UCRL-92122 Rev. 1

Data Flow Graph
Optimization in IF1

December 2, 1987

Presented at the Second
Conference on Functional Programming
and Computer Architectures
Nancy, France
September 16-18, 1985

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represeriis that
its use would not infringe privately owned rights. Reference herein to any
specific commercial products, process, cr service by trade name,
trademark, manufacturer, or otherwise. does not necessarily constitute or
imply its endarsement recommendaticn, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state ar reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

DATA FLOW GRAPH OPTIMIZATION IN IF17

S.K. Skedzielewski and M.L. Welcome
Computing Research Group
Lawrence Livermore National Laboratory
Livermore, California 94550

ABSTRACT

Optimization techniques are as important when compiling data flow languages as when compiling
conventional languages. This paper describes work that has been done on optimizers for SISAL
programs that have been translated into IF1 data flow graphs. It shows that conventional optimization

algorithms can be easily and efficiently implemented for data flow graphs, and that the payoff for even
simple optimizations can be significant.

1. Introduction

Large-scale scientific programming has been synonymous with FORTRAN programming over the past
20 years. One reason for FORTRAN's popularity on supercomputers is that the code produced by the
FORTRAN compilers is considered to be "reasonably efficient”. Conversely, an argument against the
use of dataflow languages is that they cannot be compiled efficiently on a conventional architecture. The

latter argument has been neither proven nor disproven; in an attempt to disprove it we are implementing
the SISAL language on the Cray-1 architecture.

In order to compare the runtime performance of SISAL and FORTRAN programs we must have
comparable implementations. More specifically, we cannot compare a "production quality” FORTRAN
compiler with a relatively naive implementation of a SISAL compiler. In order to improve the quality of
SISAL code we have implemented some classical code improvement techniques that are common in
optimizing compilers for sequential programming languages.

Since many new languages are designed and implemented by small research groups, it is not surprizing
that little work has gone into optimization. The work reported here is just the beginning of much more
sophisticated code improvements that are needed for the Cray architecture. However, the ease with which
all of the improvements were implemented is a big advantage for both the SISAL compiler writer and
user, since improved code is very cheap to produce and shows significant runtime benefit.

The remainder of this paper is divided into sections that describe the intermediate form that represents a
SISAL program, and each of the code improvers that are now running for SISAL: inline function

T This work was supported (in part) by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of Energy, by Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

2
expansion, common subexpression elimination, loop-invariant expression removal, and loop and test
inversion. These techniques are described in [Aho77, Chapter 12] and [Bar79, Chapter 11].

2. Background

SISAL [McG84] is an applicative language that draws on features found in dataflow languages. It could
be called a descendant of both VAL [Ack79] and ID [Arv78], but contains some features not found in
either. An earlier version of SISAL is described in [McG82].

SISAL is a strongly-typed, procedural, single-assignment language. It is strongly oriented towards
"“scientific computing” by both its infix expression notation and the many built-in functions for
manipulating arrays. Implicit discovery of parallelism guarantees determinate results. It has both parallel
and iterative expressions that gather and reduce values produced in the loop bodies. Errors in arithmetic
or control return an error value that is well- defined over all of the operations in the language. Finally,
streams are provided for interactive input and output, as well as pipeline parallelism.

IF1 [Ske85] is the intermediate form used by all SISAL implementations. It is a hierarchical graph
language that describes the dataflow graphs produced from SISAL functions. It also has several
properties that make it well-suited for our code improvement analysis. All of the code improvements that
we describe in this paper are done on the IF1 form, rather than on the SISAL representation.

SISAL is being implemented on a diverse collection of machine architectures by the following groups

Group Target Machines
Colorado State University Denelcor HEP
Digital Equipment Corporation Vax 11-780
Lawrence Livermore National Laboratory Cray-1, Cray-X/MP
University of Manchester Prototype Dataflow Computer

Table 1. Collaborators

The current compilers for SISAL (like many compilers for other 'languages) perform a straightforward
translation. We trade simplicitly in the translator for the use of optimizers. Thus, we depend heavily on
good, inexpensive code improvers. Techniques that take hours to run will not be accepted by our users.

