fortran codes on one processor, and all five Sisal codes
achieved good speedup. Note, we did not have to rewrite or recompile the Sisal codes to run on mul-
tiple processors; we simply increased the number of participating workers at run time. IF2MEM
preallocated all arrays and built all but five in place. IF2UP eliminated all absolute copy opera-
tions, marked 29 copy operations for run time check, and eliminated approximately 97% of the ref-

erence count operations.

Table IV shows the performance results for the 24 Livermore Loops. Column 2 indicates
whether the Sisal loop was parallel or sequential, and columns 3-5 give the execution performance
in KFlops for the Fortran loops on one processor and the Sisal loops on one and five processors.
Table V lists the execution times of the other four applications. Table VI gives compilation statis-
tics for each program. Columns 2-4 give the number of static arrays built, preallocated, and built
in-place; columns 5 and 6 list the number of copy and reference count operations before optimiza-
tion; and columns 7-10 list the number of copy, conditional copy and reference count operations

after optimization, and the number of artificial dependency edges introduced by IF2UP.

5.1 The Livermore Loops

The Livermore Loops [30] are a set of 24 scientific kernels from production codes run at
Lawrence Livermore National Laboratory. For many years scientists have used the Loops to
benchmark high performance computers. The speed of a parallel computer is a function of the
system's hardware, communication topology, operating system, compilers, and the computational
nature of the test suite. The Livermore Loops encompass a variety of computational structures, in-
cluding independent parallel processes, recurrent processes, wavefronts, and pipelines [17]. As

such, the Loops are an appropriate benchmark suite for parallel computers.

We ran the Fortran loops without change, but we wrote the Sisal to reflect the computational
nature of each Loop (see [16] for an early version of the Sisal Loops). We wrote parallel algorithms
unless input size was too small to justify parallel execution, or the parallel algorithm increased
the number of computations to an extent not warranted by the input size or the hardware parameters

of the Sequent Balance. We converted operations from column-order to row-order to compensate

23

for the lack of true rectangular arrays in Sisal. For accurate measurement of both the Sisal and
Fortran codes, we executed each loop 300 times, except for Loop 4 which was so thin that we executed
it 4000 times. On one processor, the harmonic mean of the Fortran and Sisal versions of the Loops

were 45 and 44 KFlops, respectively.

5.1.1 The Sequential Loops

Discrepancies in the execution times of the Sisal and Fortran versions of the sequential loops
were due primarily to common subexpression removal, loop invariant removal, register alloca-
tion, paging, and the storage of multi-dimensional arrays in Sisal as arrays of arrays. The latter

prevents fast column access and increases the cost of array allocation and deallocation.

For Loops 4 and 6 we wrote Sisal routines that were maximally parallel, but still, [IF2PART
instructed the code generator not to slice the for expressions — the overhead of loop slicing ceuld not
be recovered by the parallel execution of the loop bodies. Loops 2 and 23 are recursive array
definitions. As we explained before, Sisal does not permit such expressions. Although it is possible
to write Sisal versions of both loops that do demonstrate some parallelism (see [16]), we did not for
three reasons. First, the parallel algorithms are not natural. Second, the amount of parallel work
is small — in Loop 23 the maximum number of concurrent operations is 7. Third, given a nonstrict

implementation, both the parallel and sequential versions would realize maximum parallelism.

We wrote two versions of Loops 5, 11, and 19: a sequential version and a version based on the
method of recursive doubling [23, 24]. Although the latter introduces some parallelism, it increases
the number of computations from O(n) to O(n Log n). In trial runs, the recursive doubling codes
ran much slower than the sequential codes, regardless of the number of participating processors.
However, they did achieve good speedup. Sisal's implementation of recursive doubling requires
array concatenations and subarray selections. The compiler was able to preallocate memory for
the former, but was not able to build all sections of the arrays in place (thus introducing copying).
We are not sure whether the degradation in execution times resulted from the copying or the extra
computations; however, it is our general impression that recursive doubling on medium-grain

and coarse-grain shared memory multiprocessors is not an appropriate technique.

