UCRL- 102263
PREPRINT

Sisal 1.0: An Alternative to Fortran
on Shared Memory Multiprocessors

David C. Cann
and
John T. Feo

Lawrence Livermore National Laboratory
Livermore, CA

This paper was prepared for the ACM SIGPLAN'90
Conference on Programming Language Design
and Implementation

White Plains, NY June 20-22, 1990

November 10, 1989

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represerits that
its use would not infringe privately owned rights. Reference herein to any
specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

SISAL 1.0: An Alternative to FORTRAN
for Shared Memory Multiprocessors *

David Cann and John Feo

Abstract

The acquisition of parallel processors in the scientific community is increasing, but the difficulties of
programming parallel machines persist. Two approaches have emerged: automatic parallelizing compilers
for extant languages, and new languages that provide an easier-to-use and cleaner parallel programming
model. Unfortunately most new languages have acquired a reputation for inefficiency because of their
semantics. This paper compares the performance of SISAL 1.0, an applicative language for parallel nu-
merical computations, and FORTRAN using the Livermore Loops. We show that applicative programs
when compiled using a set of powerful yet simple optimization techniques can achieve execution speeds
comparable to FORTRAN, and can effectively exploit shared memory multiprocessors. Based on these
results, the scientific community can no longer consider applicative languages inefficient, or ignore their
potential.

1 Introduction

The acquisition of parallel processors in the scientific community is increasing, but the difficulties
of programming parallel machines persist. Most parallel programming languages in use today
thwart programmer productivity and hinder analysis. They fail to separate problem specification
and implementation, fail to emphasize modular design, and inherently hide data dependencies.
In response, researchers are developing new languages of both conventional and novel design [7,9]
that provide an an easier-to-use and cleaner parallel programming model. One such language is
Sisal 1.0, an applicative language for parallel numerical computations. Regrettably, applicative

languages have acquired a reputation for inefficiency because of their single-assignment semantics.

This paper illustrates that with some simple yet powerful compilation techniques, applicative
languages can compete with conventional languages on shared memory multiprocessors. To this
end, we compare the execution performance of SISAL 1.0 [7] and FORTRAN on a Sequent Balance

21000! using the Livermore Loops [8]. The Loops are a set of 24 computational kernels found

*This work was supported (in part) by the Applied Matliematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, and by Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48 to the U.S. Department of Energy.

1Sequent Balance is a trademark of the Sequent Computer Corporation.

frequently in large-scale scientific applications and have been used for many years to berchmark

computer system performance.

In the next section we briefly highlight the attributes of applicative languages and expound
their inefficiencies. Then we present an overview of how the SISAL compiler successfully elim-
inates these inefficiencies. Next we present the comparisons, analyze the results, draw some

conclusions, and introduce future work.

2 Applicative Computation

An applicative program is a collection of function definitions and applications, where a function

defines a side effect free correspondence between members of its domain and members of its range.

The merits of this simple programming model are far reaching [5,15]. First, programs are
inherently modular, hence easier to write, debug, and maintain. Second, programs describe
data dependence graphs; thus compilers can spend more time restructuring programs and less
time unraveling their behavior. Third, programs are determinate. If they run correctly on one
processor, without exception, they run correctly on multiple processors—programmers need not
debug parallel execution or understand its complexities. Without optimization, however, the
overhead of applicative computation can be high. Implementations that adhere religiously to
applicative semantics must copy data when deriving new values. For languages like SISAL, which
support arrays, this copying can severely degrade performance and make the use of applicative

languages unfeasible.

