awrence ivermore

1AT

REN

Gz LvERy
1OMAL LABORATORY
(L] .

Nationd icooratory

UCRL-98289

An Automatically Partitioning
Compiler for Sisal

Vivek Sarkar
Stephen Skedzielewski
Patrick Miller-

This paper was prepared for inclusion in
the Conference Proceedings of CONPARSS
Manchester, England

December 20, 1988

"CIRCULATION COPY
SUBJECT TO RECALL
IN TWO WEEKS

T

“a

U

T

versty of caiormia-davis




DISCLAIMER

This document was prepared as an account of wor sared by an agency
of the United States Government. Neither the” United States Government
nor the University of California nor any of/their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any
- specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.



An Automatically Partitioning Compiler for Sisal

Vivek Sarkar
IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598

Stephen Skedzielewski

Computing Research Group, L-306, Lawrence Livermore National Laboratory
(LLNL), Livermore, CA 94550.

Patrick Miller
Computing Research Group, L-306, LLNL, Livermore, CA 94550

1. Introduction.

In this paper, we describe a compiler that automatically repackages SISAL
[6) programs to achieve the grain size needed to run efficiently on different multiproces-
sors. The compiler is based on an existing implementation for SISAL on the Sequent
Balance multiprocessor [7], and on previous work on automatic partitioning of SISAL
programs [9,10]. The granularity of parallelism in the existing Sequent implementation
is defined by language constructs (e.g. all function calls are spawned as separate tasks),
causing the programming style to dramatically affect multiprocessor performance. It is
desirable for the partitioning to be performed automatically, so that the same program
can be made to execute efficiently on different multiprocessors and the programmer need
not be concerned with granularity issues when developing his program. This is the goal
of our automatically partitioning compiler.

The partitioner described in Section 3 operates on IF1 [11], a graphical intermediate
language for SISAL programs. It also takes as input a list of parameters describing the
target multiprocessor. The partitioner’s output consists of IF1 annotations to specify
which calls to user-defined functions should be executed as parallel tasks, which Forall
expressions should be executed as parallel loops and their appropriate chunk sizes.

The Sequent Balance implementation has been retargetted to the Alliant, multi-VAX
and Cray X-MP multiprocessor systems. It is currently being modified to support the
partitioner’s output, rather than just using the default granularity described in [7]. We
intend to use the automatically partitioning compiler to study the performance of various
SISAL application programs on these different multiprocessors.

2. Runtime Model.
Our runtime model supports three kinds of parallelism in SISAL programs:

1. Function Calls. Any function call marked with Spawn = true by the partitioner

is executed as an independent task. The spawning occurs dynamically whenever
the call is reached during program execution.

2. Loop Slicing. Any Forall expression can be sliced into independent tasks (much like

a function call), since it contains no loop-carried data dependence. The partitioner



selects the Forall expressions to be sliced, and the minimum number of iterations
(chunk size) that should be executed by a task.

3. Stream Parallelism. The stream data type in SISAL sets up a producer/consumer
relationship among expressions. The semantics of streams imply sequential access
to the stream elements and allow for non-strict evaluation. Thus, a stream is
implemented as a shared queue with a fixed buffer size, with the producer adding
elements to the tail and the consumers accessing elements from the head.

This model relies on both centralized job queues and global memory. A task can be
placed on the ready (or blocked) queue by any processor and is available for execution by
any processor. All its state can be restored by any processor, and all its data references
are global. Structured data objects are allocated in heap storage and reference counts
are maintained to decide when an object’s space can be reclaimed. A more detailed
description of the runtime model is given in [1].

3. The Partitioner.

The first step in partitioning is to estimate the execution times of all IF1
nodes and graphs in the program. The average execution times of simple nodes provide
a basis from which all other execution time estimates are derived. They are initialized
according to the performance of simple operations on the given multiprocessor system.
Average execution times for compound nodes are determined by using average frequency
values for Loop and Select subgraphs. In our implementation, these frequency values
are obtained from execution profile information. Finally, the average execution time of
a function call is assumed to be independent of the call site, and is thus set to the value
computed for the corresponding function body. This can be tricky for a recursive call
where the execution time of the body depends on the execution time of the call itself.
In [10], we show how to assign execution times in the presence of recursive calls.