Loop P/S| Fortran | Sisal (1) | Sisal (5) Speedup
1 P 70 T 33 4.3
2 S 58 5
3 P 54 70 279 4.0
4 P 42 41 too little parallel work
5 S 49 50
6 P 50 (5] too little parallel work
7 P 88 8 393 4.7
8 P 36 5% 1% 3.5
9 P & 74 255 34
10 P 4 25 73 2.9
1 S 37 45
12 P 37 H 131 3.8
13 S 12 15
14 P 2 37 A 2.5
15 P 9 A4 244 4.5
16 P (53] 0 8 3.0
17 S 53 46
18 P i 60 241 4.0
19 S 45 3l
20 S 86 90
2 P 56 55 240 4.3
2 P 46 4 173 3.8
pA] S 74 66
24 P 50 2 101 3.6

Table IV - Execution Performance of the Livermore Loops (in KFlops)

Program Fortran | Sisal (1) Sisal (Processors) Speedup
GJ 54.0s 54.5s 8.8s 10 6.2
RICARD 30.63hr | 31.00hr | 3.45hr 10 9.0
SIMPLE 3081.3s | 3099.3s 422.0s 10 7.3
PSA 476.6 s 956.2 s 267.8s 5 3.6

Table V - Execution Times for Four Large Scientific Programs

30

Programs Arrays Before Opt After Opt
Built | PreA| In Copy | RefC | Copy |Ccopy | RefC | ADE
Loops 76 76 76 39 1565 0 0 43 114
GJ 7 7 7 5 118 0 0 1 9
RICARD 2 2 28 17 207 0 6 7 5
SIMPLE 261 261 261 214 2066 0 19 61 A7
PSA 46 46 42 18 696 0 4 4 168

Table VI - Compilation Statistics

5.1.2 The Parallel Loops

Despite incurring the overhead of parallel constructs, the Sisal implementations of the parallel
loops (with the exception of Loops 10, 16, and 24) produced kiloflop rates equivalent to or better than
Fortran on one processor. The discrepancies in performance were primarily the result of common
subexpression elimination, loop invariant removal, register allocation, and paging. Loop 10 is an

extreme example of the effects of register allocation on performance.

On a single processor, the Sisal version of Loop 16 executed 60% slower than Fortran. This Loop
searches for a particle in a two-dimensional grid of zones subdivided into groups. The Fortran
code sequentially searches each group, one at a time, and quits as soon as it finds the particle. The
Sisal version examines all the groups in parallel. Since Sisal does not support asynchronous
broadcasts, the processor that finds the particle cannot broadcast the discovery and stop the other
processors. Consequently, the Sisal code searches the entire space. The lack of asynchronous
broadcasts is a characteristic of determinate languages. Another reason for the poor performance
is that the Fortran code includes a large number of arithmetic ifs. Each if statement compiles to a

single comparison and a jump on a condition bit. The equivalent Sisal expression
if ... elseif ... else ... end if
compiles to two comparisons and two jump instructions.

On one processor, the Sisal implementation of Loop 24 executed 44% slower than Fortran. This
Loop returns the first location of the minimum value in an array. The Fortran and Sisal codes

are, respectively,

loc := 1
do 24 k =2, n
24 if (X(k) .lt. X(loc)) loc =k

and

let
min := for i in 1, n
returns value of least X[i]
end for;
in for i in 1, n
returns value of least i when X[i] = min
end for
end for

The Fortran code executes only (n - 1) comparisons, but the Sisal algorithm executes 3n compar-
isons. Sisal's limited repertoire of reduction operations and lack of user-defined reductions pre-

vented use of a single expression.

