Sisal:

Streams and Iteration
in a
Single Assignment Language

Language Reference Manual
Version 1.2

March 1, 1985

M-146
Rev. 1

DISCLAIMER

ccaunt of work sponsored by an agency of the United States Government
t nor the University of California nor any of their employees. makes an-,.‘
warranly, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness o
usefulness of any information, apparatus. product, or process disclosed, or represents that its use would net inl’ri.nm-
privately owned rights. Reference herein to any specific commercial products, process, or service by trade name
trademark, manufacturer, or otherwise, does not necessarily constitate or imply its endorsement, reco mmendation, m'
favoring by the United States Covernment or the University of California. The views and opinions of authers
1 necessarily state or reflect those of the United States Government or the University of
od for advertising or preduct endorsement purposes. ’

This document was prepared as an @
Neither the United States Governmen

expressed herein do no
California, and shall nut be us

Work performed under the auspi
pices of the 1} -
under Contract W-7405-Eng-48, LS. Department of Energy by Lawrence Livermore National Laberatory

SISAL

Streams and Iteration
mn a
Single Assignment Language

Language Reference Manual
Version 1 2

March 1, 1985

Authors

James McGraw, LLNL
Stephen Skedzielewski, LLNL

Stephen Allan, CSU
Rod Oldehoeft, CSU

John Glauert, UEA

Chris Kirkham, UM

Bill Noyce, DEC
Robert Thomas, DEC

SISAL Reference Manual Table of Contents

Table of Contents

I. INTRODUCTION 1 -1
1.1 Acknowledgements 1 =4
Lod: RBTRTOMGES .ovivisirieiin e mmmmnenmmmmmns A5G35 I =4
1.3 Authors’ Addresses 1 =5
2. LANGUAGE SUMMARY 2 -1
3. LEXICAL CONVENTIONS x=1
4. VALUES AND TYPES ...coooooiimiiimnonisinmmmmsiss 4 -~ 1
4.1 Type Specifications 4 - 1
4.2 Value Domains 4 - 3
4.3 Error Values 4 -3
4.4 Basic Types e .. &% - 4
4.5 Compound Types 4 -6
4.0 Type DOHBIONS ..o ivmmmmamiaine o = 8
4.7 Type Conformance : 4 -9
5. OPERATIONS D= %
5.1 Error Tests 5 -1
5.2 Null Operations — Ll
5.3 Boolean Operations . . U SR SR 5-1
5.4 Integer Operations >-2a
5.5 Real Operations 2-3
5.6 Character Operations -4
5:-F Array OPeratlons ..o 3% 9
5.6 Stream Operations 5-9
5.9 Record Operations ... > = 11
5.10 Operations for Union Types >~ 12
5.11 Type Conversion Operations 2= 13
5.12 Type Correctness of Operations 5 - 14

6. CONSTANTS, VALUE NAMES, and
EXPRESSIONS 6-1
6.1 Constants ... 6-1
6.2 Value Names ... 6-2
6.3 EXPressionSccocooemoiiieii, 0 =3

Table of C .
SISAL Reference Manual Untentg

S

6 4 Abbreviations fof Array Ops
65 Abbrevialions for Stream OpS
6 6 Abbreviations for Record Ops
6 7 Expressions of Higher Arity

6 8 Funcltion Invocations

oocco o>
~ o~

7 PROGRAM STRUCTURES
7 1 The IF construct
7 2 The LET construct
7 3 The TAGCASE construct
7 4 The FOR coastruct
7 41 The Non-product form
7 4.2 The Product form 7 1

NN N N NN
E R e e

—_—

8 FUNCTION DEFINITIONS and
COMPILATION UNITS
8 1 Header and Value Transmission
82 The GLOBAL Declaration .
3.3 The FORWARD FUNCTION definition
$ 4 Inheritance of Names and Values

8.5 Scope of Function Definitions

o0 0 O 00 O e
"ol

Appendix A - SISAL Syntax
Appendix B Implementation Limits
Appendix C : Pragmas for Various Implementations

Appendiz D : Sample Programs

Appendix E : Summary of Version Changes

Appendix F : Semantics of the FOR Expression

Appendix G - Semantics for Arrays

SISAL Relerence Manual Introduction

1. INTRODUCTION

Many multi-processor systemns are currently under study by various groups
around the world. The understanding and exploitation of parallelism in these
systems is a primary goal of these studies. To facilitate the use and comparison
of these systems, we proposed to:

- Define a common high-level language :
The primary candidate was a single-assignment, applicative,
dataflow language as defined in[1, 2, 3]. In spite of
remarkable diversity in hardware structures, all proposed
systemns could benefit from the functional semantics of such a
language, and from other characteristies such as implicit parallelism,
freedom from side effects, locality of eflects, ete.

