
The Optimizing SISAL Compiler: Version 12.0

David C. Cann

Computing Research Group, L-306

Lawrence Livermore National Laboratory.

P.O. Box 808, Livermore, CA 94550

cann@sisal.llnl.gov

Abstract

This manual explains how to use version 12.0 of the Optimizing sisal Compiler (osc);

exempli�es the execution of sisal programs; and introduces and illustrates osc's symbolic

debugger (sdbx). Although not intended as a language tutorial, this manual will help the

novice sisal programmer get a feel for the language and learn how to use it e�ectively.

1 Introduction and Overview

This manual describes version 12.0 of the Optimizing sisal Compiler (osc); explains how to use

it; exempli�es the execution of sisal programs; and introduces and illustrates osc's symbolic

debugger (sdbx). This manual is a tutorial expansion of osc's man-pages, and is loaded with

examples and illustrations. We assume that the reader is familiar with sisal [?], and has a basic

understanding of parallel processing and the UNIX operating system

1

.

We begin by introducing the sisal project, presenting the motivation behind functional com-

puting, and de�ning some terminology. Then we show the compilation and execution of a simple

sisal program, and provide an overview of osc. Next, we describe the various compilation phases

in more detail and discuss the most commonly used compile time and run time options, illustrating

their functionality and importance. To complete the manual, we introduce osc's mixed language

interface, which allows sisal programs to call c and fortran, and fortran and c programs

to call sisal; give hints and recommendations for improving program performance; identify the

language features that are not supported; demonstrate osc's symbolic debugger (sdbx); and pro-

vide instruction on where to obtain osc and how to install it. The appendix provides a complete

listing of the associated man-pages. Most of the examples in this manual are transcriptions of

interactions with osc and sisal executables.

2 The SISAL Project

The sisal project is a collaborative e�ort between Lawrence Livermore National Laboratory and

Colorado State University. sisal is a functional language for numeric computation [?]. Functional

languages promote the construction of correct parallel programs by isolating the programmer

1

UNIX is a trademark of AT&T Bell Laboratories.

1

from the overwhelming complexities of parallel computing. sisal in particular does not specify

an execution model, nor does it assume the existence of special hardware. For example, it was

the language of choice for the Manchester data
ow machine [?] and e�ectively exploits the Cray

X-MP, Y-MP, and Cray 2 [?].

The primary goal of the sisal project is to implement the language on both conventional

and distributed memory multiprocessors [?]. Additional goals include the de�nition of a general-

purpose functional language [?] and its intermediate forms [?, ?]; the development of optimization

techniques for high performance parallel functional computing [?, ?]; the development of a mi-

crotasking environment that supports data
ow on conventional computer systems [?, ?, ?]; the

realization of execution performance comparable to Fortran [?, ?]; the validation of the functional

style of programming for large-scale scienti�c applications [?]; and the creation of a self-sustaining

user community to transfer the technology to industry [?, ?].

3 Motivation for Functional Languages

Despite the commercial availability of multiprocessors, the number of parallel scienti�c and com-

mercial applications in production use today remains virtually zero. For example, at the National

Laboratories, most multiprocessor systems are still used as multiple single-processor machines,

greatly reducing their computational power. Further, there is no demand for change, which ul-

timately stems from the lack of adequate parallel software in the market place. Put simply, the

creation of correct, determinate parallel programs remains arduous, error prone, and costly. Here,

three possible solutions have emerged:

1. Develop compilers that automatically parallelize imperative languages.

2. Extend imperative languages with constructs and primitives to express parallelism.

3. Develop new languages for parallel computing.

Even after extensive research and development, automatic parallelizing compilers for impera-

tive languages have not met expectations. The fault is not entirely with the compilers. Developed

for sequential machines, imperative languages are based on a model of computation that assumes

a single processor and a single instruction stream. The model is not a natural candidate for

parallel computing, and is not well suited for analysis. While small imperative programs may

optimize well, larger, more complex codes quickly thwart e�ective optimization. Understanding

the behavior of a large code requires global analysis, which is potentially of exponential com-

plexity. If the compiler cannot determine if a potential dependency will prevent parallelization,

it must assume the worst and preserve the dependency, consequently increasing synchronization

and communication costs, and decreasing parallelization. Because of the many imperative codes

in use today, these compilers will remain an alternative for some time to come, but will never

represent an e�ective long term solution.

Extending imperative languages with constructs that allow the explicit expression of paral-

lelism has proven di�cult and error prone. The extensions often limit programmer productivity

and hinder analysis. They fail to separate problem speci�cation and implementation, hinder

modular design, and inherently hide data dependencies. The expression of most parallel compu-

tations in these languages is verbose and unnatural. In addition to expressing the algorithm, the

2

programmer must encode the program's synchronization and communication operations, ensure

data integrity, and safeguard against race conditions. The extra programming complexity and

the time-dependent errors exposed by this alternative can frustrate even the best of programmers

[?]. Further, the lack of standardization has decreased portability across machines.

The third alternative, and the one we endorse, is the development of new parallel programming

languages [?, ?, ?, ?]. Functional languages such as sisal expose implicit parallelism through

data independence, and guarantee determinate results via their side-e�ect free semantics. A

functional program comprises a set of mathematical expressions or mappings (the value of any

expression only depends on the values of its inputs, and not on the order of their de�nition). The

sisal programmer simply expresses the operations constituting the algorithm. The scheduling of

operations, communication of data values, and synchronization of concurrent operations are the

responsibility of the compiler and run time system. The programmer does not and cannot manage

these operations. sisal programs that run correctly on a single processor are guaranteed to run

correctly on any number of processors, regardless of architecture. Relieved of the most onerous

chores of explicit parallel programming, the programmer is free to concentrate on algorithm design

and application development.

4 Terminology

1. Product-form Loop: Sisal's parallel loop form (for).

2. Parallelization: Both the concurrentization and vectorization of product-form loops. For

a concurrentized loop, blocks of consecutive iterations will execute on possibly di�erent

processors. All the iterations of a vectorized loop will execute on the same processor, but

in a pipelined or SIMD fashion. A loop may be both concurrentized and vectorized.

3. Workers: The processors contributing to parallel execution.

4. Loop Slices: The number of iteration blocks created to realize the execution of a concur-

rentized loop. We refer to each block as a loop slice.

5. Parallel Nesting Level: The depth of a concurrentized loop in a nest of concurrentized loops.

By convention, a parallel nesting depth of one refers to the outermost level of a nest.

6. Dynamic Storage Subsystem: The sisal run time memory management facility.

5 Getting Started

In this section, we show the compilation and execution of a simple sisal program. We assume

the program, shown below, resides in �le example.sis:

define main

function main(n:integer returns integer)

1 + for i in 1,n returns value of sum 1 end for

end function

3

To compile the program, one simply types \osc example.sis", as transcribed below:

unix-> osc example.sis

LL Parse, using binary files

* Reading file: example.sis...

version 1.8 (Mar 28, 1989)

accepted

5 lines in program

0 errors (calls to corrector)

0 tokens inserted; 0 tokens deleted.

0 semantic errors

unix->

The resulting executable is s.out, which by default takes its input from the standard input and

writes its output to standard output, both in fibre format (see Section 14). If desired, however,

both input-output can be redirected to �les. For example,

s.out - outfile

writes the result to outfile (the dash represents standard input),

s.out infile

reads input from infile, and

s.out infile outfile

reads input from infile and writes results to outfile. Transcription of an execution follows:

unix-> s.out

CRAY SISAL 1.2 VERSION 12.0

4000000 # ENTERED BY THE USER (FIBRE FORMAT)

4000001 # PROGRAM OUTPUT (FIBRE FORMAT)

unix->

Note, s.out prints the version banner to standard error.

5.1 Renaming Executables

One can rename an executable by using -o. For example,

osc -o example.out example.sis

names the executable �le example.out.

4

5.2 Program Entry Points

As demonstrated above, the default program entry point is function main. One can rede�ne it

using -e. For example,

osc -e foo new_example.sis

uses function foo. A convenient alternative is to declare the entry point in the program text

using an entry pragma having syntax

%$entry=name_list

where name_list represents a comma-separated list of entry point names. For example, moo is

the entry point in

%$entry=moo

define moo

function moo(n:integer returns double_real)

for i in 1,n returns value of sum 1.0D0 end for

end function

Note, two or more names can appear in an entry point name list if the corresponding functions

are called by another language (see Section 16) or another sisal module (see Section 13). A

program can have only one operating system entry point.

6 Compiler Overview

In this section we present a overview of osc and provide a brief introduction to its phases and

subphases (see Figure 1). Later sections provide a more detailed look at the compiler and its

optimizers.

The �rst phase of compilation translates sisal source (taken to reside in �les having su�x .sis)

into an intermediate form know as if1 [?]. By default, the source is run through the c preprocessor

for �le inclusion and macro expansion (see Section 7) Next, IF1LD links the generated if1 �les

and forms a monolithic program or module that is then given to IF1OPT, IF2MEM and IF2UP

for global optimization. IF1OPT is a machine-independent optimizer (see Section 8); IF2MEM is

a build-in-place analyzer (see Section 9.1); and IF2UP is an update-in-place analyzer (see Section

9.2). The monolith, now optimized and translated into a second intermediate from, if2 [?], is

next given to IF2PART for parallelization (see Sections 10 and 11) and then to CGEN for c and

fortran code generation. The default is to generate c code only. The -hybrid option enables

generation of both languages. On some machines, this can result in better code quality (especially

on the Crays). osc will invoke the local fortran compiler to process the generated fortran;

however, it is the user's responsibility to provide the appropriate and desired compilation options,

including optimization switches, etc. This can be done using the -� option. For example,

osc -hybrid -ff=-O example.sis

5

executable

CC/F77

CGENIF2PART

IF2MEM

IF2UP

IF1OPT

DEAD CODE REMOVAL

CONSTANT FOLDING

GCSE/DISTRIBUTION

FUSION/UNROLLING

CSE/UNSWITCHING

FISSION

INVARIANT REMOVAL

INLINE EXPANSION

libraries

IF1LD

SISAL SISAL SISAL

. . .

SISAL SISAL SISAL

librariesinclude �les

- �

?

?

-

?

?

?

?

?

?

?

?

?

?

6

Figure 1: Internal Structure of OSC.

requests that osc include \-O" on the fortran compiler's command line. Further, one can use

the -FF option to request use of a speci�c fortran compiler:

osc -hybrid -FF=/usr/local/new_cf77 -ff=-Zv example.sis

osc builds all its intermediate �les in the current working directory. The intermediate �les

created for the compilation of file1.sis are

file1.i % result of the C preprocessor

file1.if1 % result of SISAL

file1.lst % cross reference tables and a listing given -listing

file1.mono % result of IF1LD

file1.opt % result of IF1OPT

file1.mem % result of IF2MEM

file1.up % result of IF2UP

file1.part % result of IF2PART

file1.c % result of CGEN

file1F.f % result of CGEN given -hybrid

Unless told otherwise, osc will remove all but the if1 and fortran �les. Further, upon request,

osc will provide cross reference tables and a listing: -listing.

If desired, one can stop the compilation after �le inclusion and macro expansion using -CPP;

after front-end analysis and before IF1LD using -IF1; after IF1LD using -MONO; after CGEN

using -C, and after assembly using -noload. One can restart compilation by providing the

corresponding intermediate �le(s) on the osc command line. For example,

osc -CPP simple.sis

6

osc -IF1 simple.i

osc -MONO simple.if1

osc -C simple.mono

osc -noload simple.c

osc simple.o

and

osc simple.sis

are equivalent.

Note that the quality of the local c and fortran compilers will determine the overall per-

formance of a sisal program. We chose c and fortran as an intermediate form to shorten

development time, increase system portability, and allow manual experimentation with future

optimizations. We expect that better optimizing compilers for C will eliminate performance

penalties incurred on some systems.

osc does support separate compilation at the module level (see Section 13 for more details).