Most copying results from operations that build new aggregates and operations that modify
extant aggregates. Consider the SISAL for expression shown in Figure 1, which returns an
array of 100 elements (A). In unoptimized form, this expression builds 99 intermediate arrays,
each one element larger than the previous, and requires 100 memory allocation requests, 99
memory deallocation operations, and 4950 double precision move operations. On the other hand,
our compiler preallocates an array of 100 elements and stores each element directly into memory,
thus would eliminate the intermediate arrays and all the associated operations. Now consider
the expression A[5: 0.0d0], which changes the 5’th element of A to zero. Even though this is
the last use of A, strict adherence to applicative semantics would require us to build an entirely

new array. Our compiler recognizes that this is the last use of A and generates code to update it

2

double_real;
array[double];

type double
type OneD

function Build(returns OneD)
let
A :=for I in 1, 100
returns array of
sqrt(double_real(I))
end for
in
A[5: 0.0d0]
end let
end function

Figure 1: A SISAL function constructing an array.

in-place.

An additional source of inefficiency in SISAL 1.0, although not a product of its applicative
semantics, is its representation of n-dimensional arrays as arrays of arrays. This can cause
excessive storage allocation and deallocation requests, and overhead when dereferencing columns

or planes.

3 The Sisal Compiler and Run Time System

In this section we present a brief overview of the SISAL compiler and run time system. For a
detailed discussion see [1] and [11]. Figure 2 depicts the SISAL compilation process. First, a front
end translates SISAL source into IF1 [14], an intermediate form defining data flow graphs. The
compiler then forms a monolithic IF1 program (linking all separately compiled files) and runs a
machine independent optimizer to expand function calls, move invariant code, eliminate common

subexpressions, fuse loops, fold constants, and remove dead code [13].

Next a build-in-place analyzer inserts code to preallocate array storage where analysis or ex-
pressions executed at run time can calculate array sizes [10]. During this analysis, the compiler
translates the IF'1 monolith into IF2 [16]. Since II'2 includes explicit memory management op-
erations, the compiler can now optimize these operations. Additionally, IF2 provides artificial

dependence edges to constrain execution order and reference count operations to control storage

Sisal Sisal

[PARSER| [PARSER|

C COMPILER l«—ibraries

.
[} [}
[] .
1 []
[} []
L] 1]
[}
: [IF1 LOADER] E
1 []
1]
: 3 INLINE EXPANSION i
: I1F1 INVARTANT REMOVAL '
[
: OPTIMIZER CSE.LOOP FUSSION | |
: CONSTANT FOLDING .
[]
: BUILD-IN-PLACE DEAD CODE REMOVAL] }
. ANALYZER ¥
] i [}
[] []
. PREPARATION :
1 -
; UPD::E}:Z';;ACB [REF-COUNT REMOVAL]| !
: 7 COPY-ELIMINATION |
L] L]
[}
; C GENERATOR E
1 L]
H ¥ H
1] 1
[} 1]
1] 1]
[] [}
1]]
. rl

executable

Figure 2: SISAL language processing.

reclamation.

After inserting code to preallocate memory, the compiler identifies those operations that
can directly modify arguments without corrupting program semantics [4,3,12,1]. The analysis
proceeds in three phases. Phase one inserts explicit copy operations to decouple copy logic from
aggregate modifiers, and adds reference count operations to decouple storage management from
all aggregate read and write operations. Phase two inserts artificial dependence edges to promote
early execution of aggregate read operations and to delay execution of copy operations. Then
it eliminates all unnecessary reference count operations. Phase three eliminates the unnecessary
copy operations and tags those that require run time analysis for copy avoidance. The analysis

considers iteration, nested aggregates, and crosses function boundaries.

Finally, the compiler translates the optimized program into C, and inserts calls to the run time
library to support parallelism. We chose the C programming language as an intermediate form to
expedite compiler development, increase compiler portability, and allow manual experimentation
with various optimizations. Unfortunately the local C compiler can dictate final performance. For
the Sequent Balance we wrote a simple machine dependent optimizer, working at the assembly

language level, to improve register utilization and reduce code size.

The SISAL run time system is a microtasking kernel tuned for the parallel execution of loops

[11]. After exccution begins, the kernel creates and assigns a worker process to each participating

processor. The workers then spin wait for loops to appear in a global loop pool. When a loop
appears, each worker grabs a slice, acquires a run time stack from the memory management
subsystem (unless one is already available), executes the slice, and returns to the pool. If during
execution the slice must wait for completion of a storage request or the results of another loop
selected for parallel execution, the governing worker will save its hardware state and append the
slice on the appropriafé event list. When the event corhplétés, a worker will restore the slice
and continue its execution. By default, the system breaks each loop into n parts, where n is the

number of participating processors.