- Produce a compiler having :
- a single "Front-end" (language specific) parser and
- several 'Back-end” {machine specific) code generators

- Define an Intermediate Format (IF) [4], to serve as the
- interface between parser and code generators
- interface between this system and other language systems

- Define an External Format (Fibre) [5], to provide :
- a simple interface for specifying inputs and outputls
to SISAL and IF graphs

- To develop and share a pool of benchmark programs

The proposed system is shown in Figure 1.

A cooperative effort of the Colorado State University, DEC, Lawrence Liver-
more National Laboratory, and University of Manchester has resulted in the pro-
gramming language SISAL which is described in this manual.

SISAL {Streams and Iteration in a Single-Assignment Language) is a functional
data-flow language intended for use on a variety of sequential, vector, multi-,
and data-flow processors. Our primary geal is to produce a compiler hosted on
the VAX and targeted to both the VAX and the other machines. Secondary goals

are:
1) promote wide use of the language in parallel processing research centers,

i.e., produce a de facto standard,
2) allow study of architectural trade-offs inherent in machine design

3) provide a vehicle for developing and sharing a pool of benchmarks
4) allow study of the benefits or lack thereof of a functional
pregramming style.

SISAL is designed to express algorithms for execution on computers capable
of highly concurrent operation. More specifically, the application area to be sup-
ported is numerical computation which strains the limits of high performance
machines, and the primary targets for translation of SISAL programs are

dataflow data-driven machines .,

51SAL Reference Manual

Intraduciion

SISAL

|

—

Other Languages

IF 1 Graph Generator

1l

IF 1 Optimizer

IF 1

¢

Optimizer | 1F 2 Code Geperator —»{VAX 780]

- Optimizer

Optimizer IF 2, Code Generator & Multi Vaﬂ
Manchester
| Optimizer ik » Code Generator Data Flow
Other
3 Code Generator|—» Data Flow

Optimizer

IF 2 Cray
Code G
e Generator | — g hinesJ

Machine

IF2 __lcode Generator|) HEP :\

—» Yet Unspecified Systems

h

Figure 1

1-3

SISAL Reference Manual introduction

Nevertheless, it has been our intention that the language not have idicsyn-
crasies reflecting the particular nature of the application area or target
machine. [t should be reasonable for SISAL to evolve into a general purpose
language appropriate for writing programs te run on future general parallel
computers,

We have undertaken the design of a new language because existing languages
for numerical computation have a serious deficiency: they reflect the storage
structure of the von Neumann concept of computer organization in that each
language has some method of effecting a change in state of the memory that
cannot be modeled as a local eflfect, FORTRAN, still the most popular language
for lar:ge scale numerical work, is particularly blatant in this respect since it was
conceived as a high level notation for programs to be run on a machine of classi-

cal design (the IBM 704).

Languages allowing the specification of global state changes lead to programs
that are very difficult (or impossible) to analyze for parts that may be executed
concurrently. It is impossible in general to trace the flow of data with less than a
complete analysis of the entire program. Only with such analysis is it possible to
find and eliminate inessential constraints on the sequencing of program parts.

In contrast, the language SISAL is entirely free of side effects: each module or
well formed portion of a SISAL program corresponds to a rnathematical function
and the entire eflect of putting two parts together is to compose the
corresponding functions. Such a language is functional or applicative. Although
designs for applicative languages have been discussed many times in the litera-
ture, there have been few attempts to construct a complete and practical
definition. This is due to the difficulty of incorporating flle updates and
input/output operations within the applicative framework, and the question of
efficiency of implementation. The efficiency issue is countered in SISAL by our
goal of highly parallel execution, which is supported by applicative languages,
and our aim to develop computer architectures specifically for eflicient execu-

tion of programs expressed in functional languages.

The file update and input/output issues are addressed through the introduc-
tion of streams of values as a principal means for communicating between pro-
gram modules. Modules that produce streams as output or accept streams as
input can be used for input/output processes. Furthermore, the implementa-
tion of transactions on a data base may be viewed as the processing of a stream
of commands by a data base "secretary” or "guardian” module that holds the
data base as internal data. If it is desired to realize more concurrency in pro-
cessing transactions, the data base may be divided into parts, each with its own

secretary module.

]Dtrodunuon
SISAL Reference Manuel

L1 Ackno‘-]edgements

. deﬂnitio i our

In developing é‘hg and closest to _meetlng : regs Groub of the Labcrite
is well documented. Computatmﬂ Structu — ; Yy for
geveloped at MIT by the is [1]. We thank him for many of the fungs.
Computer Scie ateful for his gsi{mssmn to use the
mental ideas of SISAL ¥ 2%, ot rting point for the definition of this manua)
VAL referfnce£ rﬁ:;i'-;uowe 4 us to focus the additions and € ges we felt were
This short-cu
needed.

arted from a language design whjey,

t
n of SISAL, we S oals. Such a language is VAL

. completed during the SISAL workshop at. DEC,

The first draf;' og ﬁigeﬁggafageverapl workshop participants have influenceq

Hudson, Mess. : of SISAlL through their criticism. These are A-I'Vlndf Jack
tliin?se V;;:PF!‘E:; Maya Gokhale, Alan Hayes, Vinod Kathail, and Shane Robison,

Michael of the Lawrence Livermore National Labora-

tngegg %il;n]gl:;citr?g?ﬁrsgl?e Klein, Steve Teicher, and Alain Hanover of Digita)

Equipment Corp. for their support.