We limit our discussion to a few "classic" machine-independent code improvements that we have

implemented for IF1. Other problems involving array copying and implementing demand-driven streams
will be discussed in future papers.

3. IF1 - an intermediate form

IF1 [Ske85] is a hierarchical graph language that is closely tied to SISAL. It has four elements of interest
for these discussions: graphs, nodes, edges and literal edges.

An IF1 data flow graph is an acyclic graph in which the nodes represent operations and the directed edges
define the data paths between nodes. IF1 nodes are classified as either simple or compound. Simple
nodes represent the basic elements of computation, such as the arithmetic and Boolean operators.
Compound nodes represent the more complicated, structured expressions of SISAL. Compound nodes
will be discussed shortly.

Each operation node has a collection of input and output ports through which it receives and distributes
values. Values enter a node through its input ports, the node performs its operation, and the results are
passed out through its output ports. An edge is a directed arc that connects an output port of one node to
an input port of another. All edges are strongly typed. Fan-in is not allowed into a node's input ports,
but fan-out is allowed (and usually desired) from its output ports. In the figures, nodes are pictured as
the small boxes labeled "N d", ports are the small dark pegs on the nodes, and edges are the lines
connecting ports.

Constant and literal values are represented by literal edges.. A literal edge is a special kind of edge that
does not originate from a node, and always yields the same value. Like normal edges, it is strongly
typed. Node 1 of Figure 1.4 has a literal with value "F" on port 1.

An IF1 graph is a collection of nodes interconnected by edges. In order to clearly define the boundary of
a graph we use a graph boundary node as the source and sink of values entering and leaving the graph.

This boundary node contains a set of input and output ports that serve as communication channels
between the nodes of the graph and the outside world. Values pass from the outside environment into the
graph through input ports. Similarly, values computed inside the graph are passed to the outside world
through the boundary's output ports. An input port of a graph boundary node serves as a distribution
center for the value it receives. The port supplies this value, via edges, to all nodes within the graph that
need it. Fan-out is allowed from a boundary input port to the nodes of the graph, but fan-in is not allowed
from the nodes of the graph to their boundary. For simplicity, we will often refer to a graph boundary
node as a graph. The large boldface boxes in Figures 1.1 through 4.2 represent graphs.

An IF1 graph encapsulates a (possibly) large body of computation. For example, a SISAL function is
represented in IF1 by a graph. The input and output parameter lists of the SISAL function header define
the input and output ports of its graph boundary node. Graphs in IF1 appear as either function graphs or
as subgraphs of compound nodes. Function graphs are at the highest level of the hierarchy; they may
contain compound nodes which in turn may contain other compound nodes, etc.

A compound node comprises a number of subgraphs and implicit connections between ports on the
subgraphs and ports on the compound node. Each subgraph of a compound node defines a part of a

4
structured expression. There are five compound nodes defined in IF1 and they mirror the five structured
expressions of SISAL.

Name Use

Select if-then-else

TagCase extract values from a discriminated union
LoopA iteration with termination test after one pass
LoopB iteration with termination test before one pass
Forall "apply-to-all"

Table 2. Compound Nodes

The Select node represents a conditional expression. It has subgraphs for the predicate and each of the
alternatives.

The TagCase node represents a "case-like" expression used with the SISAL union type. It has a
subgraph for each tag that the object can assume.

The LoopA and LoopB (see Figure 1.1, Node 1) nodes represent iterative looping expressions. They
have subgraphs for initialization, test, body and results.

The Forall node denotes a parallel "apply-to-all" expression. It has generator, body and collector
subgraphs.

There are no explicit control nodes or control lines defined within IF1; all control information is implicit
within a compound node. Control of subgraph execution is defined by the semantics of each compound
node, and may be implemented in different ways on different machines. For example, we will use branch
instructions to implement a Select node on the Cray-1, while a static dataflow architecture might use
switch and merge operators.

Data values are communicated between a compound node and its subgraphs via specific port assignment
conventions. Port assignment conventions are specified for each type of compound node. For example,
if a compound node has K inputs then the first K input ports on all of its subgraphs are reserved for these
values. Additional ports are reserved for special purposes by the semantics of each compound node.