Eight of the sixteen parallel loops achieved speedups of 3.8 or better. Loops 9, 10, 16, and 24
achieved smaller speedups because of insufficient parallel work. Loop 14 comprises two loops, one
parallel and one sequential. The parallel loop showed good speedup, but the sequential loop amor-
tized the gains. Despite considerable parallel work Loop 8 achieved a speedup of only 3.5. We ob-
served that the Loop spent considerable time building and recycling arrays, which idled proces-
sors. Loop 8 manipulates three-dimensional arrays which are built and recycled one dimension at
a time. Although the memory subsystem can handle simultaneous requests, some sections require
atomic access to shared data limiting the loop's potential parallelism. We saw the same effect, but

to a smaller degree, in Loops 15 and 18 which manipulate two-dimensional arrays.
5.2 The Other Applications
5.2.1 Gauss-Jordan Elimination
Gauss-Jordan elimination with full pivoting solves a set of linear equations of the form

Ax =B

where A is an n x n matrix and x and B are n x 1 column vectors. The algorithm comprises n itera-
tive steps. At each step, the largest element in a previously unselected row is found and moved onto

the major diagonal, Say the element is found at position (3, j), then the element is moved onto the

32

diagonal by interchanging rows i and j. In the new matrix, row j is the pivot row and A(j, j) is the
pivot element. After the interchange, A and B are reduced by the pivot row. The reduction is a par-

allel operation of O(n2).

IF2MEM preallocated and built all arrays in place. IF2UP eliminated all copy operations and
all but 1 reference count operation. For n = 100, the execution times of the Sisal and Fortran ver-
sions on one processor were equivalent. On ten processors, the Sisal code achieved a speedup of 6.2.
Although both phases of a step (finding the pivot element and reducing the matrix) are parallel,
neither phase is computationally intensive. In our implementation sequential work accounted for

6% of the execution time, which is enough to limit speedup on ten processors to at most 6.4.
5.2.2 RICARD

RICARD [11] simulates experimentally observed elution patterns of proteins and ligands in a
column of gel by numerical solution of a set of simultaneous second-order partial differential
continuity equations. As the system evolves over time, the protein concentrations at the bottom of
the column are sampled to construct the elution patterns. At each time step, the program calculates
the change in protein concentrations at each level of the column due to, first, chromatography, and
then, chemical reaction. The new values serve as the initial conditions for the next time step. The
computations during the chromatography step are data independent, whereas the computations of
the chemical reaction phase are independent across levels and dependent across proteins. Since
the independent tasks are computationally intensive, the program should achieve near linear

speedup on medium- and course-grain machines.

Osc preallocated memory for all the arrays, and built all but one of the arrays in place. The
one array not built in place was constructed during program initialization, thus the copying was
inconsequential. IF2UP eliminated all absolute copy operations, marked 6 copy operations for
runtime check, and eliminated 97% of the reference count operations. The 6 conditional copy
operations were introduced because of row sharing. In the current Sisal implementation, arrays
may share common rows. When the shared rows are updated, they have to be copied; but once
copied, the rows are unique and can be updated in place. In RICARD, the conditional copies
executed only once each. For a 1315 level - 5 protein problem, the execution times of the Sisal and
Fortran programs on one processor differed by less than 2%. On ten processors, the Sisal program

achieved a speedup of 9.0.

52.3 SIMPLE

SIMPLE [13] is a two-dimensional Lagrangian hydrodynamics code developed at Lawrence
Livermore National Laboratory that simulates the behavior of a fluid in a sphere. The hydrody-
namic and heat conduction equations are solved by finite difference methods. A tabular ideal gas
equation is provided to determine the relation between state variables. The implementation of

SIMPLE in Sisal 1.2 is straightforward and exposes considerable parallel work.

IF2MEM preallocated and built all arrays in place (261 of them). IF2UP eliminated all
absolute copy operations, marked 19 copy operations for run time check, and eliminated 2005 out of
2066 reference count operations. The 19 conditional copy operations were introduced because of row
sharing. They executed only once each. For 62 iterations of a 100 x 100 grid problem, the Sisal and
Fortran versions of SIMPLE on one processor executed in 3099.3 seconds and 3081.3 seconds, re-
spectively. On ten processors, the Sisal code realized a speedup of 7.3. Although the speedup of the
Sisal code is good, it could be better. We are losing at least an equivalent of 1.5 processors in the
allocation and deallocation of two-dimensional arrays. We noticed the same phenomenon in

some of the Livermore Loops that handled two- and three-dimensional arrays.
5.2.4 Parallel Simulated Annealing