Special thanks go to Robert Yates for his efforts in formatting and proofread-
ing this document.

The changes introduced in Version 1.2 were the product of a meeting hosted
by Allan and Oldehoeft at Colorado State University on Feb. 13-15, 1984. Partici-
pants there included Kim Yates, Michael Welcome, John Lang, and Bruce Bigler.
(in addition to the authors). All changes introduced in this version of the
manual will be identified by a vertical bar in the right-hand column of all lines
that have been changed.

1.2. References

[1] W.B.A;ke_rman. J.B.Dennis, "VAL -- A value-oriented algorithmic language:
Preliminary reference manual," Tech.report TR-218, Computation Struc-

tures Group, Laboratory for Computer Science, MIT, Cambridge, Mass.,
June 1973,

[2] J.%McGraw. “The VAL Language : Description and Analysis," ACM Trans. on
rogramming Languages and Systems, Jan.82, Vol.4, No.1, pp.44-82.

[3] J.R.McGraw, S.K.Skedzielewski ,"Streams and Iteration in VAL : Additions to a

Dﬂta F}.OW Lﬂnguage T PrwBedi—n s- 1 ;
et ' - Int. Conf. istri t
Systems, Miami, Fl., March 1983, %IEEE Order No?%HDllsE:’[l].lz%u;Ed RHIge

[4] S'KSksg;izl.fwfaﬁ} EJI":S::mvam "IF1, an Intermediate Form for Applicative
progress). ermore National Laboratory Technical Report (it

[5] S.K Skedzielewski, R.Kim Yates, *

Data Objects", Lawrence Liver

: Fibre: An External Format for SISAL and IF}
(in progress).

more National Laboratory Technical Report

SISAL Reference Manual

1.3 Addresses of Authors or Current Conlacts

Naome / Address

Telephone

Introduction

Arpanet Address

James MeGraw
Stephen Skedzielewski

lawrence Livermore
National Laboratory

Hox BOB, 1-306

Livermore, California 94550

(415) 422-0541
423-1516

McGraw at lll-crg
Skedz at lll-crg

Stephen Allan
Dale Grit
Kod Qldehoeft

Colorado State University
Dept. of Computer Science
Fort Collins, Colorado 80523

401-5373
491-7033
491-7017

(303)

Allan.ColoState at csnel-relay
Grit.ColoState at csnet-relay
RRO.ColoState at csnet-relay

John Glauert

School of Inforrmation Sciences
University of East Anglia
Norwich NR4 7TI

England

603-56161
ext. 204

(44)

Glauert%eapa at ucl-cs

Chris Kirkham

University of Manchester
Cormputer Center

Oxford Road
Manchester, M13 9PL
England

(44) 61-273-1993

1d.Gurd at mit-xx

Bill Noyce

Digital Equipment Corp.
ZK02-3/N30

110 Spitbrook Road
Nashua, NH 03082

(603) B881-2050

NoyceZ%eludom.dec at decwrl

SISAL Reference Manual Language Summary

2. LANGUAGE SUMMARY

A program in SISAL is a collection of separately translated parts called compi-
lation units. Each compilation unit defines an arbitrary number of functions and
the nature of the interface that compilation unit is to have with other compila-
tion units. The interface identifies the declared functions that are to be visible
(defined) outside of the current unit and the interface also describes the func-
tions used by this unit that may not be defined there {global). All functions in
SISAL must be defined before they can be used. Mutually recursive functions
are permitted, in which case one of the functions must be first described in a
forward definition.

The SISAL language is applicative, that is, value-oriented. In contrast Lo many
cther languages, there are no "objects’ thought of as residing in memory and
being updated as the computation progresses. Even arrays and records are
treated in SISAL as mathematical values.

A function computes one or more data values as a function of one or more
argument values. Except for invocations of other functions, a function invoca-
tion has access only to its arguments; there are no side effects. Further, a func-
tion retains no state information from one invocation to another; each function
invocation is strietly independent. Hence values returned by a function depend
only on the argument values presented to it — a SISAL function implements a
true function in the mathematical sense.

The data types of SISAL include the basic scalar types boolean, integer, real,
double real, null and character. Data structure values can be record values,
array values, union values, or stream values. Records have a fixed format; each
field has a specified type. An array has an integer index set and its components
are of arbitrary but uniform type. A stream is an ordered sequence of values of
arbitrary but uniform type. Compenents of a stream are accessible only
through a set of built-in functions (e.g., first and rest). Union types may be
formed in which tags allow discrimination among a specified set of constituent
types. The value of any object of a union type consists of a tag name and a value
whose type is one of the constituent types. Data structures cf arbitrary depth
may be specified using nested array, stream, rec ord, and union types.