Example The following SISAL loop computes the sum of the absolute values of the distances between
the two functions F and G at the points: (A, B, A), (A, B, A + H), (A, B, A+2H), ... (A, B, B).

5

function Example (A, B, H : real returns real)
for initial
X:=A;
V:=00
while X <= B repeat
X:=0ld X + H;
V:=old V + abs(F(A,B,old X)-G(A,B,0ldX))
returns value of V
end for
end function

function F (U, V, W : real returns real)
2.0*U + V*U - 3.0¥W*V
end function

function G (U, V, W : real returns real)
2.0%U + V*U + 5.0*W
end function

The translation of this expression to a LoopB node is shown in Figures 1.1 through 1.5 The LoopB node
has four subgraphs:

The INIT graph (Fig. 1.2) initializes the "loop values" X and V.

The TEST graph (Fig. 1.3) evaluates the boolean expression that determines whether the
BODY graph will be executed.

The BODY graph (Fig. 1.4) computes the "new" loop values from the "old" loop value and
the imported constants.

The RETURNS graph (Fig. 1.5) collects the results to be returned by the LoopB node. In
this case, it simply collects the last value that was bound to V before the predicate
became false.

Since the LoopB node uses A, B, and H, the first three input ports of each subgraph are reserved for
these values. The loop values (X and V) are passed between graphs by exporting and importing them on
the next available ports, ports four and five (neither the INIT nor the BODY will output any values on a
port corresponding to a loop input). The result of the TEST graph is placed on output port one. The
output ports of the RETURNS graph correspond to the output ports of the LoopB node.

Ordering tite nodes of a graph by data dependence plays an important role in all of the optimization
algorithms presented in this paper.

Definition Two nodes within a graph are said to be directly data dependent if an edge exists from

one to the other (i.e. one consumes a value produced by the other). The transitive closure of this relation
defines the dara dependence relation.

6
IF1 graphs are acyclic and hence a node may not be data dependent on itself. Data dependence imposes a

partial ordering on the nodes of a graph. We do not worry about data dependence between instances of a
loop body, since it falls outside the domain of this discussion. Other analysis routines, such as those that

find vector parallelism, or try to update arrays in situ will have to deal with more complicated forms of
data dependence.

Definition We define a graph ordering to be a total ordering on the nodes of a graph, which
preserves the partial ordering by data dependence.

Ordering the nodes of an IF1 graph is a simple, linear time algorithm. In the examples of IF1 graphs, the
node label will reflect the ordering. If node X depends on node Y, then label(X) > label(Y).

4. Inline function expansion

Function and subroutine calls often impede automatic program analysis in imperative languages. Sharing
data by common blocks, call-by-reference parameters, and array aliasing all complicate the global
dataflow analysis that is necessary for many optimizations. In SISAL, function calls can have no side
effects; all functions are "clean" in that they take and return values. Optimization analysis in this
environment is simplified by replacing a function call with a copy of the function body. Such "inline
expansion” is easily done within [F1. Figures 1.4 and 2.0 show the body subgraph of the example (in
Section 3) before and after functions F and G are expanded (the dotted lines in Figure 2.0 outline the
function graphs of F and G, they are not part of the expanded graph). Code placed inline can be removed
by common subexpression elimination or loop-invariant expression removal (or both).

Inline function expansion both removes the run-time overhead of the function call and creates
opportunities for other code improvements. This encourages the programmer to write small, modular
SISAL functions that improve readability with no run-time expense. On a sequential machine the expense
usually involves parameter evaluation, a context switch and parameter and result copying. On a tagged
token data flow machine each token must be retagged as it enters a function.

Although any non-recursive function can be expanded inline, it is not always desirable to do so. For
example, very large functions that are called from several locations might explode the code size, and cause
extra page faults on a virtual memory machine. Therefore we allow the programmer to identify the
functions that should be expanded inline. At this time, we do not allow recursive (or mutually recursive)
functions to be expanded. It is a simple matter to relax this constraint and allow recursive functions to be
expanded a limitied number of times in order to expand the code size and possibly increase parallelism.