Given our runtime model, the relevant parameters for partitioning are:

1. The number of processors available.

2. Task creation overhead — time to place a newly created task on the ready queue.

3. Task scheduling overhead - time to remove a task from the ready queue and
initialize it for execution on a processor.

4. Synchronization overhead — time to move the parent task from the ready queue to
the blocked queue and then back to the ready queue.

Synchronization overhead occurs when a parent task blocks waiting for a result from a
child task. Communication overhead is not relevant to this model because the current
compiler targets only shared memory machines.

The simplified partitioning algorithm used in the experiments presented in this paper
does not directly use the preceding parameters. Instead, it uses a threshold value, Tpiy.
The partitioner processes functions in a reverse topological order of the call graph, so
that for any non-recursive function call, the callee will always be partitioned before the
caller. The idea is to produce the finest partition in which every task has an estimated
sequential execution time that is at least T,,;,. Therefore, the parameter T,,;, provides
a control on the granularity of the partiticned program. Increasing Tmin yields a coarser
granularity. T,;, should be chosen so as to dominate the overhead time involved in
executing a task on the target multiprocessor.

In future work, we plan to more fully use the multiprocessor parameters listed above
in an implementation along the lines of that presented in [9] and [10].



procedure DetermineTasks(G)

1. /* First recurse. Note that a depth-first traversal of subgraphs in a compound node
ensures that a node is made into a new task “as soon as possible”. In this sense,
the task partition is at the finest possible granularity for the given T,,;, value. */
for each compound node N_mp in graph G do

(a) for each subgraph SG of compou@d node N, do
i. call DetermineTasks(SG)

2. G.TaskTime:=0
3. /* Process each node in G. */
for each node N in graph G do

(a) /* Determine N.TaskTime. */
if N is a compound node then

i. NTaskTime := Y ggen SG.freq * SG.TaskTime
/* SG is an IF1 subgraph of compound node N. */

else if N is a function call node then

i. N.TaskTime := CG.TaskTime
/* CG is the IF1 graph of the callee function in node N. */

else /* N must be a simple node. */
i. N.TaskTime := N.SeqTime

(b) /* Decide if node N should be a separate task. */
if (N.TaskTime > T,:,) and (N is a function call node or a Forall node)

then
i. N.spawn := true
else

i. N.spawn := false
ii. /* N.TaskTime contributes to G.T'askTime, since N.spawn = false. */
G.TaskTime := G.TaskTime + N.TaskTime

(c) /* Determine chunk size for a parallel Forall node. */
if (N is a Forall node) and (N.spawn = true) then

i. N.chunksize := [N.freq* Tpin/N.TaskTime]

end procedure

Figure 1: Procedure DetermineTasks



The simple approach taken does not directly address the issue of parallelism. Since the
algorithm tries to produce the finest granularity partition that satisfies the T,;, restric-
tion, all the parallelism available at a coarser granularity should continue to be visible
in the program. If the program’s parallelism only occurred at a finer granularity than
Tomin, then the program is probably unsuitable for execution on the target multiprocessor
because it would incur too much overhead.

Of course, the real interaction between parallelism and overhead can be more complex
in general. Communication overhead is very sensitive to the partition boundaries and
can be more significant than scheduling and synchronization overheads. Further, the
parallelism in the program is determined by the execution times of the nodes on the
critical paths of the program graph. We addressed these issues in a general statement of
the partitioning problem presented in [9] and [10]. In this paper, we discuss a simpler
approach; but one that has been implemented in a full compiler for real multiprocessor
systems.

Procedure DetermineTasks in Figure 1 outlines the algorithm used to select tasks
based on Tinn. DetermineTasks is called for each function’s IF1 graph in the program.
The procedure operates on an IF1 graph, G, where:

e Each function call node, CN, contained directly or indirectly in G, is assigned a
boolean value C N.spawn. If CN.spawn = true then the function call is to be
spawned as an independent task. Otherwise the function call is to be executed
sequentially by the parent task that executes node C'N.

e Each Forall node, F N, contained directly or indirectly in G, is assigned a boolean
value FN.spawn. If FN.spawn = true then the Forall node is sliced into indepen-
dent tasks. The minimum number of iterations to be executed in one task is given
by the value FN.chunksize.