Fach data type has its associated set of operations and predicates. Array,
stream, union, and record types are treated as mathematical sets of values --
just as the basic scalar types. The operations for arrays, streams, unions, and
records are chosen to support identification of concurrency for execulicn on a

highly parallel processor.

QISAL handles exceptional conditions by producing special error values that
serve two purposes. First, an error value indicates that some kind of computa-
tional difficulty prevented the correct production of a normal answer. Second,
an error value may preserve portions of structured objects that are known to be
correct (i.e., not affected by the computational difficulty). The value error is a
proper element of every SISAL type. This value will be produced in the event of
arithmetic or control flow errors. Arithmetic errors that could produce this
value include: overflow, underflow, divide by zero, array subscript out of bounds,
etc. . Control Alow errors include: conditional expressions whose test clause pro-
duces an error, iterations whose termination test produces an error, etc. .

SISAL also defines rules for propagating these error values through any expres-
sion. In general, an error value cannot be canceled out of a calculation without

2-1

Language Summary
SISAL Reference Manual

rror * 0 yields error). However, every effort js

: face of erroneous calculations, Fgr
tial results in the inatio
il ol ptf'l;n is to produce an array and the rtehrgﬁ n nexE:St pro-
example, if an iterall Uting array has the property o tg error, byt
e termr::ti?rfs I;;sthe array that were correctly computed prior to the
accesses Lo po

error will yield those values.

its type checking to be P‘?rfc'}"mﬁ'd b}’ thE_ translator,
The type of each argumelr-:guor r?s)ult value of a function L(si ‘Sp?;;lﬁiddm t.?e ?_mc._
tion d).z)ﬁnition's header. The type of each value name use ‘ltﬂ' e g)&'ﬁ a Iunc-
tion is always directly inferable from the context in Wthh}“lS 111)58 e e opera-
tions of SISAL are designed so that the types of the resulfl.zﬁzfxi € determined if
the types of the operands are known. Since the types of all atomic expressions
are manifest, the types of all expressions can be. determined. For purposes of
type checking, SISAL uses structural type matching and does not perform any
automatic type coercions.

-t 7 i e
explicit program testing (e-8

The design of SISAL pe

Since SISAL is a side-effect free language, subexpressions may be evaluated in
any order without effect on computed results. Thus the control structures of
SISAL use a syntactic form — an expression -- evaluation of which yields a tuple
of values. Language constructs are provided for conditional expressions
(if/then/else) and for iteration expressions (for). In addition, expression struc-
tures are provided for distributed computation of the components of & new
array, stream, or of values to be combined by an operator. Variants of the for
expression may be used to compute the component values of a new array or
stream simultaneously, or to combine simultaneously computed values by an
essociative operation such as addition, multiplication, or maximurn.

£2.1. Notation

In the BNF presentation of the syntax
material. Ellipses (...) indicate that the

repeated one or more times Comments o i
. n the syntax appear within
parentheses and are not part of the grammar, Reserved wﬁ?ds andpsppecial sym-

bols that are part of the SISAL 1 i
cephsedgd i Thlnguage (rather than part of the meta-notation)

mon combinations, following examples illustrate some of the com-

square brackets denote optional
preceding syntactic unit may be

Gecldef-part == decldef [; decldef] . (non-empty list of decldef's
Separated by sermicolons)
array-ref

Wi

rim i
primary [expression] (the square brackets here must

appear as part of the array
reference in a SJSAL program)

SISAlL Reference Manual lexical Conventions

3. LEXICAL CONVENTIONS

No “control’ characbers

Programs are written using the ASCI character yel..
The program clernents

other Lhan tab and newline are used within Lhe source,
are:

operalion and punctuation aymbols

real and integer numbers

character and character string constants
reserved words

nemes .

comments

The operation and punctuation symbols are the following:

¢y L1

An integer number is a non-empty sequence of decimal digits without a
decimal point. The type of an integer number is assurned to be integer.

A real number is an integer number followed by one of

a decimal point

an exponent field

a decimal point followed by an exponent ficld

a decimal point followed by an integer number

a decimal point followed by an integer number faollowed by an

exponent fleld,

O L0 PO

An exponent field is the letter 'E', 'e’, 'D' or 'd’, an opticnal sign, and one or
more decimal digits. Real numbers without an exponent fleld, or which use the
letter 'E' or 'e' in the exponent fleld are assumed to be of type real, Real
numbers using the letter ‘D" or 'd" in the exponent field are assumed to be of

type double_real
A character constant is a single character enclosed in single quotes. A char-

acter string constant is a sequence of zero or more characters enclosed in dou-
ble guotes. Neither & character nor a character string constant may extend

across a line boundary.