5. Common Subexpression Elimination

It is well known that straight-forward code generation algorithms for compilers often produce redundant
code. If a particular operation (e.g. subscripting an array) is used in several places the code to evaluate it

7 .
is duplicated. Redundant code may also appear as the result of other optimization passes, such as inline

function expansion, or pulling loop-invariant expressions out of a loop. Common subexpression
eliminartion (CSE) is the process of finding and removing redundant code, and sharing the value produced
by the defining occurrence of the expression. Within IF1, common subexpressions take the form of
equivalent operation nodes in a graph.

Definition Two simple nodes are said to be equivalen: if they have identical operation codes and have
equivalent inputs. Two compound nodes are said to be equivalent if they have identical operation codes,
equivalent inputs, and corresponding subgraphs are isomorphic.

Definition Two graphs are said to be isomorphic if there exists a one-to-one and onto mapping from
the nodes of one graph to the nodes of the other such that corresponding nodes are equivalent.

Definition Two nodes are said to have equivalent inputs if they both have the same number of inputs,
and inputs on corresponding ports are both:

(A) Literals with the same type and value OR
(B) Edges attached to the same graph (boundary) input port OR
(C) Edges attached to corresponding output ports of equivalent nodes.

Definition If two nodes, say N and M, are equivalent then merging N into M means that (1) N and
all the edges and literals attached to it are removed from the graph, and (2) all the consumers of the values
produced by N now get these identical values from the corresponding output ports of M.

In Figure 2.0 of the example, N2 is equivalent to N1, N3 with N4, and N8 with N5. This graph is
shown again in Figure 3.0 with these nodes merged. Algorithm 1 illustrates the simplicity of the

optimization.

5.1 Observations about our CSE Algorithm

Walking the nodes of the graph in data dependent order simplifies input equivalence testing. By the time
node N is checked for equivalence with node M all equivalent nodes preceding N have been merged.
Therefore, part (C) of the definition of input equivalence can be replaced by:

(C) Edges attached to the same output port of the same node.

We also observe that the algorithm preserves the ordering by data dependence. We need this property
since CSE is often combined with other optimizations that require such an ordering.

Input: A graph G 8
Output: The graph with all equivalent nodes merged
Precondition: The nodes of G are ordered by data dependence

begin
for each operation code defined within IF1 do
Create an empty set of nodes
end for
{ Walk the nodes of the graph in the specified order }
for each node N do { Depth first search }
if N is a compound node then
for each subgraph SG of N do
call CSE with SG
end for
end if
{ Find common subexpressions }
Let S be the node set with the same operation code as N
Search S for a node M equivalent to N
if such an M is found then

Merge N into M
else
AddNto S
end if
end for
end

Algorithm 1 : Common Subexpression Removal (CSE)

Checking for equivalent compound nodes is potentially expensive; in practice it is not. Two
non-equivalent compound nodes usually differ in so many ways that we don't actually compare many
nodes before the algorithm terminates.

Certain nodes, such as plus and times, represent commutative operations. Our algorithm will not

consider 2*A and A*2 to be equivalent since computer arithmetic is not always commutative. The user
can, however, request that we merge such nodes.

CSE does not reassociate operations in an attempt to merge them. The expression (2*A)*B, for example,
would not be merged with 2*(A*B) under any circumstances.

5.2 Comparison with other algorithms

A standard common subexpression elimination algorithm for imperative languages appears in [Aho77,
chapter 12]. In IF1 the basic unit of analysis is a graph; the basic unit of analysis for an imperative
language compiler is a basic block (a sequence of statements that contains no branches). The optimizer
takes intermediate code produced by the compiler, determines the basic blocks, and constructs a

control-flow graph from the blocks. Common subexpression analysis within a basic block is fairly
inexpensive, but must be conservative. In the following example,

B:=A[I]
A[J]:=D
C:==A[I]

9
A[1]is a common subexpression only if it can be determined that I # J. If that cannot be determined then
the optimizer must assume that I = J and not combine the expressions.