7 The C Preprocessor

By default, osc will pass sisal source �les to the c preprocessor for �le inclusion and macro

expansion. One can disable this using -nocpp. osc recognizes all the standard preprocessor

options:

-Dname[=val] % define macro name to have value val

-Uname % undefine macro name

-Ipath % establish path as one of the first directories searched

% by the preprocessor during file inclusion

For example,

osc -DData_Size=200 -UDefault_Size -I/u0/cann/includes test.sis

de�nes macro Data_Size to have value 200, unde�nes macro Default_Size, and establishes

/u0/cann/includes as a search directory. The following sisal program uses the c preprocessor

commands to con�gure its compilation:

define main

#include "my_stdio.h"

#ifdef USE_DOUBLE

#define VALUE_TYPE double_real

#define VALUE 1.0D0

7

#else

#define VALUE_TYPE integer

#define VALUE 1

#endif

function main(n:integer returns VALUE_TYPE)

for i in 1,n returns value of sum VALUE end for

end function

Warning: do not place commentary within macro de�nitions.

8 Scalar Optimizations: IF1OPT

By default, osc runs with IF1OPT enabled. Applied optimizations include:

1. Function inlining.

2. Record and array �ssion.

3. Loop invariant removal.

4. Common subexpression elimination.

5. Inverse common subexpression elimination.

6. Dependent and independent loop and conditional fusion.

7. Loop unswitching.

8. Loop unrolling.

9. Loop distribution.

10. Constant folding and operator strength reduction.

11. Array stripping and dependence exposure.

12. Work reduction.

13. Dead code removal.

One can use the -noscalar option to disable everything but function inlining (see Section 8.13)

and dead code removal (see Section 17.4).

In the remainder of this section, we illustrate the above optimizations and discuss function

inlining and its control in more detail.

8

8.1 Record and Array Fission

Record and array �ssion are attempts to eliminate as many unnecessary record and array con-

structions as possible. For example,

let

LoopRec := record LoopInfo [Lmin:1;Lmax:N;Kmin:1;Kmax:M;Shift:9];

in

for I in LoopRec.Lmin,LoopRec.Lmax

returns array of f(I+1+LoopRec.Shift);

end for

end let

will become

for I in 1,N returns array of f(I+1+9) end for

eliminating the construction of LoopRec. The result is a more e�cient program with more op-

portunities for further optimization. For example, the compiler can now fold 1+9 and form

for I in 1,N returns array of f(I+10) end for

8.2 Loop Invariant Removal

Loop invariant removal eliminates redundant computations across iterations, thus reducing loop

execution time. For example,

V := for I in 2,n

X := A[I]-A[1]*2.0;

returns array of X

end for;

will become

V := let

T := A[1]*2.0;

in

for I in 1,N

X := A[I]-T;

returns array of X

end for

end let

When benchmarking, it is often useful to disable invariant removal from outermost loops. For an

example, consider

9

define Main

type double = double_real;

type OneD = array[double];

function Kernel1(n:integer; Q,R,T:double; Y,Z:OneD returns OneD)

for K in 1,n

X := Q + (Y[K] * (R * Z[K+10] + T * Z[K+11]))

returns array of X

end for

end function

function Main(rep,n:integer; Q,R,T:double; Y,Z:OneD returns OneD)

for i in 1, rep

X := Kernel1(n, Q, R, T, Y, Z);

returns value of X

end for

end function

which benchmarks Kernel One of the Livermore Loops [1]. Note that the call to Kernel1 is

invariant. Hoisting this call, however, would preclude rep instantiations of the kernel. Thus for

benchmarking, osc supports an option called -noOinvar for disabling the removal of invariants

from outermost loops.

8.3 Common Subexpression Elimination

Common subexpression elimination fuses identical computations within and between expressions,

thus reducing the number of executed operations. For example,

V := R[I]*R[I];

will become

T := R[I];

V := T*T;

and

V := R[I]/2.0;

U := if (B) then R[I]/2.0 else R[I] end if

will become

T := R[I];

V := T/2.0;

U := if (B) then V else T end if

10

8.4 Inverse Common Subexpression Elimination

Inverse common subexpression elimination pushes identical operation sequences between branches

(possibly having di�erent operands) out of conditionals. For example,

V := if (B[I] <= 0.0) then

B[I]+C[I-1]/4.0

else

14.0+C[I-1]/C[I+1]

end if;

will become

T1,T2 := if (B[I] <= 0.0) then

B[I],4.0

else

14.0,C[I+1]

end if;

V := T1+C[I-1]/T3;

This optimization is experimental; hence, it is disabled by default. One can enable it using -icse.

In general, we have observed that this optimization degrades run time performance.

8.5 Dependent and Independent Fusion

Fusion merges two or more compound computations into a single compound computation, thus

reducing control overhead and exposing opportunities for further optimization. Independent

fusion merges computations that have no data dependencies, and dependent fusion combines

those with dependencies between them. Currently, IF1OPT considers only product-form loops

having isomorphic generators and conditionals having isomorphic predicates. For example,

V1 := for X in A

Y := exp(X,2.0);

returns array of Y

end for;

V2 := for X in A

U := exp(X,3.0);

returns array of U

end for;

will become

V1, V2 := for X in A

Y := exp(X,2.0);

11

U := exp(X,3.0);

returns array of Y

array of U

end for;

and

V1 := for X in A

Y := X/2.0;

returns array of Y

end for;

V2 := for Z in V1

U := Z+TEMP;

returns array of U

end for;

will become

V2 := for X in A

Z := X/2.0;

U := Z+TEMP;

returns array of U

end for;

Warning: in some situations independent loop fusion can reduce code quality; that is, overwhelm

the local compilers. In general, this has only been observed on vector machines. In this regard,

one can use -nodfuse and -noifuse to disable dependent and independent loop and conditional

fusion respectively.

8.6 Loop Unswitching

Loop unswitching is an attempt to eliminate as many conditionals as possible from innermost

loops, thus reducing the complexity of time critical computations. For example,

V := for I in 1,N

Y := if (I = 1) then 0.0 else A[I] end if;

returns array of Y

end for

will become

T := for I in 2,n

Y := A[I];

returns array of Y

end for;

12

% THIS ASSUMES build-in-place analysis WILL BUILD T DIRECTLY INTO V

V := array_addl(T,0.0);

and

V := for I in 1,N

Y := if (B) then 0.0 else A[I]*6.0 end if;

returns array of Y

end for

will become

V := if (B) then

for I in 1,N returns array of 0.0 end for

else

for I in 1,N returns array of A[I]*6.0 end for

end if;

8.7 Loop Distribution

See Section 11 for a complete discussion of loop distribution and options -explode and -expodeI.

It su�ces to say here that the intent of loop distribution is to expose additional opportunities for

vectorization and concurrentization. Sometimes, this optimization can improve the e�ectiveness

of loop fusion.

8.8 Loop Unrolling

IF1OPT will unroll product-form loops in their entirety if they can be predetermined to iterate N

or fewer times (the default being 2 or less) or be within cost thresholds. This optimization helps

reduce control overhead. One can override the default using -u. For example,

osc -u4 example.sis

will enable the unrolling of loops with four or fewer iterations, so

V := for I in 1,4

X := foo(A[I])

returns array of X

end for;

will become

T1 := foo(A[1]);

T2 := foo(A[2]);

13

T3 := foo(A[3]);

T4 := foo(A[4]);

V := array [1:T1,T2,T3,T4];

IF1OPT will not partially unroll a loop. This is left to the local compilers. Options -nounroll

and -u0 are equivalent and disable unrolling altogether.

8.9 Constant Folding and Operator Strength Reduction

IF1OPT does an aggressive job of constant folding and strength reduction. For example,

V := exp(N,10.0);

will become

T1 := N*N;

T2 := T1*T1*N;

V := T2*T2

8.10 Array Stripping and Dependence Exposure

Array stripping is a form of copy elimination that identi�es and eliminates unnecessary aggregate

constructions. For example,

A := for I in 1,n

returns array of Z[I]*Z[I]

end for;

B := for I in 1,n returns array of A[I] end for;

will become

B := for I in 1,n

returns array of Z[I]*Z[I]

end for;

Array dependence exposure eliminates spurious dependencies; thus opening opportunities for

further optimization. For example,

A := B[I:B[I]+B[I+1]];

C := A[J:A[I+1]+2];

will become

A := B[I:B[I]+B[I+1]];

C := A[J:B[I+1]+2];

14

allowing the elimination of one dereference operation:

T := B[I+1];

A := B[I:B[I]+T];

C := A[J:T+2];

8.11 Work Reduction

IF1OPT will attempt to eliminate unnecessary work by pushing branch speci�c expressions into

referencing conditionals. For example,

A := B[I]*2.0;

V := if (C[I-1] <= Z[J]) then

A*4.0

else

C[I+4]/Z[J+1]

end if;

will become

V := if (C[I-1] <= Z[J]) then

B[I]*8.0

else

C[I+4]/Z[J+1]

end if;

8.12 Dead Code Elimination

IF1OPT will always do dead code elimination to avoid unnecessary computation. For example,

consider

function goo(X:real returns real)

let

V,U := X*X*X, X/2.0;

in

10.0/V

end let

end function

which will become

function goo(X:real returns real)

let

V := X*X*X;

in

15

10.0/V

end let

end function

Sometimes it is possible to get some control over this optimization by using -glue (see Section

17.4).

8.13 Function Inlining

By default, osc will attempt to inline as many non-recursive functions as possible. However, osc

will autamatically throttle the expansion so to prevent an explosion of code. One can use the

-inlineall option to disable this throttle.

Like dead code elimination, -noscalar will not turn o� function inlining. This must be done

explicitly using -noinline. By using the -iter option, however, a programmer can gain interactive

control over inlining. In this mode, IF1OPT will ask the user on a function by function basis if

the functions are candidates for inlining. One can also use the -call option to disable inlining for

speci�c function. For example,

osc -call sforme example.sis

will disable the inlining of sforme.

9 Copy Optimizations: IF1MEM and IF2UP

The most serious ine�ciency in functional computing can be excessive storage management and

data copying. osc does an aggressive job of eliminating as much copy and management overhead

as possible, in the form of build-in-place analysis (IF2MEM), update-in-place analysis (IF2UP),

and array prebuilding: see [?, ?].

9.1 Build-in-Place Analysis

Build-in-place analysis introduces run time code to preallocate array storage wherever possible

[?]. For example, the �nal size of array V in

X := for I in 2,N returns array of I end for;

V := array_addl(X,1);

can be determined before the de�nition of X. Hence an N element vector can be preallocated and

wired into the computation. Without this analysis, N-2 intermediate arrays will be de�ned and

discarded during the de�nition of X, and X will be copied into the storage allocated for V.

9.2 Update-in-Place Analysis

Update-in-place analysis reorders operations to allow as many write operations as possible to run

in-place. For example, the execution order in

16

B,C := A[I:200],A[I];

is critical for optimization purposes. If the update executes �rst, it must modify a copy of A to

preserve A for the selection. However, forcing the selection to execute �rst will allow the update

operation to run in-place if there are no other accesses to A.

9.3 Array Prebuilding

By default, osc will attempt to identify rectangular array constructions having invariant bounds

and prebuild their storage frameworks. This helps to eliminate allocation-reclamation cycles in

iterative computations. For example, without prebuilding

for initial

I := 1;

A := Ain;

while (I <= N) repeat

I := old I + 1;

A := for L in 1,K cross M in 1,K

returns array of old A[L,M]+1

end for;

returns value of A

end for

will build and reclaim N-1 instances of matrix A before returning its �nal value. This unoptimized

translation resembles

for (I = 1; I <= N; I++) {

A = Malloc(K integer pointers);

for (L = 1; L <= K; L++) {

R = Malloc(K integers);

for (M = 1; M <= K; M++)

R[M] = oldA[L][M]+1;

A[L] = R;

}

for (L = 1; L <= K; L++)

Free(oldA[L]);

Free(oldA);

oldA = A;

}

With prebuilding, osc, recognizing that A comprises K row vectors of size K and that K itself is

loop invariant, will allocate and assemble the matrix before the loop executes:

17

/* PREBUILD THE FRAMEWORK FOR MATRIX A */

A = Malloc(K integer pointers);

for (L = 1; L <= N; L++) {

R = Malloc(K integers);

A[L] = R;

}

/* NOW DO THE ITERATIVE COMPUTATION */

for (I = 1; I <= N; I++) {

for (L = 1; L <= N; L++)

for (M = 1; M <= N; M++)

A[L][M] = oldA[L][M]+1;

oldA = A;

}

By default, osc will only attempt to prebuild array aggregates having less than four dimensions.