The type of a character constant is character. The type of a string constant
is array[character], where the low bound is one and the high bound is the

number of characters in the string.

' Control characters may be inserted into a character constant or string by the
use of a notalion taken from the C programming language. The backsiash char-
acter, when immediately followed by a character in the set fnrtfb\N""|

3-1

Lexical Convent.iong

SISAL Reterence Manual
denotes:
li (implementation dependent)
newline %
:? carriage return iggﬁ Eﬁ
A\t horizontel tab ASCII FF
Af form feed ASCI1 BS
\b backspace
kslash)
::\ Zzﬁble quote (when it is a part of the string)
A’ apostrophe (for useina character constant)

i i haracter string con-

| characters may be inserted into a chaljacter or ¢ g o

sta(l:*lotnlg;ofoﬁoarwincg a backs{ash with three octal digits. Thus \0OQ represents NUL,
\007 is a bell, etc.

If the backslash is followed by something other than one of the at?ove charac-
ters, the result is the character that follows the backslash (e.g., \s yields s).

Each of the above characters is exactly one character "in width".

A reserved word is a word that always has a special meaning. Reserved words
may never be used in any context for other than their special meaning.
Reserved words are printed in boldface when they appear in program examples
and the syntax description of this report.

The reserved words are:

array at

boolean catenate character

m :igne dot double_real else

A error false for
forward function global greatest if
in initial integer is least
left let nil null of
old . otherwise product real record
repea replace returns right stream
u_u’“me :& tagcase then tree
value while 'ug“‘e orf‘ unless until

The fDHDWiH name
reserved wcrdsg; § are predefined functions in

SISAL, but they are not

abs
arr
array_fill arr:ififwclil-? array_addl array_adjust
array_remh array rem array_liml array. _preﬁxsize
em?d ficor glr:iy_getl array_size
. StZ’Eam_g e min
stream_prefixsize stream _ré’ft 2 :t:zgjglpty ftream_flrst
e runc
A name is

- A name may not be)

the same as a reserved word: ;
h name, a defined type namg;‘n‘
+ and hence 4 namese uses all have their own mec

€ May be used without conflict for

SISAL Reference Manual Lexical Conventions

several purposes. For example:

type Complex = record| Re, Im : real]
type Im = boolean

is a legal set of type definitions, even though the name Im appears twice. Con-
text information is used to distinguish them.

Upper and lower case letters in names and reserved words are not dis-
tinguished. Names may be of any reascnable length. Characters after the
thirty-first are, however, ignored.

The separating characters space, tab, and newline are equivalent (excspt in
delimiting comments). They may appear anywhere a space may appear (hence
they may not appear within a number or between the characters of a two char-
acter operation symbol such as >=). A separating character is required only
between adjacent constants, names, or reserved words. For example, separat-
ing characters are required to distinguish the program construct "if p then 3
else 4 end if" from the name "ifpthen3elsedendif’.

A comment begins with a percent sign and continues to the end of the line. A
comment is equivalent to a space, and may appear anywhere that a space may
appear.

If the character immediately following the percent sign in a comment is a dol-
lar sign the comment is considered to be a compiler directive, or pragma. See
Appendix C for a description of compiler directives.

Examples of names and constants:

ABC3_Q % name

ABC3_g % the same narmne

34 % integer number

0.3141593E1 % real number

0.3141583D1 % double real number

2.718282 % real number

5772167E-7 % real number

‘7 % character constant

"\ % character constant

“abc\"\ndef" % charactler string constant, length 8
"abeN\"\nd\ef" % the same character string constant

SISAL Reference Manual Yalues and Types

4. VALUES AND TYPES

The inputs and outputs of SISAL expressions and functions are values. The
entire collection of values that may be presented to or produced by SISAL pro-
gramas is the value doma:in of SISAL. The value domain is subdivided into disjoint
subdomains that are the data ‘ypes of SISAL. There are basic types which
include the familiar scalar values of computation; structured types in the form
of arrays, streams, and records as defined by the language user in terms of
simpler data types; and discriminated union types.

4.1. Type specifications

A type specification in SISAL is a syntactic construct that specifies a data
type.

Syntax

type-spec i basic-type-spec
compound-type-spec
type-name

basic-Lype-spec = boolean
' character
| double_real
integer
i null

compound-type-spec..= arra.y[Lype-spec l

| stream [type-spec I
mcnrdl fleld-spec | ; fleid-spec | . [;| I
unioa | tag-spec [; tag-spec | . [;]]

fleld-spec = field-name [, fleld-name | . ! type-spec
tag-spec e tag-name [, tag-name | .. [: type-spec |
fleld-name e name
tag-name = name
Ltype-name = name

For a basic Lype, the specification is simply the name of the type. For a com-
pound type, the specification consists of the name of the compound type fol-
lowed by Lhe necessary additional information within square brackets. Any type

4-1

Valuea and
SISAL Reference Manual Ypes
defined by a type definition (see Sec.

i i t be
name used as a type specification mus

tion 4.6).