The SISAL compiler directly produces IF1 graphs so no time is spent partitioning the intermediate code.
An IF1 graph also represents a more general (and larger) body of computation than a basic block so more
common subexpressions might be found. For example, code both before and after a select node can be
inspected for common subexpressions without looking at the subgraphs. Finally, any two SISAL
expressions that look identical within a scope actually produce the same value.

In order to find and merge common subexpressions from different basic blocks of an impcrati\;c code,
global data flow analysis must be done (a rather expensive process). Despite this analysis, the optimizer
will not have complete information and many common subexpressions will not be merged. Aliasing,
call-by-reference parameters and common blocks will force the optimizer to be conservative. In contrast,
merging common subexpressions across IF1 graph boundaries is not difficult.

Another optimization, to be discussed shortly, will float loop-invariant operations up out of the subgraphs
of loop nodes. It is then possible to merge these new nodes with the nodes already existing within the
graph. Similarly, all the nodes within the predicate subgraph of a select node can be moved up into the
surrounding graph, again increasing the chances for finding common subexpressions. Finally, equivalent
expressions appearing in all the arms of a select node can easily be moved up to the surrounding graph
and merged.

6. Loop invariant removal

The detection and removal of loop-invariant expressions is another common compiler optimization. An
expression or part of an expression is loop-invariant if it produces the same value on each pass of the
loop. Loop-invariant operations may be written by the programmer for clarity, or introduced by another
optimizer (e.g. inline expansion), or the code generator (e.g. an array address calculation). We now

define what it means for an IF1 node to be invariant within a subgraph of one of the loop nodes (LoopA,
LoopB, Forall).

Definition Suppase X is a node within a subgraph G of a loop node L. We say that X is
loop-invariant in L if each input is

(A) aliteralarc OR
(B) aport of G reserved for the input values of L OR
(C) anedge connected to a producer node that is loop invariant.

Suppose X is loop-invariant and not dependent on any other nodes within G (i.e. all of its inputs satisfy

conditions (A) or (B) above). In this case, we promote X out of G and into the graph containing L by the
following steps:

() Remove X, along with its input ed]g%s and literals, from G.

(II) Place X in the graph containing L, at a point directly before L in the data dependent ordering.
Reconnect each input edge of X to the source of the corresponding input edge of L and
connect X's output ports to newly created input ports on L.

(IIT) Connect consumer nodes of X in G to the newly created input ports on G. Recall that the
input ports on L are implicitly connected to the input ports on G.

(IV) Remove any of L's inputs that were used exclusively by X.

If the nodes of the graph are walked in a data dependent order then condition (C) in the above definition is
superfluous when checking for loop-invariance. If Y is loop invariant and satisfies condition (C) then it
must be dependent on another loop-invariant node X. By the time Y is reached in the graph walk, X has
already been promoted and so all of Y's inputs will satisfy conditions (A) or (B). Notice also that
loop-invariant removal preserves the ordering by data dependence.

Figure 3.0 of the example has three loop-invariant nodes: N1, N4, and N5. Figure 4.1 shows the
function graph with these nodes promoted from the Loopb body graph and Figure 4.2 shows the
improved body graph. LoopB now has four input values so the first four input ports on each of its
subgraphs are reserved for these values.

In the process of promoting invariants out of the loop, input ports on L were created and possibly
destroyed. This may or may not be desirable, depending on the target machine. On a tagged token
dataflow machine, for example, increasing the number of inputs to the loop may actually be more
expensive than recomputing the invariant expression each time. As values enter a new scope (the
subgraphs) they must be retagged. If the cost of recomputing the loop invariant is "small" then the added
loop overhead may exceed the node execution savings.

6.1 Interaction with CSE

Common subexpression elimination and loop-invariant removal can work in lock-step as demonstrated in
Algorithm 2. Observe that CSE is called after the invariants have been promoted from all the loop nodes
in the graph. Doing so allows the newly promoted nodes to be merged with any existing equivalent
nodes. We use depth-first search on loop nodes so that an invariant operation at a deeply nested level can
"percolate” up to the point where it is either no longer within a loop or is loop-dependent.