Recursive function calls can pose a problem, even in this simple partitioning scheme.
What should we do if the execution time of the body of a recursive function is less than
Tmin? One solution would be to set Spawn = false for all the recursive function calls,
but that is not interesting because it could serialize the entire program. Our approach
is to iteratively perform in-line expansion of recursive calls at compile-time, untill the
execution time of the expanded function body exceeds Ty,;,. The details of this approach
have been omitted, due to space limitations.

4. Experimental Results.
The execution times reported in this section were measured on three dif-
ferent multiprocessor systems:

1. Sequent - a Sequent Balance system with 12 NS32032 processors, running the
DYNIX operating system. A locally developed gang daemon reserves up to 10
processors exclusively for parallel processing jobs. The deamon ensures that inter-
active jobs are not scheduled on the same processors as parallel processing jobs.
Therefore, our measurements are repeatable at any time, with a very small variance.

2. Alliant - an Alliant FX/8 computer with 8 Computational Elements. For these
experiments we used only six of the eight processors; using more processors led to
non-repeatable results due to interference from other time-sharing users.

3. VAX - two VAX-11/780 processors connected to 4 megabytes of MA780 shared
memory. Our measurements could only be taken when there were no other users
on the system.



For the Sequent and VAX systems, we simply report the execution time as wallclock time
in seconds. The Alliant times reported are the CPU times given in the SISAL runtime

statistics.
We present performance results for two SISAL programs. Both programs were parti-

tioned using Trnin = 1000.
4.1. MM - Matrix Multiplication.

A SISAL program for multiplying two 32 x 32 sized real matrices, using the
standard O(N?) matrix multiplication algorithm.

P 1 2 3 14|56 78] 910
Torig | 20.0 1 108 17.7(6.1 |52]4.7]43|4.1]4.0(4.0
Tpare | 174 8.8 146 (4.5(14.0]35]3.0[25]25(2.5

Table 1: Execution times of MM on the Sequent (T,., = 17.4)

P |1 ]2]3[4]5]6
Torig | 6.2 | 3425201716
Toere | £.9 |25 1.7 1.3 | 1.1 | 1.0

Table 2: Execution times of MM on the Alliant (T,., = 4.9)

Table 1 shows the parallel execution time of MM on the Sequent. The sequential
execution time is denoted by T,e,, Torig denotes the parallel execution time from the
original implementation [7], and T4, is the time obtained by using the partitioner. We
see that the Ty, numbers are smaller than the T, numbers. Further, T4, shows a
relative speedup of 17.4/2.5 = 6.96 as opposed to Tori,’s relative speedup of 20.0/4.0 =
5.0. Therefore, Tpert is better than Toyig, both in absolute values and relative speedups.

Table 2 shows similar results on the Alliant. The sequential execution time was Toeq =
4.9. T,,iy and T, are comparisons of the original Alliant version against the partitioned
versions. Once again the T4, times are uniformly less than the T,,;, times, and the
relative speedup is better, as well (4.9 vs. 3.9 at six processors).

As a comparison, the sequential execution time on the VAX was T,., = 13.9, and the
execution times for 1 and 2 processors were:

o Torig =16.2,9.2, T,y = 14.2,7.8
So the observation that T,..: is better than T, in absolute values and in relative
speedup, holds for the VAX as well.

As discussed in [7], the overhead of maintaining reference counts for arrays can be a
significant part of the program execution time. Tables 3 and 4 show the performance
obtained by manually simulating a reference count optimization, in which unnecessary
reference count operations are removed from the program. We plan to make this
optimization automatic in future work. T,ri; and Tps,: show the same trends in Table
3 as in Table 1. The absolute execution times are better in Tables 3 and 4 because of
the reference count optimization. What is even more encouraging is that the relative
speedup of Ty, on the Sequent has now increased to 6.9/0.9 = 7.67, and on the
Alliant to 2.0/0.4 = 5.0, showing that the reference count optimization also improves

the parallelism in the program.