One can change this value using the -pb option. For example,

osc -pb4 example.sis

will allow arrays of up to four dimensions to be subjected to prebuilding. Note that -pb0 disables

the optimization altogether.

9.4 Summary

By default, all three optimizations are enabled, however -nomem will disable build-in-place

analysis, -noup will disable update-in-place analysis, and -nopreb will disable array prebuilding

(equivalent to -pb0). One can determine the success of copy elimination by using the -copyinfo

option at compile time along with the -r option at run time (see Section 15.3). Note that speci�c

styles of coding can hinder all three optimizations (see Section 17.1 for more information).

10 Automatic Concurrentization: IF2PART

On concurrent machines, the default is to run with concurrentization enabled. In general, the

compiler does a good job of automatically identifying product-form loops that warrant concurrent

execution

2

. One potential problem with the partitioner, however, is that it may under-parallelize a

program; that is, it may underestimate loop iteration counts and computation costs. Fortunately,

this rarely happens for large applications and the partitioning algorithm is easily tuned at compile

time.

The �rst level of control is -maxconcur. This option causes IF2PART to parallelize product-

form loops without regard to parallel nesting level or cost estimates. Warning: this option

2

Function level parallelism is not currently supported.

18

should be used with caution, as it often results in over-concurrentization. The second

level of control is -noconcur, which disables concurrentization altogether|this is the default on

sequential machines. The third level of control tunes the partitioner via the command line. The

parameters under command line control are:

1. MAX_WORKERS, which represents the maximum number of workers that could ever participate

in concurrent execution. The default is the number of processors speci�ed during osc

installation (see Section 20).

2. MAX_PARALLEL_NESTING_LEVEL, which de�nes the maximum parallel nesting level allowed

for the program. The default is in�nity (all levels).

3. SLICE_THRESHOLD, which de�nes the minimum execution cost estimate that enables loop

concurrentized. The default is 7000 units.

4. NUMBER_OF_ITERATIONS, which de�nes the assumed iteration count for product-form loops

having unknown iteration ranges. The default is 100 iterations.

The above parameters can be reset using the following options:

1. MAX_WORKERS: -p (example, -p4).

2. MAX_PARALLEL_NESTING_LEVEL: -n (example, -n2).

3. SLICE_THRESHOLD: -h (example, -h8000).

4. NUMBER_OF_ITERATIONS: -i (example, -i1000).

We present the partitioning algorithm below (f represents the product-form loop under con-

sideration). In the current implementation, the value of AVG VECTOR SPEEDUP is �xed at

3.

TempCost := f.BodyCost * NumberInterations(f);

ActualLoopCost := if (VectorCandidate(f)) then

TempCost / AVG_VECTOR_SPEEDUP

else

TempCost

end if;

ConcurrentizeTheLoop,

WorkersThatAreNowBusy :=

if (ActualLoopCost >= SLICE_THRESHOLD &&

CurrentParNestingLevel <= MAX_PARALLEL_NESTING_LEVEL &&

old WorkersThatAreNowBusy < MAX_WORKERS) then

TRUE, if (NumIterations(f) < MAX_WORKERS) then

old WorkersThatAreNowBusy * NumIterations

else

19

old WorkersThatAreNowBusy * MAX_WORKERS

end if

else

FALSE, old WorkersThatAreNowBusy

end if;

The value returned from NumIterations is either the actual number of iterations for function f

or NUMBER_OF_ITERATIONS.

For implementation reasons, not all
avors of product-form loops are considered for concur-

rentization. osc will not concurrentize the following four loop forms because of their return

clauses:

A := for i in 1,n returns value of f(i) end for;

B := for i in 1,n returns array of i when g(i) end for;

C := for i in 1,n returns array of i unless g(i) end for;

D := for i in 1,n

V := for j in 1,f(i) returns array of j end for;

returns value of catenate V

end for;

The last is not considered because the size of V is not invariant. However, osc will consider a

loop having the following returns clauses for concurrentization:

for I in 1,N

X := A[I];

returns value of sum X

value of product X

value of greatest X

value of least X

value of catenate A

array of X

end for

By default osc considers reductions on real numbers associative, and therefore safe for con-

currentization. If this is not desired, one can disable it using the -noassoc compile time option

(see Section 11.4). Also, one can use -cvinfo to get compilation feedback about concurrentization

(written to standard error).

20

11 Automatic Vectorization: IF2PART

As well as selecting product-form loops for concurrentization, IF2PART will automatically con-

sider innermost product-form loops for vectorization. On vector machines, vectorization is the

default. However, one can use -novector to disable it. The -cvinfo option will result in compi-

lation feedback regarding vectorization. Note that osc only makes recommendations for vector-

ization. That is, the local compilers must do the actual vectorization; osc simply annotates the

selected loops with vendor-speci�c pragmas.

In general, osc selects almost all innermost loops for vectorization if they do not not create

or manipulate records, unions, or streams, or make calls to other sisal functions (not inlined by

IF1OPT).

11.1 Vectorizable Sequential Loops

osc will identify the following sequential loops as candidates for vectorization. Again, the �nal

decision is made by the local compilers.

11.1.1 Tri-Diagonal Elimination

for initial

K := 2; X := XIn[1];

while (K <= N) repeat

X := Z[old K]*(Y[old K]-old X)

K := old K + 1;

returns array of X

end for

11.1.2 Partial Sum

for initial

K := 2; X := Yin[1];

while (K <= N) repeat

X := old X + Yin[old K];

K := old K + 1;

returns array of X

end for

11.1.3 Index of First Min or Max

for initial

Idx := 1; K := 2;

while (K <= N) repeat

% FIRST MIN

% Idx := if (X[old K] < X[old Idx]) then

21

% FIRST ABSOLUTE MIN

% Idx := if (abs(X[old K]) < abs(X[old Idx])) then

% FIRST MAX

% Idx := if (X[old K] > X[old Idx]) then

% FIRST ABSOLUTE MAX

Idx := if (abs(X[old K]) > abs(X[old Idx])) then

old K

else

old Idx

end if;

K := old K + 1;

returns value of Idx

end for

11.2 Loop Distribution

On a parallel machine, osc will attempt to extract parallelism from sequential loops and vector-

ization from non-vector parallel loops. For example,

B := for initial

I := 1;

A := Ain;

while (I <= n) repeat

I := old I + 1;

A := A[f(I):Z[old I]*W[old I]];

returns value of A

end for

will become

T := for I in 1,n

v := Z[I]*W[I];

returns array of v

end for;

B := for initial

I := 1;

A := Ain;

while (I <= n) repeat

I := old I + 1;

A := A[f(I):T[old I]];

returns value of A

end for

22

and

B := for I in 1,n

A := Z[I]*W[I+1]+Y[I-1];

V := for J in 1,n

returns array of A*B[I,J]/0.456D0

end for

returns array of V

end for

will become

T := for I in 1,n

A := Z[I]*W[I+1]+Y[I-1];

returns array of A

end for;

B := for I in 1,n

A := T[I];

V := for J in 1,n

returns array of A*B[I,J]/0.456D0

end for

returns array of V

end for

In the interest of compile time, osc is conservative in its loop distribution analysis. Two options

exist to force a more aggressive and time consuming approach: -explode and -explodeI. The

former has a global e�ect, while the later only considers innermost loops. For the previous

example, -explode would produce:

T1 := for I in 1,n returns array of Z[I]*W[I+1] end for;

T2 := for I in 1,n returns array of T1[I]+Y[I-1] end for;

T3 := for I in 1,n cross J in 1,n

returns array of T2[I]*B[I,J]

end for;

B := for I in 1,n cross J in 1,n

returns array of T3[I]/0.456D0

end for;

Because IF1OPT does the explosion, the transformed expressions are subject to further optimiza-

tion (including loop fusion to intelligently repackage the loops).

23

11.3 Loop Fusion and Vectorization

When requesting vectorization, osc will not fuse vector and non-vector loops, or innermost

independent vector loops. This complements loop distribution.

11.4 Associativity

As with concurrentization, osc will, by default, consider reductions on real numbers safe for

vectorization. The -noassoc option will also disable such vectorizations.

12 Closing Comments about the Optimizers

There are several osc options that subsume other options. First, -noopt implies -noscalar,

-nomem, -noup, -noconcur, and -novector (but not -noinline). Second, both -nomem and

-noup imply -nopreb. Third, -seq implies -noconcur and -novector. Fourth, -info implies

-cvinfo as well as enabling IF1OPT, IF2MEM, IF2UP, and IF2GEN feedback. Fifth, -nofuse

implies -noifuse and -nodfuse.

Options -noup and -nomem can devastate performance. A large problem may run 10 to 200

times longer without build-in-place and update-in-place analysis.

One can use the -noimp option to disable local compiler optimizations. Again, the user is

responsible for con�guring the optimization of generated fortran code (-hybrid).

A program can be compiled for parallel execution but run on a sequential machine. Further,

it is possible to cross-compile a sisal program for the Crays using -cray. Here osc will stop

compilation after producing Cray speci�c c and fortran code (that is, the option implies -C).

osc has a verbose mode: -v. Here the compiler will echo to stderr each phase of compilation

as it occurs. An example transcription follows:

unix-> osc -v -hybrid -ff=-O simple.sis

/bin/sisal/spprun /bin/sisal/spp2 cc simple

sisal -dir /bin/sisal simple.i -Fsimple.sis

unlink simple.i

if1ld -o simple.mono -FUR simple.if1

if1opt simple.mono simple.opt -R -1 -l -e -U2

unlink simple.mono

if2mem simple.opt simple.mem

unlink simple.opt

if2up simple.mem simple.up -I

unlink simple.mem

if2part /bin/sisal/s.costs simple.up simple.part -P4

unlink simple.up

if2gen simple.part simple.c -KsimpleF -U -G -O -Y3

unlink simple.part

f77 -c -O simpleF.f

cc -I/bin/sisal -DSGI -O -float -o s.out simple.c /bin/sisal/p-srt0.o

24

-L/bin/sisal simpleF.o -lsisal -lmpc -lm

unlink simple.c

13 Programs, Modules, and Separate Compilation

osc supports the separate compilation of sisal programs and modules to facilitate the devel-

opment and maintenance of large applications. If one does not include -module on the osc

command line, then the provided �les are linked to form a program. A program can have only

one entry point which can only be called from the operating system. Two or more entry points

are allowed, however, if they are called from another language (see Section 16). If -module is

provided, then the �les are linked to form a module. Here there can be one or more entry points,

but they are only visible to other modules or a program.

The example we provided at the beginning of this manual (refer to Section 5) illustrated the

compilation of a stand-alone program. Below, we illustrate use of the module facility. First we

de�ne a module comprising three functions, two of which are entry points. The �rst two functions

reside in �le1.sis:

%$entry=double

define double, mult

function mult(x,y:real returns real)

x*y

end function

function double(x:real returns real)

mult(x,x)

end function

The third function resides in �le2.sis which imports function mult:

%$entry=triple

define triple

global mult(x,y:real returns real)

function triple(x:real returns real)

mult(mult(x,x),x)

end function

The module (�le1.o) is formed using

osc -module file1.sis file2.sis -noload

The third and �nal �le (�le3.sis) de�nes the program and references both the module's entry

points:

25

define main

global double(x:real returns real)

global triple(x:real returns real)

function main(x:real returns real, real)

double(x), triple(x)

end function

The program (�le3.o) is formed using

osc file3.sis -noload

and the entire application (s.out) is formed using

osc file3.o file1.o

osc supports a data base facility to improve the quality separately compiled code (-db). The

user must provide a data base �le name and include it on each osc command line. For example,

one could have formed the above application using data base dbase:

osc -module -db dbase file1.sis file2.sis -nolaod

osc -db dbase file3.sis -noload

osc -db dbase file3.o file1.o

The user need not be concerned with the contents of the data base, but it is human readable.