The current Sisal run time system does not spawn user functions as separate tasks; instead
we expand all functions calls. We have found on medium-grain machines like the Sequent that
we rarely recover the cost of a spawn, and on coarse-grain machines like the Cray-XM/P that the

overhead often hurts performance [6].

4 FORTRAN versus SISAL

The Livermore Loops [8] are a set of 24 scientific kernels from production codes run at Lawrence
Livermore National Laboratory. They encompass a variety of computational structures, including
independent parallel processes, recurrent processes, wavefronts, and pipelines [2]. For many years
scientists have used the Loops to benchmark high performance computers. Here we use the Loops

to compare the execution speed of SISAL 1.0 and FORTRAN on a Sequent Balance 21000.

We ran the FORTRAN loops without change. The FORTRAN compiler provided on the
Sequent folded constants, allocated registers across subroutines and basic blocks, and optimized

array index computations within DO loops.

We wrote the SISAL to reflect the computational nature of each Loop, and did not tailor the
algorithms for either the compiler or run time system. In general, if the Loop was inherently
sequential, we used SISAL’s for initial expression to write as close a FORTRAN to SISAL
translation as possible. If the Loop was inherently parallel, we used for expressions. In certain
instances, however, foreknowledge of input size did influence our coding. For example, we wrote
sequential implementations of Loops 2, 4, 6, and 23 because their input data sizes were too small
to warrant parallel execution. In comparison to the FORTRAN codes we changed from column-

order to row-order to help compensate for the lack of true rectangular arrays in SISAL, and where

double_real;
array[double];

type double
type OneD

function Loopl(n:integer; Q,R,T:double; Y,Z:0neD returns OneD)
for K in 1,n
X :=Q+ (YIK] * (R * Z[K+10] + T * Z[K+11]))
returns array of X ' '
end for
end function

function Main(rep,n:integer; Q,R,T:double; Y,Z:0neD returns OneD)
for i in 1, rep
X := Loopi(nn, Q, R, T, Y, Z);
returns value of X
end for
end function

Figure 3: SISAL code for Livermore Loop 1.

ever possible, maintained similar output structure. For more accurate measurement of both the
SISAL and FORTRAN codes, we executed each Loop 300 times (Loop 4 is so thin that we had

to execute it 4000 times). As an example, Figure 3 gives the complete SISAL source for Loop 1.

Table 1 shows the performance results, where execution times are in kiloflops. Table 2 sum-
marizes the data in Table 1, showing minimum and maximum kiloflop rates, and the arithmetic
and harmonic means. For FORTRAN we only report single processor rates, but for SISAL we
report achieved kiloflops on one and five processors. The letters P and S in Table 1 show whether
the SISAL algorithm was parallel or sequential, respectively. The complexity column shows the
dimensionality of the arrays referenced in each Loop. Note we did not have to recompile the
SISAL codes to run on five processors; we simply increased the number of participating workers.

This epitomizes the advantages of applicative programming.

For the single processor runs, 11 of the SISAL Loops ran faster than, or within 1% of FOR-'
TRAN; 6 of the SISAL Loops ran within 20% of FORTRAN; and 2 of the SISAL Loops ran
within 34% of FORTRAN. The remaining 5 (Loops 8, 16, 18, 23, and 24) did not fare as well. In
general, this shows that sequential SISAL and sequential FORTRAN performance is comparable.
The parallel SISAL implementations achieved an average speedup of about 3.4 on five processors.

In general, the SISAL compiler eliminated 97% of the reference count operations and all the

Table 1: Kiloflop rates on the Sequent Balance for the Livermore Loops.