P 11213145 )6] 71819110
Torig {9.5]54140(34[3.0(29]128]28(2.91{3.1
Tpart |69135]124]118[16]1411.2]109]09]0.9

Table 3: MM on the Sequent with reference counts removed (T}, = 6.9)

P |1]2[3]4]5]6
Toig |34 (20|15 (13|12 (11
Tprs | 2.0 | 1.0 ] 0.7 0.5] 0504

Table 4: MM on the Alliant with reference counts removed (Tseq = 2.0)

For the reference count optimization case on the VAX, we measured T, = 5.0, and
the execution times for 1 and 2 processors were:
® Torig =173,4.2, Tpare = 5.3,2.7
4.2, TRANS - Particle Transport.
The TRANS program computes a finite element method solution of linear
Boltzman equations, to calculate particle flux through a space. The main calculation is
a sequential outer loop containing two parallel loops.

P 1 2 3 4 ) 6 7 8 9 10
Torig | 57.2 1 30.0 {21.51174 {155 14.5[13.9]13.7]13.8 [ 13.6
Tpare 12081109 | 88 | 74 |75 [ 75|76 |75 | 76|75

Table 5: Execution times of TRANS on the Sequent (Tseq = 20.5)

Tables 5 and 6 show the parallel execution time of TRANS on the Sequent and the
Alliant. These numbers indicate a similar trend as was seen for MM. However, TRANS
has less parallelism than MM, leading to a relative speedup of 20.8/7.5 = 2.77 in Tpare
on the Sequent and 5.9/3.4 = 1.7 in T, on the Alliant.

As a comparison, on the VAX T,,, = 18.5 and the execution times for 1 and 2
Processors were:

® Torig = 48.5,26.7, Tpare = 19.0,10.2

As in MM, Table 7 gives the execution times with the reference counts removed. The
gain due to partitioning is much more pronounced for TRANS, where we see T,,;; = 10.6
and Tpere = 3.2, for 10 processors on the Sequent and 7T,,;, = 4.2 and T, = 1.6 for six
processors on the Alliant.

For the reference count optimization case on the VAX, we measured Ty, = 9.1, and
the execution times for 1 and 2 processors were:

o Torig = 36.9,20.2, Tpe,: = 8.2,4.1
The VAX timings contain an anomaly, where the single processor time for T, (= 8.2)
is noticeably better than T,,, = 9.1. This is due to the fact that the VAX timings
are sensitive to the presence of other jobs, unlike the Sequent timings. We tried to
minimize this factor by only making the measurements when there were no other users
on the system. This apparent anomaly is due to the fact that we report wallclock times.



| 1 2 3 |45 )6
Torig 124.3 1123 18.716.9]5.9]5.3
Tpare | 5.9 | 3.3 |33[3.3[3.3(3.4

Table 6: Execution times of TRANS on the Alliant (Tyeq = 5.8)

P 1 2 3 4 5 6 7 8 9 10
Torig | 44.9 123.5116.713.3|11.7|11.1 ]10.8 ]10.6 [ 10.5 | 10.6
Tpare | 92 | 48 | 3.8 [ 3.1 {31 ]31]31[32])31]3.2

Table 7: TRANS on the Sequent with reference counts removed (T,eq = 9.2)

The CPU times corresponding to Ty, and to T}e,: on one processor were 6.97 and 6.98
respectively, showing that T,e, did not really use more CPU time than Tp,,:.
5. Related Work.

Our compiler is an extension of the compiler developed at Colorado State
University (in collaboration with LLNL) for implementing SISAL programs on the Se-
quent Balance multiprocessor [7]. We use the same runtime model, except that the task
granularity is now determined by the partitioner. The design of the partitioner is based
on previous work on automatic partitioning of SISAL programs [9,10].