When using this facility, we recommend that the modules be compiled bottom-up (that is, leaf

modules up to the program, following the inter-module call chain).

14 Program Input-Output

As mentioned in Section 5, sisal programs communicate with the outside world via fibre (see

[?] for a comprehensive de�nition). In this section we illustrate the salient features of fibre

using the program shown below. It takes as input a record, real, integer, boolean, vector, matrix,

null, stream, string, and union:

define main

type Rec = record[a:real;b:integer];

type String = array[character];

type OneI = array[integer];

type OneD = array[double_real];

type TwoD = array[OneD];

type StrI = stream[integer];

type Un = union[a:real;b:OneD;c:null];

26

function main(a:Rec; b:real; c:integer;

d:boolean; e:OneI; f:TwoD;

g:null; h:StrI; i:String;

j:Un

returns integer)

2010 % RETURN VALUE

end function

An example invocation follows.

unix-> s.out - output

SGI SISAL 1.2 V12.0

BEGINNING OF FIBRE FORMATTED INPUT

< 2.0 1000 > # THE RECORD

4.123 66

T

[1: 1 2 3 4 5 6 7 8 9 10] # THE VECTOR

[1: # THE MATRIX

[1: 1.0d0 2.0d0]

[1: 3.0d0 4.0d0]

]

nil # THE NULL

{ 3 2 1 } # THE STREAM

"hello world" # THE STRING

(1: [1: 1.0 2.0 3.0 4.0 5.0]) # THE UNION (ORD(a)=0,ORD(b)=1)

END OF FIBRE FORMATTED INPUT

unix-> more output

2010

unix->

As shown, the order and type of the provided inputs must match that declared in the function

header of the entry point. The `#' characters begin fibre commentary, and are ignored during

fibre processing.

To increase the performance of fibre processing, osc supports the inclusion of upper bound

speci�cations in array de�nitions. We encourage the use of this enhancement. Consider

[1,2:

[2,5: 1 2 3 4]

[2,6: 5 6 7 8 9]

]

which is equivalent to the older and slower form:

[1:

[2: 1 2 3 4]

[2: 5 6 7 8 9]

]

27

One can use the -z option to suppress program output altogether.

15 Program Execution

In this section we illustrate and discuss the various options and aspects of sisal execution. These

include options for con�guring execution, tuning performance, and gathering performance data.

15.1 Parallel Execution

By default, a concurrentized program will only use one worker. One can use the -w option to

realize parallel execution. For example,

s.out -w4

runs s.out with 4 workers, while

s.out -w1

and

s.out

use 1 worker.

During concurrent execution, the sisal run time system splits concurrentized loops into N

slices, where N is the number of participating workers. One can rede�ne N using -ls. For example,

s.out -ls100 -w4

will run s.out with 4 workers but with each concurrentized loop split 100 ways, not 4.

As an enhancement, the run time system does supports guided self scheduling, requested using

the -gss option:

s.out -gss -w4

Here the slice thickness of a non-vectorized but compound concurrentized loop (that is, a loop

that itself contains one or more loops) is dynamically computed as the number of iterations not

yet scheduled divided by the number of participating workers. Under heavy system load, this

option may increase program throughput. On an idle system, however, this option may degrade

overall performance. Note that -gss and -ls con
ict.

By default, loop slices, regardless of their means of generation, are randomly distributed to

workers using a shared run queue. Using the -b option, the slices will be given to the workers

in a consistent and regular manner (via a distributed run queue). This option can degrade

performance if system load is high and gang scheduling is not supported within the operating

system. This option will improve the exploitation of locality on cache coherent machines such as

the Sequent Symmetry, however.

28

15.2 Memory Management

Each sisal program runs with a �xed dynamic memory size. The default is 2 megabytes. If the

memory is exhausted during execution, an error message is printed:

ERROR: (Alloc) ALLOCATION FAILURE: increase -ds value

The -ds option allows the user to de�ne a new size. For example,

s.out -ds8000000

will run s.out with 8 megabytes of memory.

When a request is made for Z bytes of storage, the dynamic storage subsystem de�nes an

exact �t to be a block of S bytes where S >= Z but Z <= S+X, where X is by default 100 bytes.

One can use the -dx run time option to rede�ne X. For example,

s.out -ax200

sets X to 200 bytes. The option allows one to con�gure the storage subsystem to an application,

but we have observed that 100 bytes is su�cient for most applications.

15.3 Performance Feedback

15.3.1 Execution Times

The -r option enables sisal's run time performance monitor, which appends performance data

to the resource �le s.info. Note: the data will not re
ect the time required for fibre

processing. An example s.info �le for a two worker execution follows:

Workers DsaSize LpSliceV

2 4000000b 2

MemW MemU

2624164b 2848408b

CpuTime WallTime CpuUse

35.5300 35.5300 100.0%

35.5000 35.5300 99.9%

Note that timing data are given for each worker. CpuTime re
ects the time a worker spent

executing the program, while WallTime re
ects the elapsed time between job submission and

completion (a function of system load as well as computation time). CpuUse re
ects the processor

utilization for a worker (CpuTime divided by WallTime). The Workers, DsaSize, LpSliceV �elds

give the -w, -ds and -ls values used for the run. The MemW �eld gives the total number of bytes

requested from the dynamic storage subsystem, and MemU gives the total number of bytes granted

(the extra storage helps manage internal data structures).

29

One can request execution time summaries for individual function invocations using -time.

For example,

osc -time conduc simple.sis

requests that timing data be collect for each invocation of function conduc. The run time system

will print this data to stderr. This option prevents inline expansion of the target function.

15.3.2 Aggregate Copy Counts

Compiling a sisal program with -copyinfo enables the gathering of aggregate copy information

at run time (see Section 9). The data are written to s.info only if the -r is provided on the

execution command line. An example follows:

Workers DsaSize LpSliceV

1 4000000b 1

MemW MemU

2621492b 2846168b

CpuTime WallTime CpuUse

65.7100 65.7100 100.0%

AtOps AtCopies AcOps AcCopies

1567924 1 72416 97

RcOps RcCopies CharMoves

0 0 77600

AtOps gives the total number of build-in-place attempts and AtCopies gives the total number of

these attempts that failed to run in-place. Hence

1.0-(AtCopies/AtOps)

measures the success of build-in-place analysis for the run. AcOps gives the total number of

update-in-place attempts, and AcCopies gives the total number of these attempts that failed to

run in-place. Hence

1.0-(AcCopies/AcOps)

measures the success of update-in-place analysis for the run. RcOps and RcCopies are similar

in meaning to AcOps and AcCopies, but concern records instead of arrays. The CharMove �eld

gives the total number of bytes copied.

30

15.3.3 Floating Point Operation Counts

Compiling a sisal program with -
opinfo enables the gathering of
oating point operation

counts at a cost to performance. The operations counted are +, -, *, /, and negation; reduction

operations; logicals; and
oating point intrinsics (sin, cos, etc.). Like the other performance

gathering options, the counts are printed to the resource �le. An example follows:

Workers DsaSize ExactFit DsaHelps

1 10000000b 100b 0

MemW MemU LpSliceV ArrayEx

3918552b 4252344b 1 100

CpuTime WallTime CpuUse

64.2100 64.2100 100.0%

FlopCounts (ARITHMETIC): 119009291

(LOGICAL): 19989885

(INTRINSIC): 1904866

Note that the same program ran in 58 seconds without the counts.

One can get function by function summaries using the -�opinfo option, which like -time

disables inline expansion of the target function. Consider

osc -fflopinfo conduc -fflopinfo eos simple.sis

which request a count summary for both conduc and eos. Note that this option implies -
opinfo;

however, the requested summaries are written to stderr and not the resource �le.

16 Mixed Language Programming

In this section, we illustrate osc's mixed language interface. The interface allows fortran and c

programs to call sisal, and sisal programs to call c and fortran. Regardless of the direction,

interface arguments and results types cannot involve streams, records, unions, nulls, and booleans.

However, a routine called from sisal can return more than one value.

16.1 Calling SISAL Kernels

Assume we want to call function matrix from fortran:

%$entry=matrix

define matrix

type OneR = array[real];

type TwoR = array[OneR];

31

function matrix(AA:TwoR; l,k:integer returns TwoR, real)

let

RR,ss := for i in 1,l cross j in 1,k

returns array of A[i,k]*2.0

value of sum A[i,k]

end for

in

RR,ss

end let

end function

The associated fortran driver follows:

program mixed

real A(100,100), R(100,100)

real s

integer md(13)

C initialize matrix A (A FORTRAN SUBROUTINE!)

call minit(A, 100,100)

C initialize the array descriptor for A and R

C column major, transpose the data, immutable

md(1) = 0

md(2) = 1

md(3) = 0

C description of the first dimension

md(4) = 1

md(5) = 100

md(6) = 1

md(7) = 100

md(8) = 1

C description of the second dimension

md(9) = 1

md(10) = 100

md(11) = 1

md(12) = 100

md(13) = 1

C start the sisal run time system -w1, -ds4000000, -r

call sstart(1, 4000000, 1)

C call the sisal routine

call matrix(A,md, 100,100, R,md, s)

32

C shutdown the sisal run time system

call sstop

C print the results of execution, assuming mprint is a fortran

C subroutine that prints matrix R

print *, s

call mprint(R, 100,100)

stop

end

Note the call to sstart to initialize the sisal run time system, and the call to sstop to shut it

down. Subroutine sstart takes three arguments. The �rst de�nes the number of desired workers

(-w); the second de�nes the desired size of the dynamic storage subsystem (-ds); and the third

enables or disables performance gathering (1 implies -r, 0 disables it). Subroutine sstop does not

take any arguments. Both calls are required, and the sisal run time system must be initialized

before calling a sisal function.

If desired, one can use subroutine scon�g to establish other sisal run time options. This

routine should be called before sstart. Subroutine scon�g takes �ve arguments. The �rst de�nes

the loop slice value (-ls); the second enables guided self scheduling (-gss); the third establishes

use of the distributed run queue (-b); the fourth sets the dynamic storage subsystem's exact �t

threshold (-dx); and the last sets the array expansion threshold (-ax). For example,

call sconfig(-1, 1, 1, 300, 40)

is equivalent to

s.out -gss -b -dx300 -ax40

respectively, and

call sconfig(100, -1, 1, 300, 40)

is equivalent to

s.out -ls100 -b -dx300 -ax40

respectively, and

call sconfig(-1, -1, -1, -1, -1)

requests all the default values and is equivalent to not making the call.

An actual argument is required for each of the formal arguments to a sisal call, and an

argument is required for each of its results. The order of presentation must match that of the

33

callee, and each array must be accompanied by an array descriptor (immediately following the

array), which characterizes its structure and layout. In the above driver, for example, A,md maps

to formal argument AA; 100,100 maps to formal arguments l and k respectively; R,md maps to

RR (the �rst result); and s maps to ss (the second result). Actual arguments R and s provide the

target storage.

The most complicated aspect of an interface call is the array descriptor. The �rst component

of a descriptor de�nes the majority aspect of the associated array, be it column major (encoded

by 0) or row major (encoded by 1). fortran implementations use column major, while c uses

row major. The second component de�nes the
avor of data movement across the interface. A

value of 1 (as in the example above) requests data transposition. Hence, for matrix A in the

example, A(2,1) in fortran will become A[1,2] in sisal and R[2,1] in sisal will become

R(1,2) in fortran. A value of 0 would preserve the original ordering. The third component

speci�es the mutability of the transmitted data, where 1 represents mutable and 0 represents

immutable. A mutable array may have its contents changed within the called routine. When

the descriptor is associated with a result, the third component is meaningless and ignored by the

interface.