Simulated annealing is a generic Monte Carlo optimization technique that has proven effec-
tive at solving many difficult combinatorial problems. In this study, we employed the method to
solve the school timetable problem [1]. The objective is to assign a set of tuples to a fixed set of time
slots (periods) such that no critical resource is scheduled more than once in any period. Each tuple
is a record of four fields: class, room, subject, and teacher. Classes, rooms, and teachers are criti-
cal resources; subjects are not. At each step of the procedure, a tuple is chosen at random and moved
to another period. If the new schedule has equivalent or lower cost, the move is accepted. If the new

schedule has higher cost, the move is accepted with probability,

e(-4C /T)
where AC is the change in cost and T is a control parameter. If the move is not accepted, the tuple is
returned to its original period. We parallelized the procedure by simultaneously choosing one tu-

ple from each nonempty period and applying the move criterion to each. We then carried out the

accepted moves one at a time. Note that more than one move may involve the same period.

IF2MEM preallocated memory for all the arrays, and built all but 4 of the arrays in place.

IF2UP removed all absolute copy operations, marked 4 copy operations for run time check, and re-

4

moved all but 41 reference count operations. The 4 conditional copy operations were introduced be-
cause of the possibility of row sharing. In fact, there was no row sharing and no copying. The 4 ar-
rays not built in place result from the expressions that add a tuple to a period. Since the old period is
created on the previous iteration, the new period can not be built in place. Although the compiler did
not mark the new periods for build-in-place, the periods were rarely copied. That is because the
Sisal run time system decouples the physical and logical sizes of arrays. If an element is removed
from the high-end of an array, the array's logical size shrinks by one (assuming the array can be
shrunk in place), but its physical size remains constant; that is, the physical space is not released.
When an element is added to the high-end of an array, the run time system checks to see if there is
space. If there is space, the element is added; if there is not space, the run time system allocates a
new, larger space and copies the array. Whenever the run time system allocates new space, it al-
ways allocates a few extra bytes to accommodate future growth. In the school timetable problem, the
periods are continually growing and shrinking as tuples are removed and added. Qur implemen-

tation of arrays saved over 15000 copies at the cost of a few hundred bytes of storage.

For a problem size of (30 periods, 300 tuples, 10 classes, 10 rooms, 10 teachers), the Sisal pro-
gram ran twice as slow as the Fortran program (956.2 seconds versus 476.6 seconds). The differ-
ence is due to the allocation and deallocation of data structures in the Sisal program on every itera-
tion. However, it is a simple optimization (loop invariant removal) to save the structures and pass
them to the next iteration. We expect that once this optimization is implemented, the Sisal and
Fortran execution times will be comparable. The Sisal version did achieve a speedup of 3.6 on five

processors. This is quite good given the fact that the update of the schedule is sequential.

6.0 Future Plans

In the next few years, we plan to

1. define and implement Sisal 2.0,
2. design SisalCity, a comprehensive programming environment, and
3. develop run time systems for conventional, distributed memory multipro-

cessors.

Early in 1990 we expect to release Sisal 2.0, the first revision of the language since 1985. Over
the past five years, we have gained much experience in implementing and using Sisal 1.2. In
workshop after workshop, the applicative programming model has been proven effective. Students

with little or no knowledge of applicative languages and with no knowledge of Sisal have after a

35

week designed, written, debugged, and run programs of more than one hundred lines. However,
we can still make Sisal easier to use, more expressive, and faster without compromising our objec-
tives. Presently, the language lacks features found in other functional programming languages

and has constructs that are clumsy or severely impact performance.

New features will include: higher-order functions, user-defined reductions, parameterized
data types, foreign language modules, and rectangular arrays. Higher-order functions and user-
defined reductions will allow users to create functions and reduction operations tailored to their
exact needs. In Loop 24, we saw the effects of not having user-defined reductions. We believe we
can implement a flexible, but robust, interface to modules written in foreign languages [36]. This
will give us access to existing mathematics and graphics libraries, an important advance in sup-
porting scientific computations. Sisal 2.0 will support true multidimensional arrays stored in
contiguous space. Implementing multidimensional arrays as arrays-of-arrays was our greatest
single mistake. While we have found occasional use for "ragged” arrays (for example, as aggre-
gates of dynamic sets), their disadvantages greatly outweigh their advantages: they prevent vec-
torization (constant stride exists between elements only in the last dimension), and deallocation
requires complete traversal to decrement reference counts and recycle each component separately.
Sisal 2.0 will include more extensive array operations such as vector operations, nonrectangular
subarray selection, and a general array constructor that allows a set of expressions to contribute in
parallel to parts of an array value. The physical space of a multidimensional array will contain

only elements, so more efficient storage management will be possible.