6.2 Comparison with other algorithms

Loop-invariant detection and removal for imperative language compilers can be time consuming. Loop
detection not only requires the construction of a control-flow graph for the program, but also the
computation of all dominators for each basic block within the graph. Finally, loops are detected by

11

Input: AgraphG. . _
Output: The graph G with loop invariant nodes
moted
i out of the loop and all equivalent nodes merged.
Precondition: The node of the graph are ordered by data
dependence.

begin { Walk the nodes of the graph in the order defined }
for cach node N do
if N is a compound node then
for each subgraph SG of N do {Depth first search }
call LOOP-CSE with SG
end for
end if
if N is a loop node then
promote loop invariants out of N
{ See the discussion in Section 6 }
end if
end for
call CSE (non-recursively) with G { this graph only }
end

Algorithm 2 : Combined Loop Invariant and CSE Removal

finding "back edges” in the flow graj)h [Aho77, chapter 13]. In IF1, loop detection is done by simply
searching each graph for loop nodes.

Once a loop is detected the code inside its body is searched for loop invariant expressions. The inputs to
each expression are checked to see if their definitions are outside the loop. In an imperative language
compiler use- definition (u-d) chains must be computed for each variable not previously defined within a

block. Moreover, global data flow analysis must be done on the entire program in order to compute u-d
chains.

In IF1 the analysis is much simpler; we inspect the input edges on each node in a loop body. If all input
edges of the node correspond to input edges of the loop, we have found a loop-invariant operation. This
process is very cheap. For example, complete CSE and loop-invariant removal takes only 2.03 CPU
seconds on a VAX-11/780 for a 1300 line SISAL program (the Simple benchmark).

7. Loop and test inversion

Another form of loop invariant removal occurs in IF1 when the predicate of a Select node is loop
invariant. The loop-invariant removal described in the previous section will not catch such cases, since
we must do more than pull an operation out of a loop The predicate for the test may be moved outside of
the loop, and each alternative of the Select node executes in its own loop. However, the predicate of the
Select node is only executed once. An example should help illustrate the point:

12
for point in Grid at J.K,L.
NewPoint :=
if J=1 then
2*Grid[2,K,L]-Grid[3,K,L]
else
Point
end if
returns array of NewPoint
end for

Straightforward code generation will emit a Select node buried within three nested Forall nodes (one for
each dimension of Grid). It should seem clear that it would be better to have the test only performed at
the outermost loop level. The loop-test inversion will do exactly that transformation (at the IF1, rather
than SISAL level).

When a loop-invariant predicate is detected the optimizer pulls the Select node out of the loop, and gives
each arm of the Select node a modified copy of the loop. It forms the body of each loop by replacing the
Select node with the graph of each altenative of the Select node. A smaller example should help show
the steps.

for Point in Line at J
NewPoint :=
if I=1 then ’
(3*Point[2,J] - Point[3,J])/2.
else
Point
end if

returns array of NewPoint
end for

is transformed first into

if I=1 then
for Point in Line at J
NewPoint ;= (3*Point[2,J] - Point{ 3,7 1) /2.0
returns array of NewPoint
end for
else
for Point in Line at J
NewPoint := Point
returns array of NewPoint
end for
end if

Quite often one of the loops produced by the transformation merely copies an array. That loop is

collapsed into an edge. The last loop in the example has that form, so it is transformed into the single
value "Line".
if I=1 then
for Point in Line at J
NewPoint := (3*Point[2, J] - Point[3,J]) /2.0
returns array of NewPoint
end for
else
Line
end if

The reason for including such an optimization is that the clearest way to express boundary conditions in
SISAL is to use a forall expression that contains a test for the boundary. The Air3D code from NASA
Ames Research Center uses seven such for expressions to do the boundary conditions on each time step.