The remaining components of a descriptor occur in groups of �ve, one for each dimension of

the array (in increasing dimension order). The �rst component of a group de�nes the associated

dimension's actual lower bound. The second component de�nes the associated dimension's actual

upper bound. The third and fourth components de�ne the desired logical lower and upper bounds

of the dimension. These identify the index set of the data to be moved across the interface. The

meaning of the last component depends on the descriptor's context of use. If the descriptor is

describing an argument, the last component de�nes the desired lower bound of the dimension

once transmitted into sisal. If the descriptor is describing a result, the last component de�nes

the index of the �rst value to be returned from the dimension. Note that the above example

transmits A and R in their entirety.

To further illustrate the functionality of an array descriptor consider the following fortran

code fragment, where Z and X are six-element integer arrays and md is a descriptor:

C INITIALIZE Z AND X

Z(1) = 1

Z(2) = 2

Z(3) = 3

Z(4) = 4

Z(5) = 5

Z(6) = 6

X(1) = 0

X(2) = 0

X(3) = 0

X(4) = 0

X(5) = 0

X(6) = 0

C INITIALIZE THE DESCRIPTOR

34

C COLUMN MAJOR, PRESERVE THE INDEX SET, IMMUTABLE

md(1) = 0

C md(2)=1 IS LEGAL, BUT IGNORED WHEN DESCRIBING A VECTOR

md(2) = 0

md(3) = 0

C SIX ELEMENT ARRAY, TRANSFER ONLY 3 OF THE ELEMENTS, 7 IS

C THE SISAL LOWER BOUND.

md(4) = 1

md(5) = 6

md(6) = 3

md(7) = 5

md(8) = 7

Now passing Z to

function foo(ZZ:OneI returns integer)

ZZ[7]+ZZ[8]+ZZ[9]

end function

using

iresult = foo(Z,md)

yields 3+4+5, while passing X to

function goo(returns ZZ:OneI)

array [5: 10, 20, 30, 40, 50, 60, 70]

end function

using

call goo(X,md)

yields

X(1) equal to 0

X(2) equal to 0

X(3) equal to 30

X(4) equal to 40

X(5) equal to 50

X(6) equal to 0

Note that the following example descriptor describes an empty one dimensional transmission

because the logical upper bound is one less than the logical lower bound:

35

md(1) = 0

md(2) = 0

md(3) = 0

md(4) = 1

md(5) = 6

md(6) = 1

md(7) = 0

md(8) = 1

When compiling a program that calls sisal, one must provide either -forFORTRAN or

-forC on the command line, depending on the language of the driver:

osc -forFORTRAN driver.f matrix.sis

The c version of program mixed follows. Note that the arguments are passed by reference:

main()

{

float *A,*R,s;

integer md[13], procs, ds, sinfo;

integer l,k;

l = k = 100;

A = (float *) malloc(l*k*sizeof(float));

R = (float *) malloc(l*k*sizeof(float));

minit(A, 100,100);

md[0] = 1;

md[1] = 1;

md[2] = 0;

md[3] = 0;

md[4] = 99;

md[5] = 0;

md[6] = 99;

md[7] = 1;

md[8] = 0;

md[9] = 99;

md[10] = 0;

md[11] = 99;

md[12] = 1;

procs = 1; ds = 4000000; sinfo = 1;

sstart(&procs, &ds, &sinfo);

36

matrix(A,md, &l,&k, R,md, &s);

sstop();

printf("%e\n", s);

mprint(R, 100,100);

}

For c, arguments to scon�g must also be passed by reference:

lsv = 100; gss = -1; b = 1; xft = 300; ax = 40;

sconfig(&lsv, &gss, &b, &xft, &ax);

Note that a program can specify two or more entry points if they are called by another

language:

%$entry=matrix,vec,foo,goo

In general, the mixed language interface can be expensive, especially for repetitive invocations:

do 10 i = 1,100

call sentry(A,md, R,md)

A(1,i) = i

10 continue

However in this example, note that both the descriptors (addresses and contents) and array

argument addresses do not change between successive invocations. If this is the case for all calls

into sisal, then compiling the sisal program with -bind may dramatically reduce the cost of

the interface. The following excerpt is not a candidate for binding because the �rst argument

address may change between invocations:

do 10 i = 1,100

if (i .le. 50) then

call sentry(A,md, R,md)

else

call sentry(B,md, R,md)

endif

10 continue

16.2 Calling Non-SISAL Kernels

In addition to allowing fortran and c programs to call sisal, sisal functions can call fortran

and c. The sisal code must provide a global declaration for each of the called routines and

identify the respective languages. For example, function main shown below calls function halve

written in fortran (as speci�ed by a fortran pragma, which has syntax similar to the entry

pragma):

37

%$fortran=halve

define main

global halve(x:real returns real)

function main(x:real returns real)

halve(x)

end function

The associated function template for halve follows:

function real halve(x)

real x

halve =

return

end

The c version of the above example requires

%$c=halve

instead of

%$fortran=halve

with the function template rede�ned as

float halve(x)

float x;

{

return(.....);

}

A more complicated example is shown below. Function ftemp, written in fortran, returns

an array. The last actual argument to this routine de�nes the result's descriptor, which controls

the transmission. Note that unlike calls to sisal, the array arguments do not need descriptors;

they are always transmitted in their entirety and without transposition.

%$fortran=ftemp

define stemp

type OneR = array[real];

type OneI = array[integer];

global ftemp(u,v:OneR; k:integer; vd:OneI returns OneR);

38

function stemp(u,v:OneR; k:integer returns OneR)

let

vd := array [1: 0,0,0, 1,k,1,k,1];

in

ftemp(u,v,k, vd)

end let

end function

The de�nition of ftemp follows. Because it returns an array, ftemp is a subroutine and not a

function. The fourth argument points to the result's array descriptor (vd), and the �fth argument

points to the storage for the result (r).

subroutine ftemp(u,v,k, vd, r)

real u(*),v(*),r(*)

integer k, vd(*)

do 100 i = 1,k

r(i) = u(i)*v(i)

100 continue

return

end

An even more complicated example follows. Here function main calls function big, written in

fortran, which takes a scalar as input and returns two scalars as output:

%$fortran=big

define main

global big(x:real returns integer, real)

function main(x:real returns integer, real)

big(x)

end function

The associated template for big follows. The template de�nes a subroutine because the function

returns more than one value:

subroutine big(x, r1, r2)

real x, r2

integer r1

r1 = ...

r2 = ...

return

end

Now we exemplify a fortran routine that takes an array and scalar as input and returns

two scalars and and two arrays as output (the second array being two dimensional). Note that

the last two arguments de�ne the results' descriptors:

39

%$fortran=biggest

define main

type OneR = array[real];

type TwoR = array[OneR];

type OneI = array[integer];

global biggest(u:OneR; k:integer; vd1,vd2:OneI

returns real, OneR, real, TwoR);

function main(u:OneR; k:integer returns real, OneR, real, TwoR)

let

vd1 := array [1: 0,0,0, 1,k,1,k,1];

md1 := array [1: 0,0,0, 1,4,1,4,1, 1,4,1,4,1];

in

biggest(u,2010, vd1,md1)

end let

end function

The associated template follows:

subroutine biggest(u,k, vd1,md1, r1, rv1, r2, rm1)

real u(*),rv1(*),rm1(4,4)

integer k, vd1(*),vd2(*)

r1 = ...

r2 = ...

rv1(1) = ...

rm1(1,1) = ...

return

end

In general, one can use the -f and -c compile time options instead of pragmas to associate

languages with global routines. For example,

osc -f halve example.sis

is equivalent to

%$fortran=halve

and

osc -c halve example.sis

40

is equivalent to

%$c=halve

17 Warnings, Hints, and Recommendations

In this section we give hints and recommendations for better performance, enumerate unimple-

mented language features, and discuss approaches for debugging sisal programs.

17.1 Things to Avoid

The osc optimizers are powerful, but are not a panacea. As a general rule, write fortran style

sisal to get the best optimized performance. However in the interest of parallelism and ease of

expression, use product-form loops wherever possible. Remember, to determine the potential cost

of data copying, use the -copyinfo and -info options in the early stages of program development

(see Sections 15.3 and 12 respectively). Further, if possible, adhere to the following coding rules

to get the best scalar, vector, and concurrent performance:

1. Avoid incremental constructions that extend arrays contained in other arrays or extend

arrays built in other contexts. For example,

V := A[i] || B[i]

and

type OneR = array[real];

function foo(A:OneR; N:integer; returns OneR)

let

newA := array_addh(A,0.0);

in

if (N = 1) then

newA

else

foo(newA,N-1)

end if

end let

end function

will both result in data copying. The former may be unavoidable, however the later is better

expressed as

array_fill(1,N,0.0)

Note that appending a value to a row of a matrix may result in copying:

41

V := array_addh(old A[i],0.0)

In general, this depends on the overall computation. For example, if V de�nes a replacement

for A[i] and is the last use of A[i], then it should run in-place:

V := array_addh(old A[i],0.0)

A := old A[i:V];

2. Avoid loops whose iteration counts cannot be easily precalculated before execution, such as

for I in 1,N

X := foo(I);

returns array of X when f(I)

end for

and

for initial

I,V := 1,1;

while (I <= N) repeat

I := old I*V;

V := f(I)

returns array of V

end for;

and

V := for B in A

Z := for v in B

returns array of f(v)

end for;

returns value of catenate Z

end for;

Each expression incrementally builds successively larger arrays, copying the smaller into

the larger. However, the sisal run time system will try to reduce this copying. Each time

extra storage is required to hold an array, the system will allocate additional storage in

anticipation of further expansions; that is, storage for N extra elements will be allocated,

where N is NUM times the number of previous expansions for the array. By default, NUM is

100. One can use the -ax run time option to change this value. For example,

s.out -ax200

changes NUM to 200.

3. Avoid the use of array adjust in computations such as

A := for j in 0,N returns array of double_real(j) end for;

L := array_adjust(1,M,A);

R := for i in M+1,N returns array of A[i]*2.0 end for;

V := L || R;

42

A better approach is to build A to the desired size:

A := for j in 1,M returns array of double_real(j) end for;

L := M;

R := for i in M+1,N returns array of A[i]*2.0 end for;

V := L || R;

4. Avoid cyclic computations that build aggregates whose sizes vary over time:

for initial

I := 1; V := 0.0;

while (I <= N) repeat

I := old I + 1;

M := for J in 1,old I

returns array of J % OF SIZE old I

end for;

X := M[old I];

returns value of X

end for

This type of computation may fragment memory in the dynamic storage subsystem, hence

increase management overhead. For this example, the best performance may be had by

building arrays of similar size and relying on parallel execution to hide the unnecessary

costs:

for initial

I := 1; V := 0.0;

while (I <= N) repeat

I := old I + 1;

M := for J in 1,N

returns array of J % ALWAYS OF SIZE N

end for;

X := M[old I];

returns value of X

end for

5. Avoid expressions that introduce spurious dependencies, such as

for initial

I := 1; V := Ain;

while (I < N) repeat

I := old I + 1;

V := old V[I:Ain[I+1]];

returns value of V

end for

which introduces copying to preserve Ain. A better expression would replace the �fth line

with

43

V := old V[I:old V[I+1]];

Even better, the entire expression can be written using a product-form loop:

for I in 1,N

X := if (I = N) then Ain[I] else Ain[I+1] end if;

returns array of X

end for

6. Avoid column major computations, as sisal is row major. For example,

for i in 1,M cross j in 1,N

returns value of sum A[j,i]

end for

will run slower than

for j in 1,N cross i in 1,M

returns value of sum A[j,i]

end for

7. Avoid the use of implicit iteration bounds wherever possible. For example, if the lower

bound of array A is known to be world.Lmin and the upper bound is known to be world.Lmax

then use

for I in world.Lmin,world.Lmax

V := A[I];

returns ...

end for

to scatter the components instead of

for V in A

returns ...

end for

8. Avoid the use of records or unions as array constituents. However, osc will do a reasonable

job of optimizing computations using records to de�ne simple data such as complex values:

type Complex = record[r,i:real];

type OneC = array[Complex]; % THIS IS OK!

type TwoC = array[OneC]; % THIS IS OK!