Currently, we are designing a comprehensive programming environment for Sisal 2.0 based
on X11 windows, called SisalCity. We will include tools to design, debug, and interpret Sisal 2.0
programs. An advantage of determinate functional programs is that if they run correctly on a
uniprocessor, they are guaranteed to run correctly on any system regardless of resources or con-
figuration. The environment will support a robust simulation package capable of simulating the
logical performance of Sisal 2.0 programs on a variety of parallel architectures. In order to study
the mapping problem, we will include different scheduling and partitioning heuristics. We will

also design tools to collect and analyze actual performance data for certain target machines.

The run time system developed for Sisal 1.2 showed that conventional, shared-memory multi-
processors can support dataflow languages effectively. We plan to extend the run time system for
conventional, distributed-memory machines with both local and global address spaces. We expect
such machines to play an increasingly important role at the national laboratories. Note that our

present system should port easily to the latter, providing us an important benchmark. Critical to

our efforts will be efficient heuristics that map dataflow graphs (both tasks and data) to the re-

sources of distributed machines.

Acknowledgements

In a project of this size it is not possible to thank everyone, our apologizes to anyone we over-
look. We would like to acknowledge our collaborators, in particular, the groups at University of
Manchester, Royal Melbourne Institute of Technology, Adelaide University, University of
Southern California, Carnegie Mellon University, ETH Zurich, McGill University, and Syracuse
University. Without their support and independent research, Sisal would not enjoy the large,
world-wide user community it does today. Special thanks to Steve Skedzielewski who led the Sisal
research effort at Lawrence Livermore National Laboratory, Jim McGraw and John Ranelletti for
their research contributions and support, and Don Austin of the Office of Energy Research (U.S.
Department of Energy). We would like to thank members of the Sisal research staff at Lawrence
Livermore National Laboratory (Rea Simpson, Kim Yates, C.C. Lee, Patrick Miller, and David
Zimmerman) and at Colorado State University (Tom Hanson, Tam Richert, and Seetharaman

Harikrishnan).

This project was supported (in part) by the Office of Energy Research (U.S. Department of
Energy) under contract No. W-7405-Eng-48 to Lawrence Livermore National Laboratory, and the
U.S. Army Research Office under contract DAAL03-86-K-0101 to Colorado State University.

References

10.

11.

Abramson, D. Using Simulated Annealing to Solve School Timetables: Serial and
Parallel Algorithms. RMIT Technical Report TR-112-069R, Royal Melbourne
Institute of Technology, Melbourne, Australia, 1988.

Abramson, D. and G. K. Egan. An overview of the RMIT/CSIRO Parallel System
Architecture Project. The Australian Computer Journal 20, 3 (August 1988).

Accetta, M. et. al. Mach: A new kernel foundation of Unix development. Proc.
USENIX 1986 Summer Conference, USENIX, Atlanta, GA, 1986, pp. 93-112.

Ackerman, W. B. and J. B. Dennis. VAL - A value-oriented algorithmic language.
MIT Technical Report LCS/TR-218, MIT, Cambridge, MA, June 1979.

Aho, A. V., R. Sethi and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

Barth, J. M. An interprocedural dataflow analysis program. Proc. 4th ACM
Symposium of the Principles of Programming Languages. ACM, 1978, pp. 119-131.

Bershad, E. D. and H. M. Levy. PRESTO: A system for object-oriented parallel pro-
gramming. University of Washington Technical Report 87-09-01, University of
Washington, Seattle, WA, January 1987.

Cann, D. C. and R. R. Oldehoeft. Reference count and copy elimination for parallel
applicative computing. Colorado State University Technical Report CS-88-129,
Colorado State University, Fort Collins, CO, November 1988.