The result of running the loop-test inversion on the example at the beginning of the section is:

for Plane in Grid at J
NewPlane :=
if J=1 then
for Point in Plane at K, L
NewPoint := 2*Grid[2, K,L] - Grid[3,K, L]
returns array of NewPoint
end for
else
Plane
end if
returns array of NewPlane
end for

8. Experimental Results

The results are shown in the following tables. Table 3 describes the SISAL functions studied. Tables
4-6 give both static and runtime statistics for the smaller programs. Each program is translated into IF1
graphs, and internal functions are expanded inline. Inline expansion causes function bodies to appear at
the appropriate nesting level, since no functions are recursive. We counted the nodes at each loop nesting
level before and after various optimizers, and compared those ratios to the improv_cment in execution time
by an IF1 interpreter on sample data. In Life and Gauss we see good correlation in program runtime and
the node counts at the innermost level. However, when the innermost loop does not dominate the runtime
(as occurs in Alpine) the static analysis predicts a much higher improvement than occurred in execution.
The functions in Tables 7-9 are from the Air3D benchmark that could not be run on our current

interpreter. However, we can see that the code improvers are still removing 20 to 30% of the most deeply
nested nodes.

Tables 4, 7 and 9 are particularly interesting since they show the effects of the loop-test inversion. In
each case nodes were moved from inner to outer nesting levels, although the overall number of nodes
increased. The inversion algorithm creates loops for all alternatives of a Select node as it proceeds, so the
code size usually grows. However, the inverted code executes fewer nodes within the loop, so the
runtime decreases (cf. Table 4).

13

14
9. Summary

We have attempted to show that classical code improvement is very easy to implement for an applicative
language. We find that these techniques not only cost very little at compile-time, but also show good

performance improvement at runtime. The use of IF1 graphs allows our algorithms to be small, easy to
understand, and very fast.

We have only run small examples on our interpreter, but timings from these runs suggest that our static
benefit analysis can be used to predict the benefits we will see during the execution of a program. If we
can extrapolate to the large codes that we have only analyzed, but not yet run, we can expect 20%
improvements on large grid problems at very little cost.

10. Acknowledgements

We wish to thank the groups at Colorado State University and DEC for providing SISAL to IF1
translators. John Glauert is co-author of the IF1 reference manual and strongly influenced its hierarchical
structure. We also thank Rea Simpson of LLNL for the SISAL version of the Alpine code, and Cathy
Schulbach at NASA Ames Research Center for the copies of the Air3d benchmark.

11. References

[Ack79] Ackerman, W.B. and J.B. Dennis, "VAL--A value-oriented algorithmic language: Preliminary
Reference Manual”, Tech. Report TR-218, Computation Structures Group, Laboratory for
Computer Science, MIT, Cambridge, MA, June 1979.

[Aho77] Aho, A.V. and J.D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.

[Arv78] Arvind, K.P. Gostelow, and W. Plouffe, “An Asynchronous Programming Language and
Computing Machine”, Tech. Report TR114a, Department of Information and Computer
Science, University of California, Irvine, December 1978.

[Bar79] Barrett, W.A. and J.D. Couch, Compiler Construction: Theory and Practice, Science Research
Associates, 1979,

[McG82] McGraw, J.R., S.K. Skedzielewski, "Streams and Iteration in VAL: Additions to a Data
Flow Language", Proc. of the Third International Conference on Distributed Computing

Systems, pp. 730-739, Miami/Ft. Lauderdale, Florida, March 1982, IEEE order number
CH-18028.

[McG83] McGraw, J.R., S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, W.
Noyce, and R. Thomas, "SISAL: Streams and Iteration in a Single-Assignment Language",

Language Reference Manual, Version 1.2, M-146, Lawrence Livermore National Laboratory,
Livermore, CA, March 1985.

[Ske85] Skedzielewski, S.K., and J.R.W. Glauert, "IF1, an Intermediate Form for Applicative

Languages”, Reference Manual, M-170, Lawrence Livermore National Laboratory, Livermore,
CA, July 1985.