Loop array algorithm || FORTRAN SISAL SISAL
number | complexity type 1 processor | 1 processor } § processors
1 1D P 70 76 333
2 1D S 58 58 58
3 1D P 54 70 281
4 1D S 42 42 42
5 1D S 49 49 49
6 1D S 50 49 49
7 1D P 88 83 395
8 3D P 36 16 33
9 2D P 85 74 252
10 2D P 45 39 91
11 1D S 37 47 47
12 1D P 37 34 131
13 1D,2D S 12 13 13
14 1D P 28 44 101
15 2D P 59 44 136
16 1D P 75 13 38
17 1D S 53 45 45
18 2D P 77 29 55
19 1D S 45 51 51
20 1D S 86 90 90
21 2D P 56 54 224
22 1D P 46 45 177
23 2D S 74 42 42
24 1D P 50 27 101

Table 2: Summary of kiloflop rates on the Sequent Balance for the Livermore Loops.

[key [FORTRAN [SISAL 1 processor | SISAL 5 processors |
minimum 12 13 13
maximum 88 90 395

arithmetic mean 55 47 118
harmonic mean 45 36 60

|

copying. For the multidimensional problems, however, the costs for referencing arrays of arrays

was evident.

4.1 The Sequential Loops

Of the sequential SISAL Loops, only Loop 23 did not yield performance similar to FORTRAN.
The 34% increase in execution time was the direct result of SISAL’s representation of two dimen-

sional arrays; that is, its inability to effectively run columns.

Loops 2, 4, 6, and 23 have parallel implementations in SISAL, but we chose to use their
sequential implementations as problem size did not justify run time overhead. The parallelism was
in innermost loops. Also we chose not to use the parallel implementations of Loops 5, 11, and 19,
which require recursive doubling to expose parallelism [2]. Recursive doubling is O(Log n) in time,
but requires O(n Log n) computations, whereas the equivalent sequential algorithm requires O(n)
computations, but is O(n) in time. In trial runs, the parallel SISAL implementations ran much
slower than the sequential codes, regardless of the number of participating processors. However,
they did achieving reasonable speedup. SISAL’s implementation of recursive doubling requires
array concatenations and subarray selections. The compiler was able to preallocate memory for
the former, but was not able to build all sections of the arrays in-place. We are not sure whether
the degradation in execution times resulted from the copying or the extra computations intrinsic
to recursive doubling, but it is our general impression that recursive doubling on medium-grain

and coarse-grain shared memory multiprocessors is not an appropriate algorithm.

4.2 The Parallel Loops

Despite incurring the overhead of parallel constructs, the SISAL implementations of Loops 1,
3,7,9, 10, 12, 14, 21, and 22 produced kiloflop rates equivalent to, or better than FORTRAN
on one processor, and except for Loop 14, showed good speedup on 5 processors. The parallel
performance of Loop 14 was not the result of SISAL semantics or compiler deficiencies. Loop 14
comprises two adjacent loops, one inherently parallel and one with carried dependencies prevent-
ing parallel execution. The parallel loop showed good speedup, but the sequential loop amortized

the gains. Consequentially, five processors only doubled the kiloflop rate.

On one processor, the SISAL implementation of Loop 24 executed 80% slower than FOR-

double_real;
array[double] ;

type double
type OneD

function Loop24(n:integer; X:0neD returns integer)

let
1 := for y in X
returns value of least y
end for
in
for y in X at i returnms
value of least i when y =1
end for
end let

end function

function Main(rep,n:integer; X:OneD returns integer)
for 1 in 1, rep
vl := Loop24(n, X);
returns value of vi
end for
end function

Figure 4: SISAL code for Livermore Loop 24.

TRAN, but immediately overtook it on two processors and doubled its kiloflop rate on five
processors. This Loop finds the location of the first minimum in an array. Figure 4 shows the
SISAL implementation. The FORTRAN version only requires a single loop, but the SISAL al-
gorithm requires two for expressions. SISAL’s limited repertoire of reduction operations (sum,
product, minimum, maximum, and catenate) and lack of user-defined reductions prevented use

of a single expression. Sisal 2.0 will include user-defined reductions.