Cann, D. C. and R. R. Oldehoeft. High performance parallel applicative computing.
Colorado State University Technical Report CS-89-104, Colorado State University,
Fort Collins, CO, February 1989.

Cann, D. C. Compilation Techniques for High Performance Applicative
Computation. Ph.D. thesis, Department of Computer Science, Colorado State

University, 1989.

Cann, J. R., et. al. Small Zone Gel Chromotography of Interacting Systems:

Theoretical and Experimental Evaluation of Elution Profiles for Kinetically

12,

13.

14.

15.

16.

17.

18.

19.

20. .

21.

Controlled Macromolecule-Ligand Reactions. Analytical Biochemistry 175,
2(December 1988), pp. 462-473.

Cohen, J. Garbage collection of linked data structures. ACM Computing Surveys 13, 3
(September 1981), pp. 341-367.

Crowley, W. P., C. P. Hendrickson, and T. E. Rudy. The SIMPLE Code. Lawrence
Livermore National Laboratory Technical Report UCID-17715, Lawrence Livermore

National Laboratory, Livermore, CA, February 1978.

Denning, P. J. The working set model for program behavior. Communications of the

ACM 11, 5 (May 1968), pp. 323-333.

Dennis, J. B. Mapping programs for data parallel execution on the Connection

Machine. In preparation.

Feo, J. T. The Livermore Loops in Sisal. Lawrence Livermore National Laboratory
Technical Report UCID-21159, Lawrence Livermore National Laboratory,
Livermore, CA, August 1987

Feo, J. T. An analysis of the computational and parallel complexity of the Livermore
Loops. Parallel Computing 8, 7 (July 1988), pp. 163-185.

Ferrante, J., K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. Michigan Technological University Technical Report
CS-TR-86-8, Michigan Technological University, Houghton, MI, August 1986.

Gross, T. and A. Sussman. Mapping a single-assignment language onto the Warp
systolic array. In Kahn, G. (Ed.). Proc. Functional Programming Languages and
Computer Architecture. Springer-Verlag, Portland, OR, 1987, pp. 347-363.

Gurd, J. R., C. C. Kirkham, and I. Watson. The Manchester prototype dataflow
computer. Communications of the ACM 28, 1 (January 1985), pp. 34-52.

Hudak, P. and A. Bloss. The aggregate update problem in functional programming
systems. Proc. Twelfth ACM Symposium on the Principles of Programming
Languages. ACM, New Orleans, LA, January 1985, pp. 300-313.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Knuth, D. The Art of Computer Programming: Fundamental Algorithms, Volume 1.
Addison-Wesley, Reading, MA, 1973.

Kogge, H. S. and P. M. Stone. A Parallel Algorithm for the Efficient Solution of a
General Class of Recurrence Equations. IEEE Transactions on Computers C-22, 8
(August 1973), pp. 786-793.

Kogge, H. S. Parallel Solution of Recurrence Problems. IBM Journal of Research
Development 19, 2 (March 1975), pp. 138-148.

Kuck, D. J. et. al. Dependence graphs and compiler optimizations. Proc. Eighth
ACM Symposium on the Principles of Programming Languages. ACM,
Williamsburg, VA, January 1981, pp. 207-218.

Lee, C-C., S. K. Skedzielewski, and J. T. Feo. On the implementation of applicative
languages on shared-memory, MIMD multiprocessors. Proc. Parallel
Programming: Environments, Applications, Language, and Systems Conference.
IEEE Computer Society, New Haven, CT, July 1988, pp. 188-197.

Lee, C-C. Experience of implementing applicative parallelism on Cray X/MP. Proc.
CONPAR ’'88. British Computer Society, Manchester, England, September 1988, pp.
19-25.

McGraw, J. R. et. al. Sisal: Streams and iterations in a single-assignment lan-
guage, Language Reference Manual, Version 1.1. Lawrence Livermore National
Laboratory Manual M-146, Lawrence Livermore National Laboratory, Livermore,

CA, June 1983.