4.1.1. Array Lype

The array type specification gives the ty
called the base type of the array).

pe of the elements of the array (4,

Examples:

array| integer]
array| array| real]]

4.1.2. Stream Lype

The stream type specification gives the type of the elements of the stream
{again known as the base type of the stream).

Examples:

stmnml; integer]
stream| record X : real; Y : integer] |

4.1.3. Record type

The record type specification gi |
_ gives the fleld names and the type associated
with each fleld. The fleld names used within any record Speciﬁcyiftion must be

distinct. Wh v : ;
that type. ere several fleld names are listed with one type, the fields are all of

Examples:

record I, J : integer: Temp: real |

4.1.4. Union type

The discrimina
ted upj
nion type specification gives the tags and the type

4-2

SISAL Reference Manual Yalues and Types

associated with each tag. The tag names must be distinct. Where several tag
nemes are listed with one type, the tags all indicate that type. If the colon and
following type specification are omitted, the null type is assumed.

Examples:

union{ Up, Down, Left, Right]
union| Fix : integer; Flo : real]
unio This : array| integer];
That,
The_Other :record] C: real; D : boolean]]

In the first example we have effectively created an enumeration type, as is
done in Pascal. However, their use is limited to the tagcase expression (as
opposed Lo the pred and succ functions of Pascal).

_As in the case of field names, a tag name may coincide with any other name
without conflict, and the same tag name may be used in several union types
without conflict.

4.2 Value domains

Fach data type is a domain of values as described below, As will be seen, each
data type includes proper elements, and an error element which occurs as the
result of an expression when the computation of a proper value of the type is
impossible. Each data type is further characterized by the set of operations
that may be used to create and transform values of the type. The operations for
each data type of SISAL are defined in Section 5, as are conversion operations
that convert values of one type into values of another.

4. 3. Error values

A simple error handling approach has been adopted in SISAL. In SISAL, all
primitive operations are well defined for all {type correct) inputs. SISAl's
approach adds one error value to each type (both primitive and user-defined

types).
The full name of an error value consists of "error’ followed by a type

specification enclosed in brackets (e.g., error| real). The type specification is
required because every value must have a unique type. For example, the value

error] real | is different from error{ integer].

The value error| type-specification] oecurs when the result of an arithmetic
or control operation is needed, but cannot be produced. General circumstances

that can cause error to be returned are:

(1) Array access outside the current array bounds.
(2) Stream access beyond the end of the stream.

Values and TYpes

SISAL Reference Manual

n an input is errer, ft.he result will also b
the is error function which is useq te
ments of grroneous arrays. s}

on produces an error value, all resyjt,
{Similar results ogey,

(3) In many primitive operations. whf:
error. Major exceptions anlu_de.
detect error and accessing valid ele
4) When the predicate of an if expresst .

w of the expression are error of the approprrate type.

in tagcase expressions).

(5) When the predicate of a for expression pr

sion terminales immediately. All partial
results are returned as error values, but th
structured objects may be accessed without pro

other resulls are error of the appropriate type.
the dot product option, and the ranges

(8) When a for range expression uses) ;
: have differing lengths, the shorter ranges will be padded with error valyes
to match the longest length.

oduces an error value, the expres-
ly-construcLed array and slream
e correct portions of thege
ducing an error value. Aﬁ

Type-specific circumstances that yield error are discussed in the sections

below that discuss each type.

Generally, predefined SISAL functions (except for the error test function
described in section 5.1) map error-valued inputs to the appropriate error
values on output. If a S1SAl-defined function receives an error-valued input, the

outputs of that function will be the error value (adjusted to match the specified
output types for that function). Exceptions to this rule are listed with each

specific function.

4.4. Basic types

4.4.1. The NULL type

proper elements: nil

error element: error| null]

The null type occurs in a distingui i unio
istinguished i 1 ;
more alternatives no data value is rgquired. A T s s taons

Example;

type List = union[NoMore : null;
ListElement : record [Data : integer; Next : List]]

4.4.2. The BOOLEAN type
proper elements: true, false

error element: errar] boolean]

SISAL Reference Manual Values and Types

4.4.3. The INTEGER type
proper elements: The integers between some implementation dependent limits.
error element: error| integer |

Integer-specific causes of error include values that are:

(1) Too large or small to be represented by the implementation.

(2) Possibly out of the implemented domain, but possibly in it {e.g.,
error] integer |- 1).

(3) The result of a division or modulus operation with a zero divisor.

4.4.4. The REAL type

praper elements: Floating point representations of real numbers _'an_iuding
zero, with some exponent range and number of significant
mantissa digits that are implementation dependent.

error element: error{ real |

Real-specific causes of error include values that are:

(1) Too large (positive or negative) to represent in the implermentation.

(2) Too small (positive or negative), but non-zero, to represent in the imple-
mentation.