9. To increase the success of prebuilding, avoid aggregate sharing wherever feasible (see Section

9.3). For example, instead of

44

newAC := for I in 2,N-1 cross J in 2,N-1

V := old A[I,J]*3.0+projct(Z[I,J+1],Z[I,J-1],Z[I,J]);

returns array of V

end for;

A1 := array_addl(newAC, old A[1]);

A := array_addl(A1, old A[N]);

use

% THE DEFINITION OF newAC STAYS THE SAME, BUT USE

A1 := array_addl(newAC, acopy(1,N,old A[1]));

A := array_addl(A1, acopy(1,N,old A[N]));

where function acopy makes an explicit copy of the speci�ed row:

function acopy(lo,hi:integer; R:array[real] returns array[real])

for I in lo,hi

returns array of A[I]

end for

end function

Array prebuilding requires the complete reconstruction of the target array. In general, the

overhead of copying will be minimal compared to the expense of not prebuilding the array,

especially on the Crays where the data movements vectorize.

10. Avoid interface calls to sisal routines that are not computationally intensive. In general

the interface is expensive, especially when passing and returning multidimensional arrays.

17.2 Some Things Not to Avoid

Below we list four example expressions that will run in-place after copy optimization. The �rst

expression illustrates an e�cient use of returns value of catenate:

% A IS ASSUMED TO BE RECTANGULAR!

Lm := array_liml(A);

Lx := array_limh(A);

Km := array_liml(A[Lm]);

Kx := array_limh(A[Lm]);

% NOTE:

% THE SIZE OF Z IS INVARIANT: Kx-Km+1

% THE SIZE OF V IS INVARIANT TO ITS CONSTRUCTION: (Lx-Lm+1)*(Kx-Km+1)

V := for L in Lm,Lx

B := A[L];

Z := for K in Km,Kx

v := B[K];

45

returns array of f(v)

end for;

returns value of catenate Z

end for;

The second expression illustrates an e�ective use of array_addh and array_addl when building

a matrix having a border of zeroes:

Zeroes := array_fill(1,N,0.0);

% NOTE:

% THE SIZE OF M is Lx-Lm+1, WHICH IS KNOWN BEFORE C IS DEFINED

C := for L in Lm+1,Lx-1

% NOTE:

% THE SIZE OF CR IS kx-km+1, WHICH IS KNOW BEFORE CRC IS

% DEFINED.

CRC := for K in Km+1,Kx-1

returns array of f(K)

end for;

CR := array_addl(array_addh(CRC,0.0),0.0);

returns array of CR

end for;

M := array_addl(array_addh(C,Zeroes),Zeroes);

The third expression illustrates an e�ective incremental construction using array_addl:

% NOTE:

% THE FINAL SIZE OF V IS N, WHICH IS KNOWN BEFORE THE INITIAL

% DEFINITION OF A

V := for initial

A := array OneI [];

I := 1;

while (I <= N) repeat

I := old I + 1;

A := array_addl(old A,old I);

returns value of A

end for

The fourth expression illustrates an e�ective way to mask out implicit �rst iterations:

for initial

46

I, V,First := 1,0.0,TRUE;

while (I <= N) repeat

I := old I + 1;

V := foo(old I);

First := FALSE;

returns array of V unless First

end for

17.3 Unimplemented Language Features

osc does not support the following features of sisal and fibre:

1. Array component repetition in fibre is not supported.

2. stream_size and stream_prefixsize are not supported.

3. The returns old clause is not supported.

4. Only two features of sisal 1.2's error semantics are supported: is error and error con-

stants. However, is error execution always yields false, and error constant generation

always terminates execution. For example,

define main

function main(returns integer)

error[integer]

end function

will yield

ERROR: (example.sis,main,line=3) EXPLICIT ERROR VALUE GENERATED!

Note that all other situations that should yield error values will yield unpredictable execu-

tion; some may cause program termination and some may not.

5. Reduction orders left, right, and tree are interpreted as left unless part of a parallelized

loop where they are interpreted as random (see Section 11.4).

6. osc implements streams strictly, so computations de�ning large streams will exhaust the

dynamic storage subsystem and result in program termination.

17.4 Debugging

Debugging a sisal program can be trivial depending on the size of the application and the degree

of abstraction and hierarchical design. We recommend that large applications be debugged in

small pieces, testing the lowest levels �rst, and then working up the call tree.

It has been our experience that most bugs result from illegal array references, themselves

resulting from confusion over lower bound assignments in loop computations. The following

expression should help clear the confusion; it yields 2, 1, 1, and 1 respectively:

47

function test(returns integer, integer, integer, integer)

let

% NOTE: a WILL HAVE A LOWER BOUND OF 2

a := for i in 2,3 returns array of i end for;

% NOTE: b WILL HAVE A LOWER BOUND OF 1, NOT 4!!!

b := for i in 4,6 returns value of catenate a end for;

% NOTE: c WILL HAVE A LOWER BOUND OF 1

c := for initial

i := 2;

while (i < 3) repeat

i := old i + 1;

returns array of i

end for;

% NOTE: d WILL HAVE A LOWER BOUND OF 1

d := for initial

i := 2;

while (i < 3) repeat

i := old i + 1;

returns value of catenate c

end for;

in

array_liml(a),array_liml(b),

array_liml(c),array_liml(d)

end let

end function

In summary, an array de�ned by a for initial loop using array of or value of catenate

will have a lower bound of 1, as will an array de�ned by a product-form loop using value of

catenate. The lower bound of an array de�ned by a product-form loop using array of will have

the value of the loop's �rst index.

To isolate an illegal dereference, osc supports a compile time option called -bounds that

enables run time bounds checking at a cost to performance. For example,

define main

function main(returns real)

let

arr := array[1: 1.0, 2.0];

idx := array_limh(arr)+1;

V := arr[idx];

in

V

end let

end function

48

yields

TOKEN: (arr,lo=1,size=2)

TOKEN: (idx,val=3)

ERROR: (example.sis,main,line=7) ARRAY SUBSCRIPT VIOLATION [HIGH]

if it is compiled with -bounds. From the run time message we see that the dereference on line 7

is attempting to select the third element of an array have only two elements. Note that bounds

checking disables vectorization.

To examine intermediate results, osc supports a prede�ned function called peek that accepts

zero or more arguments of any type and returns integer 1. The function prints its input values

to standard error in fibre format. For example,

V := 100;

DUMMY1 := peek(V);

U := 200;

DUMMY2 := peek(DUMMY1,U);

will print 100, 1, and 200 to stderr respectively. Note that the reference to DUMMY1 in the

second call enforces the print order; that is,

V := 100;

DUMMY1 := peek(V);

U := 200;

DUMMY2 := peek(1,U);

may print 1 and 200 before 100 (here the programmer is at the mercy of osc). Regardless, osc

will at no time remove dead peek code.

If desired, one can also use the mixed language interface to print intermediate results. Unlike

function peek, however, one must use the -glue option to prevent removal of dead calls. We do

recommend that this option only be used during debugging.

Another common source of trouble in sisal programs is the mixed language interface itself.

Argument mismatches are common, especially for calls with many parameters. Further, osc will

not verify that interface functions called from sisal are reentrant and side-e�ect free; this is the

programmer's responsibility. Also, one-dimensional sisal arrays are passed by reference; and

hence should be considered read-only in the interface routines. Arrays of greater dimensions,

however, are passed by value and can be altered within the routines without disturbing sisal

execution.

Above discussions aside, the best way to track errors in sisal programs is to use osc's symbolic

debugger (sdbx) which is discussed in Section 19.

49

18 Miscellaneous Features of OSC

In this section we brie
y discuss two miscellaneous features of osc. The �rst concerns intrinsic

functions, and the second concerns the resolution of unde�ned externals.

18.1 Intrinsic Functions

osc recognizes several global functions as special intrinsics and in some cases generates inline

code. The following intrinsics manipulate integer data:

global and(A,B:integer returns integer)

global or(A,B:integer returns integer)

global xor(A,B:integer returns integer)

global not(B:integer returns integer)

global shiftr(A,B:integer returns integer)

global shiftl(A,B:integer returns integer)

Function and yields a bitwise and of arguments A and B, function or yields a bitwise or of

arguments A and B, function xor yields a bitwise exclusive or of arguments A and B, and function

not yields the one's complement of argument B. Function's shiftr and shiftl de�ne bit position

shifts. The former yields argument A shifted argument B bit positions to the right (possibly

arithmetic). The later yields argument A shifted argument B bit positions to the left (with zero

�ll).

In addition to the above functions, osc will recognize the following routines taken from the

c math library (see math.h):

global sin(A:KIND returns KIND)

global cos(A:KIND returns KIND)

global tan(A:KIND returns KIND)

global asin(A:KIND returns KIND)

global acos(A:KIND returns KIND)

global atan(A:KIND returns KIND)

global sqrt(A:KIND returns KIND)

global log(A:KIND returns KIND)

global log10(A:KIND returns KIND)

global etothe(A:KIND returns KIND) % exp in math.h

Type KIND can be one of integer, real, or double_real.

50

18.2 Resolving Under�ned References

Because osc supports mixed language programming, it also allows the speci�cation of library

search directives to help the local compilers resolve unde�ned references. In the following example,

libx.a is searched during the load phase of compilation.

osc -forFORTRAN simple.f routines.sis -lx

By default, osc will search the local c support libraries, including the c math library. For more

information on this option see your local compiler users' guide or man-page.

19 The Symbolic Debugger: SDBX

In this section, we exemplify the functionality of osc's symbolic debugger: sdbx. To use the

debugger, simply compile the target module or program using the -sdbx option:

osc -sdbx -module -db dbase file1.sis file2.sis

Note that a module or program compiled for debugging will link and run with a program or

module not compiled for debugging.

To illustrate sdbx and its commands, we transcribe the execution of the following program:

define main

function f(x:real returns real)

x*x+1.0

end function

function main(start,finish:real; gran:integer returns real)

let

width := (finish-start)/real(gran);

in

for i in 1, gran

x := start+((real(i-1))*width);

y := f(x);

v := y*width;

returns value of sum v

end for

end let

end function

Function main computes the area under x*x+1.0 between start and finish using granularity

gran. We show the transcription below. The user provided commands follow the sdbx prompts,

and the fibre input values for the run were 1.0, 2.0, and 3 respectively. Note that the break

point commands are set-and-go in nature.

51

unix-> s.out input

SGI SISAL 1.2 V12.0

[entering sdbx]

[commands: bounds break cont functs help list

names print quit run step where]

sdbx-> help

bounds NAME [print the bounds of array NAME]

break [continue and break just inside the next function]

break NAME [continue and break just inside function NAME]

break return [continue and break just before next function return]

break end [continue and break at next scope end]

break LINE [continue and break on completion of line LINE]

cont [continue execution]

functs [list the name of each function in the module]

help [this command]

list [list the previously executed line]

list LINE [list line LINE]

list LINE1 LINE2 [list lines LINE1 through LINE2 inclusive]

names [list all currently defined NAMES]

print NAME [print the value of NAME]

print NAME FILE [append the value of NAME to FILE]

quit [abort execution]

run [identical to cont]

step [execute the next line and return to sdbx]

where [list all the active functions]

*special names: [$NUM, scope or function result]

[#1, array of previous dereference]

[%1, denominator of previous division]

sdbx-> where

[in program or module startup routine]

sdbx-> functs

f main

sdbx-> break

* 7: function main(start,finish:real; gran:integer returns real)

sdbx-> names

start gran finish

sdbx-> print gran

gran = 3

sdbx-> step

* 9: width := (finish-start)/real(gran);

sdbx-> print width

width = 3.333333e-01

sdbx-> step

* 12: x := start+((real(i-1))*width);

sdbx-> print i

i = 1

sdbx-> break f

* 3: function f(x:real returns real)

52

sdbx-> where

[f,area.sis]

[main,area.sis]

sdbx-> print x

x = 1.000000e+00

sdbx-> break return

[end function]

sdbx-> names

x $1

sdbx-> print $1

$1 = 2.000000e+00

sdbx-> step

* 13: y := f(x);

sdbx-> print y

y = 2.000000e+00

sdbx-> list 11 16

11: for i in 1, gran

12: x := start+((real(i-1))*width);

* 13: y := f(x);

14: v := y*width;

15: returns value of sum v

16: end for

sdbx-> break 14

* 14: v := y*width;

sdbx-> print v

v = 6.666667e-01

sdbx-> step

* 12: x := start+((real(i-1))*width);

sdbx-> print i

i = 2

sdbx-> names

start gran finish %1 width i x

sdbx-> break end

[end scope]

sdbx-> list

* 14: v := y*width;

sdbx-> print v logfile

sdbx-> break end

[end scope]

sdbx-> break return

[end function]

sdbx-> where

[main,area.sis]

sdbx-> names

start gran finish %1 width $1

sdbx-> print $1

$1 = 2.851852e+00

sdbx-> cont

53

[sdbx processing complete]

sdbx-> where

[in program or module startup routine]

sdbx-> run

2.851852e+00

unix->

Note that \print v logfile" appended the value of v to �le logfile.