McGraw, J. R. et. al. Sisal: Streams and iterations in a single-assignment lan-
guage, Language Reference Manual, Version 1.2. Lawrence Livermore National
Laboratory Manual M-146 (Rev. 1), Lawrence Livermore National Laboratory,
Livermore, CA, March 1985.

McMahon, F. H. Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range. Lawrence Livermore National Laboratory Technical Report
UCRL-53745, Lawrence Livermore National Laboratory, Livermore, CA, December

1986.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Nikhil, R. S. ID Reference Manual, Version 88.1. Computation Structures Group
Memo 284, Laboratory for Computer Science, MIT, Cambridge, MA, August 1988.

Mitrovic, Srjdan. Personal communications.

Oldehoeft, R. R. and S. J. Allen. Execution Support for HEP Sisal. In Kowalik, J.
(Ed.). Parallel MIMD Computation: The HEP Supercomputer and Its Applications.
MIT Press, Cambridge, MA, 1985, pp. 151-180.

Oldehoeft, R. R. and S. J. Allen. Adaptive exact-fit storage management.
Communications of the ACM 28, 5 (May 1985), pp. 506-511.

Oldehoeft, R. R., D. C. Cann and S. J. Allen. Sisal: Initial MIMD performance re-
sults. Proc. 1986 Conference on Algorithms and Hardware for Parallel Processing.

Aachen, Federal Republic of Germany, September 1986, pp. 120-127.

Oldehoeft, R. R. and J. R. McGraw. Mixed Applicative and Imperative Programs.
Lawrence Livermore National Laboratory Technical Report UCRL-96244, Lawrence
Livermore National Laboratory, Livermore, CA, February 1987.

Oldehoeft, R. R. and D. C. Cann. Applicative parallelism on a shared-memory
multiprocessor. IEEE Software 5, 1 (January 1988), pp. 62-70.

Padua, D., D. Kuck, and D. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Transactions on Computer C-29, 9 (September 1980), pp. 763-776.

Padua, D. and M. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM 29, 12 (December 1986), pp. 1184-1201.

Polychronopoulos, C. D. and D. J. Kuck. Guided self-scheduling: a practical
scheduling scheme for parallel supercomputers. IEEE Transactions on Computers C-

36, 12 (December 1987), pp. 1425-1439.

Ranelletti, J. E. Graph Transformation Algorithms for Array Memory Optimization
in Applicative Languages. Ph.D. thesis, Department of Computer Science,

University of California at Davis/Livermore, 1987.

42.

43.

44.

45.

46.

47.

48.

Sarkar, V. and J. Hennessey. Compile-time partitioning and scheduling of parallel
programs. Proc. SIGPLAN 1986 Symposium on Compiler Construction. ACM, Palo
Alto, CA, June 1986, pp. 17-26.

Skedzielewski, S. K. and J. Glauert. IFI - An intermediate form for applicative lan-
guages. Lawrence Livermore National Laboratory Manual M-170, Lawrence

Livermore National Laboratory, Livermore, CA, July 1985.

Skedzielewski, S. K. and R. K. Yates. Fibre: An external format for Sisal and IF1
data objects, Version 1.0. Lawrence Livermore National Laboratory Manual M-154,

Lawrence Livermore National Laboratory, Livermore, CA, January 1985.

Skedzielewski, S. K. and M. L. Welcome. Dataflow graph optimization in IF1. In
Jouannaud, J. P. (Ed.). Functional Programming Languages and Computer

Architectures. Springer-Verlag, New York, NY, 1985, pp. 17-34.

Skedzielewski, S. K. and R. J. Simpson. A simple method to remove reference count-
ing in applicative programs. Proc. ACM SIGPLAN ‘89 Conference on Programming
Language Design and Implementation, Portland, OR, June 1989.

Welcome, M. L. et. al. IF2: An applicative language intermediate form with explicit
memory management. Lawrence Livermore National Laboratory Manual M-195,

Lawrence Livermore National Laboratory, Livermore, CA, November 1986.

Wolfe, M. Automatic parallelism detection: what went wrong? Proc. SRC
Parallelism Packaging Workshop. Supercomputing Research Center, Leesburg,
VA, April 1988.