(3) Possibly out of the implemented domain, but possibly in it (e.g.,
error{ real |- 5.0).

(4) The result of an attermnpted division by zero.

4.4.5. The DOUBLE_RFAL type

proper elements: Floating point representations of real numbers including
zero, with some exponent range and number of significant
mantissa digits that are implementation dependent, Fither
or both the exponent range and the number of significant
mantissa digits are assumed to be greater than or equal to
the corresponding real domains.

error element: arror]{ double_real]

Double_real-specific causes of error include values that are:

(1) Too large (positive or negative) to represent in the implementation.

(2) Too small {positive or negative), but non-zero, to represent in the imple-
mentation.

(3) Possibly out of the implemented domain, but possibly in it (e.g..
error] double_real] - 5D0).

Values
ual 18 and TYP-&:
SISAL Reference Man

tempted division by zero. o o
e are represented in a manner simila, "
tants must contain an exXponent part .
'’ and ‘e’ found in real constants.

t
4) The result of ana
“ Constants of double _ﬁEcZyn%
those of real type. dl:\l.llble,_re. i
the characters ‘D' or 'd replacing

4.4.68. The CHARACTER type

roper elements: The 128 characters of the ASCII character set.

P
error element: error{ character]

Character-specific causes of the value error include:

(1) Character applied to an argument greater than 127 or less than 0.

4.5. Compound types

4.5.1. ARRAY Lypes

For each data type defined by some SISAL type specification T, an array type
may be defined by the type specification array{ T].

proper elements: A proper array value of array[T] corsists of two oom
ponents:

(1) A range (LO, HI) where LO and ¥FI are integers. LO and Fl

are inclusive bounds on the array indices. If FI < LO the
array has no elements.

(R) A sequence of HJ -
cannot be sparse,
sequence for which
does not exist.

LO + 1 elements of type T. The seguence
that is, there are no indices in the
the corresponding element of type

error element: Every array type array{ T] includes error{ array[T |]

Error-valued arra i i
; ys (Le., arrays that cause the is e
function to return true) indicate that some cm'npx,lt.atiOnal

ﬁ%blaegﬁefaﬁezenﬁ% the complete definition of the arra.
on ¢
an array has a bagd lg::ecan pProduce erroneous arrays:

r bound and hence there can be 7¢
co ce ther ;
thgr:r?ai_ndairéca;:etween array indices and values held !
array, but shop 51 Some operation may begin to build 2 vall

4-8

SISAL Reference Manual Values and Types

will be accessible by normal subscripting means, even
though the array has the value error. These values can also
be accessed through various versions of Lhe for expression,
See sections 5.7 and 7.4 of this manual for details.

If an array has a bad lower bound, the values associated
with that array ars not completely lost. Fer example.
assume Aerr is a result of trying to shift the origin of a valid
array {(Aok) to a base index whose value is error. In this
type of case, Aerr will not have any accessible elements, but
the element values will not be lost. If a third array {Aok?2) is
built by shifting the origin of Aerr to a legal value, this array
will have all of the elements from Aok accessible. We will
refer to the values in Aerr as hidden values.

These two types of error conditions can occur simultane-
ously in a single array. In the previous example, if Aok 1s
erroneous with accessible values, these values will be hid-
den in Aerr, and accessible agein in Aok2 However, Aok2
will still be an erroneous array.

4.5.2. STREAM types

For each data type defined by some SISAL type specification T, a stream type
may be defined by the type specification stream| T |.

proper elements: A proper stream value of stream[T] consists of two com-
ponents:

(1) A range (1, HI} where 1 and HI are integers and Hl >= 0.
These are inclusive bounds on the defined elementls. If FI =
0, the stream has no elements.

(2) A sequence of Hl elements of type T. The sequence cannot
be sparse, that is, there are no integers in the sequence for
which the corresponding element of type T does not exist.

error element: FEvery stream type stream[T] includes error{ stream| T | |

Error-valued streams indicate that some compulational
problemn prevented the complete construction of the
stream. If portions of the stream were correctly built prior
to the problem arising, these portions will be accessible by
normal referencing means, even though the stream has the
value error. These values can also be accessed through
various versions of the for expression. See sections 5.8 and
7.4 of this manual for details.

Values anq Ty
SISAL Reference Manual

4.5.3. RECORD types) .
. . nd ni,...nk are distinct names, gy,
SAL type specifications a o
l‘e;l;nt‘é[nltk tarl'e.?lnk : ti] specifies a record type %

ue of the record type is a set of K pairs:

proper elements: Each proper val 05}] where each vi is an element of t;

§ (n1, L7 {n

error element; error T]

4.5.4. UNION types

Each element of a union type is an element of one of several constituent
types, accompanied by a tag which indicates the constituent type from Whigh
the element was taken. If t1,...tk are type spectﬁcatmng. and nl....nk are dis-
tinct names, then union| n1: t1;...; nk : tk] specifies a union type T.