The general problem of determining the optimal granularity of program decomposition
has been addressed in other work. Some partitioning issues for implementing SISAL
on a 16-way Transputer-based message-passing multiprocessor are discussed in [2]. The
serial combinators approach for the ALFL language [3,5] deals with partitioning program
graphs into tasks, as in our compiler. However, serial combinators are not allowed to
sacrifice any potential parallelism, leading to a much finer granularity partition than our
SISAL tasks. In our partitioner, the central issue is the tradeoff between parallelism and
overhead, which allows the partition to be formed at any arbitrary granularity. Further,
there are several implementation issues (e.g. lazy evaluation, copy avoidance) which
make reduction languages like ALFL harder to implement efficiently, compared to single
assignment languages like SISAL.

6. Conclusions.

We have presented the design of an automatically partitioning compiler
that can be used to target the same SISAL program to a range of shared-memory
multiprocessors. Such a system greatly simplifies the problems of creating, debugging and
porting efficient parallel programs on different multiprocessors. Though the partitioning
techniques have been implemented for SISAL, the basic approach is general and is
applicable to any environment that uses a graphical program representation.

Further research is necessary to investigate the performance of various SISAL applica-

P 1 ]2 3]4]5]6
Toria | 21.0 | 10.6 | 7.3 | 5.7 | 4.8 | 4.2
Tpor | 28 | 1.5 | 1515 [1.6 | 1.6

Table 8: TRANS on the Alliant with reference counts removed (75, = 2.8)



tion programs on different multiprocessors. One of the biggest challenges in implementing
SISAL (or any other functional language) is to not only obtain good speedup in a
parallel implementation, but also achieve efficient sequential execution times compared
to imperative languages like Fortran, C or Pascal. Our hope is to meet this challenge by
combining the automatically partitioning compiler described in this paper with current
research in optimizing single assignment languages (8] [4].

7. Acknowledgements.

This work was supported (in part) by the Applied Mathematical Sciences subprogram
of the Office of Energy Research, U.S. Department of Energy, by Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

References.

[1] David C. Cann, Ching-Cheng Lee, R. R. Oldehoeft, and S. K. Skedzielewski.
SISAL Multiprocessing Support. Technical Report UCID-21115, Lawrence Livermore
National Laboratory, Livermore, CA, 1987.

[2] J. L. Gaudiot, M. Dubois, L. T. Lee, and N. Tohme. The TX16: a highly pro-
grammable multimicroprocessor architecture. IEEFE Micro, 6(10):18-31, October
1986.

[3] Benjamin Goldberg. Multiprocessor Ezecution of Functional Programs. PhD thesis,
Yale University, New Haven, Connecticut, 1988.

[4] K. Gopinath and J. L. Hennessy. Copy Elimination with Abstract Interpretation.
Technical Report CLaSSiC-87-17, Stanford University, Stanford CA 94305, Feb
1987.

[5] P. Hudak and B. Goldberg. Serial combinators: "optimal” grains of parallelism. In
Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer
Architecture, pages 382-399, Springer-Verlag, New York, NY, September 1985.

[6] James McGraw, Stephen Skedzielewski, Stephen Allan, Rod Oldehoeft, John
Glauert, Chris Kirkham, Bill Noyce, and Robert Thomas. SISAL: Streams
and Iteration in a Single Assignment Language: Reference Manual Version 1.2.
Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA,
March 1985.

[7] R. R. Oldehoeft and D. C. Cann. Applicative parallelism on a shared memory
multiprocessor. IEEE Software, 5(1):62-70, January 1988.

[8] John E. Ranelletti. Graph Transformation Algorithms for Array Memory Opti-
mization in Applicative Languages. PhD thesis, University of California at Davis,
Computer Science Department, Davis, California, 1987.

[9] V. Sarkar and J. Hennessy. Partitioning parallel programs for macro-dataflow. In
Proceedings of the ACM Conference on Lisp and functional programming, pages 202-
211, August 1986.

[10] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Ezecution on
Multiprocessors. PhD thesis, Stanford University, Stanford, California, April 1987.

[11] Stephen Skedzielewski and John Glauert. IFI—An Intermediate Form for Ap-
plicative Languages. Manual M-170, Lawrence Livermore National Laboratory,
Livermore, CA, July 1985.