We use the following program to illustrate the remaining commands: bounds, print array-

name, and quit.

define main

function main(returns array[integer])

let

a := array[1: 1, 2, 3, 4];

in

a

end let

end function

The sdbx transcription follows:

unix-> s.out

SGI SISAL 1.2 V12.0

[entering sdbx]

[commands: bounds break cont functs help list

names print quit run step where]

sdbx-> step

* 3: function main(returns array[integer])

sdbx-> list 1 9

1: define main

2:

* 3: function main(returns array[integer])

4: let

5: a := array[1: 1, 2, 3, 4];

6: in

7: a

8: end let

9: end function

sdbx-> break 5

* 5: a := array[1: 1, 2, 3, 4];

sdbx-> print a

a =

[1,4: # DRC=1 PRC=1

1

2

54

3

4

]

sdbx-> bounds a

[lower=1,upper=4,size=4]

sdbx-> quit

killed

unix->

sdbx will also trap to the monitor if control-C is entered. Other events that will return control

to the monitor include arithmetic faults (division by zero, etc.) and subscript violations.

20 Getting and Installing Osc

The osc software is available via anonymous ftp, and resides on sisal.lln.gov (128.115.19.65)

under the name

~ftp/pub/sisal/osc.v12.0.tar.Z

A transcription of an installation processes follows. The target machine was a Cray X-MP/48:

unix-> pwd

/wrk/w1/cann/Sisal

unix-> ftp 128.115.19.65

Connected to 128.115.19.65

220 lll-crg.llnl.gov FTP server (Version 4.163 Fri Feb 23 1990) ready.

Name (128.115.1.1:cann): anonymous

331 Password required for anonymous.

Password:

230 User cann logged in.

ftp> binary

200 Type set to I.

ftp> cd ~ftp/pub/sisal

250 CWD command successful.

ftp> get osc.v12.0.tar.Z

200 PORT command successful.

150 Opening data connection for osc.v12.0.tar.Z (binary mode).

226 Transfer complete.

ftp> quit

221 Goodbye.

unix-> uncompress osc.v12.0.tar.Z

unix-> ls

osc.v12.0.tar

unix-> tar -xof osc.v12.O.tar

unix-> ls

Backend/ Man/ Runtime/ osc.v12.0.tar

55

Examples/ Manual/ Tools/ sinstall*

Frontend/ README bin/

unix-> sh sinstall

* This script will ask some questions about your system and build a

* Makefile for osc (Optimizing SISAL Compiler) installation.

* If you already have a file called "Makefile" it will be overwritten!

* For some questions, a default response is given in [].

* Pressing RETURN in response to such a question will enable the default.

* Answer yes/no questions with y or n.

Is this system:

1. Sun running SunOS

2. Some other sequential machine running UNIX

3. Sequent Balance running DYNIX

4. Alliant FX series running Concentrix

5. Encore Multimax running Umax

6. Sequent Symmetry running DYNIX

7. Cray X-MP or Y-MP running UNICOS

8. Cray 2 running UNICOS

9. SGI running IRIX

Enter a number: [1]

7

Enter the number of available processors

4

Optimize the installed code? [y]

y

Compile for run time dbx use via "-g"? [n]

n

Enter path to directory for executables: [/usr/local/bin]

/wrk/w1/cann/Sisal/bin

Enter path to man pages: [/usr/man/manl]

/wrk/w1/cann/Sisal/Man/manl

* Makefile construction in progress...

* Makefile has been built. Enter "make all" to build and install osc.

unix-> make all >& LOGFILE

In summary, osc installation proceeds as follows:

1. Using anonymous ftp, acquire a copy of the compiler.

56

2. Move the compressed tar �le to the destination directory on the target machine and unpack

it:

uncompress osc.v12.0.tar.Z

tar -xof osc.v12.0.tar

3. Run sinstall to con�gure the installation.

4. Type \make all >& LOGFILE" to run the installation.

The Examples directory contains several Sisal programs along with documentation describing

their compilation and execution.

20.1 Questions, Bug Reports, and Concerns

Send questions, concerns, and general sisal commentary to

sisal-info@sisal.llnl.gov

Send bug reports to

sisal-bugs@sisal.llnl.gov

To be added to the sisal mailing list, direct your request to

sisal-info-request@sisal.llnl.gov

Acknowledgements

I wish to thank Dr. Rod Oldehoeft for his support and guidance while I designed and implemented

osc. He also coauthored an earlier osc manual.

Finally, I would like to thank my wife, Sue, for both her technical and moral support.

This work was supported by the Applied Mathematical Sciences subprogram of the O�ce

of Energy Research, U.S. Department of Energy, by Lawrence Livermore National Laboratory

under contract No. W-7405-Eng-48.

References

[1] Frank H. McMahon. The Livermore Fortran Kernels: A computer test of the numerical

performance range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory,

Livermore, CA, December 1986.

57

A OSC Man Page

NAME

osc - optimizing SISAL compiler

SYNOPSIS

osc [option]... [file]...

DESCRIPTION

OSC compiles SISAL programs and modules, and generates SISAL

executables. Those command line arguments having the suffix

`.sis' are taken to be SISAL source files; each is parsed,

with its resulting object code (IF1) left in the file whose

root name is that of the source file and suffix is `.if1'.

Then all resulting and provided `.if1' files are linked to

form a program (the default) or module for optimization and

code generation. A program is callable from the Operating

System (called `s.out' by default) or possibly an external

language (see -forC and -forFORTRAN) with `main' defining

the default entry point (see -e). A module on the other

hand, is only callable from a program or another module. The

module system facilitates the construction of large SISAL

applications (see -module and -db).

Compilation may be stopped after any compilation phase and

resumed at a later time by simply providing the intermediate

file(s) on the compilation command line. Unless otherwise

specified, the results of compilation and any provided `.o'

(compiled SISAL modules, etc.) and `.a' files and specified

libraries (-l option) are loaded (in the order given) to

produce an executable, which must include a single program.

By default, all optimizations are done: scalar, build-in-

place, and update-in-place. The scalar optimizations

include record and array fission, strength reduction, common

subexpression removal, loop invariant removal, loop fusion,

loop unrolling, loop unswitching, loop distribution, global

common subexpression removal, constant folding, constant

aggregate identification, and dead code removal. On con-

current machines, program concurrentization is the default.

On vector machines, program vectorization is the default.

On concurrent-vector machines, program concurrentization and

vectorization are the defaults. On sequential machines,

program parallelization is automatically disabled; however,

a parallelized program will compile and execute on any

machine.

58

Options:

-v Verbose mode: echo the command lines invoking

the various compiler phases.

-d Debug mode: echo, but do not execute, the

command lines invoking the various compiler

phases.

-nocpp Do not run the C preprocessor on the named

SISAL files. Default: run the C preprocessor.

-CPP Run each named SISAL file through the C prepro-

cessor and stop, leaving each result in

`root.i', where `root' is the root of the file.

-Dname[=val] Define macro name to the C preprocessor as if

it were defined by a `#define' directive in

SISAL source (see cc(1)).

-Uname Undefine macro name to the C preprocessor as if

it were undefined by a `#undef' directive in

SISAL source (see cc(1)).

-Ipath Establish path as one of the first directories

searched by the C preprocessor when expanding

`#include' directives in SISAL source (see

cc(1)).

-IF1 Compile the named SISAL files to IF1 and stop.

No optimizations are done.

-listing For each SISAL source file `root.sis' and

`root.i' produce a listing and cross reference

table and place it in `root.lst'. Default: Do

not produce listings and cross reference

tables.

-MONO Compile the named SISAL files to IF1, link all

59

the resulting and provided `.if1' files to form

a monolithic program, and stop. The resulting

monolith is placed in `root.mono', where

`root' is the root of the first file on the

command line. No optimizations are done.

-hybrid Compile the named SISAL files and generate both

C and FORTRAN. The default is to generate C

only. In some situations, this can increased

performance, especially on the Crays. OSC

places the resulting FORTRAN in `rootF.f',

where `root' is the root of the first file on

the command line. OSC will automatically com-

pile the code using the local FORTRAN compiler

(see -FF); however, it is the user's responsi-

bility to provide the appropriate and desired

compilation options, including optimization

switches, etc. (see -ff). Note, OSC uses `root'

when building unique FORTRAN subroutine names,

and OSC does not destroy `rootF.f' files.

-C Compile the named SISAL files, generate C, and

Stop. The resulting C is placed in `root.c',

where `root' is the root of the first file on

the command line. This option will preserve

FORTRAN code generated due of the -hybrid

option (in `rootF.f').

-S Compile the named SISAL files, generate assem-

bly language, and Stop. The resulting assembly

language is placed in `file.s', where `file' is

the root of the first file on the command line.

-noload Compile the named SISAL files, generate object

code, and Stop. The resulting object code is

placed in `root.o', where `root' is the root of

the first file on the command line.

-o absolute Name the final executable program absolute.

Default: s.out.

-e funct Take function funct as a program or module

60

entry point (the default entry point is

`main'). Entry points can also be specified

within SISAL text using the

``%$entry=funct_list'' pragma, where

``funct_list'' is a comma separated list of

function names; blanks and tabs are allowed in

the list. Unlike modules, only one program

entry point is allowed. See IMPORTANT NOTES at

the bottom of this man page.

-c funct Take function funct as a C external language

function. C external language functions can

also be specified within SISAL text using the

``%$c=funct_list'', where ``funct_list'' is a

comma separated list of function names; blanks

and tabs are allowed in the list. Default:

take the function to be a module entry point

reference. See IMPORTANT NOTES at the bottom

of this man page.

-f funct Take function funct as a FORTRAN external

language function. FORTRAN external language

functions can also be specified within SISAL

text using the ``%$fortran=funct_list'', where

``funct_list'' is a comma separated list of

function names; blanks and tabs are allowed in

the list. Default: take the function to be a

module entry point reference. See IMPORTANT

NOTES at the bottom of this man page.

-module Compile the provided files into a single module

callable from other sisal modules and a pro-

gram. Multiple module entry points are allowed

(see -e). Default: compile the provided files

into a single program callable from an external

language program (see -forFORTRAN and -forC) or

the operating system (the default).

-db database During module compilation, use database as the

inter-module data repository, which OSC's

manages and uses to improve inter-module effi-

ciency. If used, the same database file must

be supplied for each invocation of OSC used to

build the final executable (including compila-

61

tion of the program) Failure to do this will

result in a load-error. The file should only be

manipulated by OSC, although it is human read-

able. WARNING: OSC does not guarantee atomic

access to to database.

-forC Compile the provided files into a program call-

able from C only. The default entry point is

`main' (see -e). In this mode, more than one

entry point is allowed. Files ending with `.c'

are passed to the local C compiler along with

the other files required to finalize compila-

tion: See IMPORTANT NOTES at the bottom of this

man page. The resulting executable is by

default `c.out'.

-forFORTRAN Compile the provided files into a program

callable from FORTRAN only. The default entry

point is `main' (see -e). In this mode, more

than one entry point is allowed. Files ending

with `.f' are passed to the local FORTRAN com-

piler along with the other files required to

finalize compilation: See IMPORTANT NOTES at

the bottom of this man page. The resulting

executable is by default `f.out'.