The SISAL implementation of Loop 16 is 100% parallelizable, but it could not out perform
FORTRAN. This Loop searches for a particle in a two-dimensional grid of zones subdivided
into groups. The FORTRAN Loop sequentially searches each group, one at a time, and quits
as soon as it finds the particle. The SISAL version examines all the groups in parallel, but
searches the entire space because the language does not support asynchronous broadcasts—the
processor finding the particle cannot broadcast the event and stop the other processors. The lack

of asynchronous broadcasts is a characteristic of determinate languages.

Loops 8, 15, and 18 did not do well, yet cach is parallel and comprises considerable work. Loop

9

Acknowledgements

We would like to thank Dr. Oldehoeft, Chairman of the Computer Science Department at Col-
orado State University, for providing access to the Department’s Sequent, and for his contributions
to SISAL’s design and implementation.

References

[1] D. C. Cann. Compilation Techniques for High Performance Applicative Computation. PhD
thesis, Colorado State University, Computer Science Department, Fort Collins, CO, 1989.

[2] John T. Feo. An analysis of the computational and parallel complexity of the Livermore
Loops. Parallel Computing, 1988. To appear.

[3] Paul Hudak. A semantic model of reference counting and its abstraction. In Proceedings of
the ACM Conference on Lisp and functional programming, pages 351-363, August 1986.

[4] Paul Hudak and Adrienne Bloss. The aggregate update problem in functional programming
systems. In Twelfth Annual ACM Conference of the Principles of Programming Languages,
pages 300-313, January 1985.

[5] John Hughes. Why functional programming matters. Technical Report PMG-40, Chalmers
Tekniska Hogskola, 1984.

[6] C. Lee. Experience of implementing applicative parallelism on cray x-mp. Technical Report
UCRL-98303, Lawrence Livermore National Laboratory, May 1988.

(7] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R. Oldehoeft, J. Glauert, C. Kirkham,
W. Noyce, and R. Thomas. SisAL: Streams and iteration in a single assignment language:
Reference manual version 1.2. Manual M-146, Rev. 1, Lawrence Livermore National Labo-
ratory, Livermore, CA, March 1985.

[8] Frank H. McMahon. The livermore fortran kernels: A computer test of the numerical per-
formance range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory,
Livermore, CA, December 1986.

[9] R. Nikhil. Id nouveau: Quick reference guide. Technical report, MIT Laboratory for Com-
puter Science, Cambridge, MA, January 1987.

[10] John E. Ranelletti. Graph Transformation Algorithms for Array Memory Optimization in
Applicative Languages. PhD thesis, University of California at Davis, Computer Science
Department, Davis, California, 1987.

[11] T. R. Richert. Efficient task management for SISAL. Technical Report 89-111, Computer
Science Department, Colorado State University, July 1989.

[12] S. K. Skedzielewski and R. Simpson. A simple method to remove reference counting in
applicative programs. Technical Report UCRL-100156, University of California Lawrence
Livermore National Laboratory, November 1988.

[13] S. K. Skedzielewski and M. L. Welcome. Data flow graph optimization in IF1. In Jean-Pierre
Jouannaud, editor, Functional Programming Languages and Computer Architecture, pages
17-34. Springer-Verlag, New York, NY, September 1985.

11

(14] Stephen Skedzielewski and John Glauert. IF1—an intermediate form for applicative lan-
guages. Manual M-170, Lawrence Livermore National Laboratory, Livermore, CA, July
1985.

[15] D. A. Turner. The semantic elegance of applicative languages. In Proceedings of the 1981
Conference on Functional Programming Languages and Computer Architecture, pages 85-92,
October 1981.

[16] M. L. Welcome, S. K. Skedzielewski, R. K. Yates, and J. E. Ranelletti. IF2: an applicative
language intermediate form with explicit memory management. Manual M-195, University
of California Lawrence Livermore National Laboratory, November 1986.

12