15

Life The game of life — a nice, small 2-D problem
Gauss Gaussian elimination
Alpine 2-D particle transport function solving Boltzmann's equation. It is interesting
because it is also being written in FORTRAN, but it is not a translation of an
existing FORTRAN program. It produces a three-dimensional array
Boundary Subroutines from Air3D, a large three-dimensional grid problem that models
RHSVis fluid flow around a fuselage. The examples from Air3D are interesting
Vismat because they are part of a large grid problem, for which our optimizations
should be very effective.
Table 3. SISAL programs studied
Node count by static nesting level Nodes Improvement
0 1 2 3 executed Static Dynarnic
Raw 7 8 21 98 21913 (1.00) (1.00)
CSE 6 8 21 71 16620 (0.71) (0.76)
CSE+Loop 6 8 21 7 16620 0.71) (0.76)
Loop-Test 6 17 16 71 15901 (0.71) (0.73)
Table 4. Static and Dynamic results for "Life"
Node count by static nesting level Nodes Improvement
0 1 ’) 3 Executed Static Dynamic
Raw 130 117 102 30 7162 (1.00) (1.00)
CSE 8 105 96 27 6552 (0.87) (0.91)
CSE+loop 91 114 75 18 4993 (0.60) (0.70)
Loop-Test 91 114 75 18 4993 (0.60) (0.70)
Table 5. Static and Dynamic results for "Gauss”
Node count by static nesting level Nodes Improvement
0 1 3 5 6 executed Static Dynamic
Raw 29 4 4 4 4 4 430 52533 (1.00) (1.00)
CSE 27 4 4 4 4 4 255 41491 (0.59) (0.79)
CSE+Loop 27 4 4 4 4 4 255 41491 (0.59) (0.79)
Loop-Test 27 4 4 4 4 4 255 41491 (0.59) (0.79)

Table 6. Static and Dynamic results for " Alpine"

16

Node count by static nesting level

0 1 2 3
Raw 73 75 488 409 (1.00)
CSE 71 59 351 371 (0.91)
CSE+Loop 83 9% 320 344 (0.84)
Loop-Test 9% 106 417

335 (0.82)

Table 7. Static results for "Boundary”

Node count by static nesting level

2

3

4

Raw

CSE
CSE+Loop
Loop-Test

227
106
112
112

409
244
208
208

9 (1.00)
9 (1.00)
6 (0.67)
6 (0.67)

Table 8. Suatic results for "RHSVis"

Node count by static nesting level

0

1

2

3

Raw

CSE
CSE+Loop
Loop-Test

19
16
34
70

652
418
395
855

8
6
6
17

58 (1.00)
49 (0.84)
49 (0.84)
41 (0.71)

Table 9. Static results for "Vismat"

17

A B H
| T iﬂl
LOOPB
N1
TIHRESS lmovi RET |
AIERICREES
12 |3 val s | X Y
Fig. 1.2 INIT Graph of
J LoopB Node

A B H X Y
Fig. 1.1 Function Graph of Example

—

=
N1
OLD OLD
A B H X Y
Tt
[R Fig. 1.3 TEST Graph of
o 511
CALL CALL LoopB Node
Nt N2
W_l | A B H X V
N3
)E
N4
L _ Finalyalue
1 N1
+ +
NS N6
——e
X '

Fig. 1.5 Returns Graph of

Fig. 1.4 BODY Graph of Example LoopB Node

(Node 3 is e minus)

18

oD OLD oD OLD
A 8] X v A] H X Y
20 50 20 20 50]
e 4
» ™ . ™ » » »
N1) Ina] NS N2| [N3 NI1| [Ng NG
I 50 S0
+ - + + + * +
NS N7 ND NS NS N? N9
Nti F N1O C = NTO
T J NI
il r
N12 — Ni2
1
ABS ABS
NI13 NI3
1 1
+
N1a le‘ 14| |N1S
- E——— S
X Y X Y
Fig. 2 BODY Graph after Inline Expansion Fig 3 BODY Graph after CSE
(Nodes 10, 11, and 12 ere minuses) (Nodes 10, 11, and 12 sre minuses)
A B H
—f n,w OLD OLD
A B H [Dorl
T ﬁ
20 30—
N* » &
1 N2 N6 5o
-+
7 | - NS
+
N’ N7
1
N N1O
LOOPB N L T
11
N A4 -
N12
BE
INIT TEST BODY RET. | ABS
See N3
Fig. -
42]
+ +
] 14} |NIS
] -t e — I
X \'

Fig. 4.1 Function Graph After Loop- ;
invariant Removal Fig- 4.2 ?:&Yrii:p: lAmf::';lLoop-