-noopt Disable all optimizations: shorthand for -nos-

calar, -noinline, -nomem, -noup, -novector, and

-noconcur.

-noinline Skip function inlining. Default: all func-

tions, except those part of recursive cycles

and those that would cause an explosion of

code, are inlined.

-inter Interactively select functions for inlining;

ignored if -noinline is given.

-inlineall Inline all functions except those part of

recursive cycles. This option conflicts with

-inter and -noinline, but not -call. Default:

Inline all functions, except those part of

62

recursive cycles and those that would cause an

explosion of code.

-call funct Do not inline function funct. Ignored if -inter

is given. Default: Try and inline function

funct.

-time funct Generate code to time the execution of function

funct, reporting the data to stderr. This

option implies "-call funct".

-noscalar Disable all scalar optimizations. This option

implies -nofuse. Default: do all scalar optim-

izations.

-noifuse Disable independent loop and conditional

fusion. Default: do independent loop and con-

ditional fusion.

-nodfuse Disable dependent loop and conditional fusion.

Default: do dependent loop and conditional

fusion.

-nofuse This option implies -noifuse and -nodfuse.

Default: do independent and dependent loop

fusion (see -noscalar).

-noOinvar Disable the invariant removal of inner loops

from the outer loops of each function. This is

useful when benchmarking a computational ker-

nel.

-uNUM Selectively unroll for loops having no more

than NUM iterations. An unrolling value of

zero disables loop unrolling as does -noscalar.

Default: -u2.

-nounroll Disable loop unrolling. This option is

equivalent to -u0 and is implied by -noscalar.

63

-nomem Skip all subphases of build-in-place analysis,

including attempts to preallocate storage for

arrays returned by product-form for loops. This

option implies -nopreb. Default: do all sub-

phases of build-in-place analysis.

-noup Disable all phases of update-in-place analysis.

This option implies -nopreb.

-seq Compile for sequential execution. This option

is equivalent to providing both -noconcur and

-novector.

-pNUM If compiling for concurrent execution, parti-

tion the program to use no more than NUM pro-

cessors. Default: Partition the program to use

all the available processors : a number defined

during OSC installation.

-nNUM If compiling for concurrent execution, only

consider product-form for loops nested no

deeper than NUM for concurrent execution.

Default: consider all eligible product-form for

loops regardless of nesting level. A NUM of 1

results in consideration of only the outermost

loops. A NUM of 0 is equivalent to -noconcur.

-iNUM If compiling for concurrent execution, assume

product-form for loops iterate an average of

NUM times and arrays comprise on the average

NUM elements. This number helps derive the

execution cost estimates used during program

concurrentization. Default: 100.

-hNUM If compiling for concurrent execution, only

slice eligible product-form for loops with

estimated execution costs greater than or equal

to NUM. Default: 7000.

64

-maxconcur Shorthand for -h1, which results in compilation

for maximal concurrency; that is, all for loops

are assumed to have execution costs that war-

rant concurrent execution. The -n option can

still be used to throttle concurrentization.

-noconcur Shorthand for ``-n0'', which disables con-

currentization. Default: For concurrent

machines, the default is to concurrentize

loops.

-novector Disable loop vectorization. Default: For vec-

tor machines, the default is to vectorize

loops.

-cray Cross compile the named program for execution

on CRAY computers. This option implies -C.

-explode Aggressively apply loop distribution regardless

of the cost in compilation time. Default: when

compiling for vector execution OSC will do some

loop distribution to uncover additional vector-

ization.

-explodeI Aggressively apply loop distribution regardless

of the cost in compilation time, except only

consider innermost loops (see -explode).

-icse Push identical operations sequences (possibly

having nonidentical operands) between subgraphs

down and out of conditionals. This option

should be used with care as it will often

increase program execution time on the Crays.

It should improve execution time on machines

that execute both branches of a conditional

before discarding the unneeded results.

-noassoc Disable concurrentization and vectorization of

loops comprising floating point reduction

65

operations, and other associative transforma-

tions. Note, this option does not guarantee

that the local C compiler will not do associa-

tive transformations (see -cc). Default:

Attempt to concurrentize and vectorize loops

defining floating point reduction operations,

and do other associative transformations.

-pbNUM Set the array prebuilding dimension count to

NUM. A value of zero disables prebuilding and a

value larger than five is treated as five.

Default: -pb3.

-nopreb Disable array prebuilding. This option is

equivalent to -pb0.

-bind Declares that the descriptor data (lower and

upper bounds, etc.) and array addresses passed

each SISAL function call from C or FORTRAN

will never changes between invocations. How-

ever, array components may change between

calls. Use of this option can dramatically

increase the performance of the interface dur-

ing repetitive invocations. Default: Assume

the descriptor data and array addresses may

change between invocations.

-glue Disable the removal, hoisting, and combining of

non-inlined function calls.

-bounds Generate code to check for and report array

subscript violations, and other problems such

as division by zero. This option implies

-novector, -noinline, -glue, -noscalar, and

-nopreb. Warning, this option may degrade the

run time performance of the program or module

being compiled. Default: do not check for sub-

script violations and other problems.

-sdbx Generate code to interface with OSC's symbolic

debugger. Note that -bounds and -sdbx con-

flict, as one function of the symbolic debugger

66

is to report subscript violations and divisions

by zero. This option implies -novector,

-noconcur, -noinline, -glue, -noscalar, -noup,

-nomem, -nopreb, and -noimp. Warning, this

option will degrade the run time performance of

the program or module being compiled.

-copyinfo Generate code to gather aggregate copy informa-

tion at run time and write the data to s.info

(see the -r option in s.out.l). This option

can result in increased program execution time.

Default: do not gather copy information.

-flopinfo Generate code to gather floating point opera-

tion counts at run time and write the data to

s.info (see the -r option in s.out.l). This

option can result in increased program execu-

tion time. The operations counted are +, -, *,

/, and negation, and reduction operations, log-

icals, and floating point intrinsics. Filtered

reductions are not counted. Default: do not

gather floating point operation count informa-

tion.

-fflopinfo funct

Generate code to gather floating point opera-

tion counts at run time for function funct and

write the data to stderr. This option implies

-flopinfo. Default: do not gather floating

point operation count information for function

funct.

-noimp Compile with the C compiler's optimizers dis-

abled (see cc(1)). Default: Compile with the C

compiler's optimizers enabled.

-CC=COMPILER Use COMPILER to compile C source.

-cc=OPTION Give option OPTION to the local C compiler. For

example, to profile SISAL execution, ``-cc=-

pg'' works for most Unix C Compilers.

67

-FF=COMPILER Use COMPILER to compile FORTRAN source (see

-forFORTRAN).

-ff=OPTION Give option OPTION to the local FORTRAN com-

piler (see -forFORTRAN).

-real Treat all SISAL double_real data as real data.

Default: honor program declarations. SISAL

real maps to C float on the target machine. On

the Cray, SISAL double_real maps to C float.

-double_real Treat all SISAL real data as double_real data.

Default: honor program declarations. Except

for the Cray, SISAL double_real maps to C dou-

ble. On the Cray, all double_real data is

treated as real (see -real), and this option is

ignored.

-info Print diagnostic information gathered during

compilation to stderr. Default: run silently.

-cvinfo Print concurrentization and vectorization

information gathered during compilation to

stderr. This option provides a subset of the

information generated by the -info option.

Default: run silently.

-lx During the load phase of compilation, search

library `libx.a', where x is a string, to

resolve undefined externals. Refer to ld(1)

for the default search paths.

INTRINSICS

OSC recognizes intrinsic functions "and" (bitwise and), "or"

(bitwise or), "xor" (bitwise exclusive or), "not" (one's

complement), "shiftl" (left shift with zero fill), "shiftr"

(right shift, possibly arithmetic), and the following math

functions taken from the C math library (see math.h): sin,

cos, tan, asin, acos, atan, sqrt, log, log10, etothe (exp in

math.h).

68

IMPORTANT NOTES

If a SISAL program builds an error value at run time, the

program will print an error message and abort; further, ``is

error'' always yields ``FALSE''. Stream data types are pro-

cessed as array data types. Program entry points are not

reentrant with respect to the outside world. Further, no

guarantee is given that Fortran or C calls from SISAL are

reentrant. To facilitate program debugging, OSC supports a

predefined function peek that accepts zero or more arguments

of any type and returns integer 1. Peek prints its input

values to standard error in FIBRE format. A call to this

function will not be removed by dead code elimination.

B S.OUT Man Page

NAME

s.out - SISAL executable

SYNOPSIS

s.out [options] [infile] [outfile]

DESCRIPTION

S.out is the output file of the optimizing SISAL compiler

(see osc(1)) and the link editor ld(1). It is executable if

there were no errors and no unresolved externals during com-

pilation. When execution begins, FIBRE input is read from

infile (if provided) or standard input and is associated

positionally with the arguments of the main SISAL function.

At completion, results are written in positional order to

outfile (if provided) or standard output in FIBRE form. The

character `-' implies standard input or output if it appears

as a file parameter.

Options:

-wNUM Set the number of worker processes to NUM. A

value greater than one makes sense only on a

multiprocessor SISAL implementation (Cray,

Encore, Sequent, Alliant, etc.). Default: 1.

-lsNUM If compiled for concurrent execution (refer to

osc(1)), slice each concurrentized for loop into

69

NUM pieces. Default: Slice each concurrentized

loop into W pieces, where W is the number of

workers.

-gss If compiled for concurrent execution, slice

each concurrentized for loop using guided self

scheduling. Here the thickness of a slice is

dynamically computed as the number of itera-

tions not yet scheduled divided by the number

of workers. Note that the -ls and -gss options

conflict.

-b If compiled for concurrent execution (refer to

osc(1)), use the distributed run queue system to

bind parallel work to worker processes in a con-

sistent and regular manner. In the absence of

gang scheduling, this option could degrade per-

formance if the machine load is high. Default:

Use the shared run queue system. WARNING: on

the SGI this option binds processors to worker

processes, and under heavy system loads, this

can severely degrade job and system throughput.

-axNUM Set array expansion value to NUM. Each time the

space for a dynamically growing array must be

expanded, it will obtain NUM times the number of

previous expansions more elements. Programs

with dynamically growing arrays may benefit from

a larger value. The expansion value is also used

to prevent memory fragmentation in programs

repeatedly building and recycling incrementally

smaller or larger arrays. Default: 100.

-dsNUM Initialize the shared data management pool to

NUM bytes. An execution that terminates because

of storage deadlock may need more dynamic

memory. Default: 2000000 bytes.

-dxNUM Set the exact fit storage allocation threshold

to NUM bytes. This eliminates the existence of

leftover free blocks whose sizes are smaller

than NUM bytes. Default: 100.

70

-r Append resource utilization information to the

file s.info (elapsed cpu time, elapsed wall

clock time, memory utilization figures, etc.).

A new file is created if s.info does not exist.

-z Do not print the program's output. Default:

print the program's output.

IMPORTANT NOTES

One may provide an upper bound in a FIBRE array definition

to reduce FIBRE processing time. Simply follow the lower

bound by a comma and then the upper bound; for example,

"[1,2: 10 20]".

C SPEEDUPS Man Page

NAME

speedups - SISAL parallel speedups data gatherer

SYNOPSIS

speedups strtnr endnr abs [options] [infile] [outfile]

DESCRIPTION

Speedups repeatedly executes the compiled SISAL program

``abs'' using different numbers of processors, beginning

with ``startnr'' and incrementing through ``endnr.'' For

each execution it automatically appends the ``-wNUM'' option

(overriding any of your own). It also enables ``-r'' so

that each execution produces file s.info. When speedups

completes, file ``$abs:t.info.$strtnr-$endnr'' will contain

the concatenation of all the performance data.

71

Disclaimer

This document was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor the University

of California nor any of their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or useful-

ness of any information, apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference herein to any speci�c

commercial products, process, or service by trade name, trademark, manufacturer,

or otherwise, does not necessarily constitute or imply its endorsement, recommenda-

tion, or favoring by the United States Government or the University of California.

The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or the University of California, and shall not

be used for advertising or product endorsement purposes.

72