proper elements: Each proper element of the union type is a pair {ni, vi) where
1<=i <= kand vi is an element of ti.

error element: error] T]

4.6. Type definitions

Syntax:
type-def := type lype-name = type-spec
type-name::= name

mfnginf;;ogdfirgt}cnthmay COnFain t}'PE definitions which specify prograrmmer-
i the function. Similarly, a compilation unit may contain

type definitions used i :
defined by the compilell?i any of the functions or other type definitions that are

o on unit. Each type definition specifies that a type name
specification part fepresented by the given type specification. The type
same or ot.he:Ej deﬁr?iﬁirf;pi?yggriﬂ%?in- may contain type narr;es déﬁnEd in the
composed of array, sitenen tions may be used to construct data types

fecord, or union structures of unlimited depth.

Example:

type Stack = union[Empty : null;
ement, : record| Valye - real; Rest : Stack 11

The type name Stack j

A 3 s declare
equals sign in the ab finit;
where that a type o Qefinity

d by i
o ¥ K appearance on the left hand side of the

n. The name ef a defin any”
5 : efined type may be used any
ztigllz_s s_ufilh as err] pl;rmltted, €.g., as the type para.rny eter for colv”
in well deﬁnc:rfdﬂc ? \;:thout conflict Sinec?iy‘be tood as a type name and as nl:;
ontexts, ’ L 1s interpreted as a t ame ©
ype n

SISAL Reference Manual Values and Types

4.7. Conformance of type specifications

Type checking is performed by the SISAL translator by testing that the type
of each expression or subexpression maltches the type required by the context
in which it appears. The type of an expression or subexpression is detez_"rmned
by its composition from operators and elementary terms as described in Sec-
tions 5 and 6. The type must match the type required by its context. an argu-
ment to a function must match the argument type indicated in the functxo_n's
definition, and an expression on the right hand side of a definition (see Secticn
7.2) rgmst match the declared type of the name on the left hand side (if one was
given),

The necessary test determines if two type specifications conform, that is, if
they denote the same type. Two basic type specifications conform if they are
the same. Two array or stream specifications conform if their base types con-
form. Two record or union type specifications conform if their correspondingly
named component types or constituent types conform; the order in which they
are listed must be the same. A delined type name conforms to the type
specification appearing on the right hand side of its definition.

A compound type specification may be visualized as a tree whose nodes are
labeled array, stream, record, or union, whose arcs from record or union nodes
are labeled with field or tag names, and whose leaves are basic types. Confor-
mance can be formulated in terms of this characterization: two type
specifications conform if their trees are identical. If a type specification uses
recursion, this tree is infinite; two such specifications conform if these infinite
trees are identical.

Examples - assume the following type definitions:

type Num = real
type Stack = union[Empty : null; Flement : Item]
type Item = record] Value: real; Rest : Stack]

Then the following pairs of type specifications conform:

real (A defined type exactly conforms to
Num the type that it is defined to be.)
Item (A type name conforms to its definition.)

record] Value : real; Rest : Stack]

union| Empty : null; Element : record] Value : real; Rest : Stack]]
Stack {The (infinite) trees implied by
these type speciflcations conform.)

SISAL Reference Manual Operations

5. OPERATIONS

In this section we specify the sets of operations applicable to each data type
of SISAL. In the examples of notation, P and Q stand for boolean values, J and K
for integers, X and Y for reals, C and D for characters, A and B for arrays. G and
H for streams, R for records, U for unicn values, N for record field names and
tag names, T for arbitrary types, and V for values of arbitrary type.

5.1. Error tests
operation notation functicnality
test for error is error{V) any -> bool

The error test operation always return true or false, never an error value. [t

must be used for testing for errors instead of the equality operator (eg.. X =
error real]"), since the latter returns error{ boolean] when X is an error value.

5.2. Null operations

The null type is used to provide a case in a union type for which the value is
irrelevant. There are no operations for this type except the error test is error.

5.3. Boolean operalions

The boolean operations are the following:

operation notation functionality
and P&Q boel,bool->bool
or P|Q bool,bool->boo!
not P bool->boel
equal P=Q bool,bool->bool
not equal Pr=Q bocel,bool->bool

The results of these functions when given error-valued inputs are as
described in Section 4.3, except for the functions "and” and "or". If either input
to "and" is false, the result is false (even if the other input is error). Otherwise,

5-1

SISAL Reference Manual

an error input produces the result error. likewise for “or
true. the result i3 true (even if the other input is error).
input produces the result eror. Also, the Error test desc
applies to Hooleans.

- Ve an
ribed in < Crro,e

S€Cling

54 Integer operations

The integer operations are the following:

operation notation functicnality
_—*-__-_—4__'——‘-—-—_.

addition i+ K int,int ->1nt
subtraction J-K int.ant ->int
multiphcation i*K int.int ->1nt
division + /K int,int ->int
modulus mod{J.K) int,int ->int
exponentiation exp(J.K) tnt,nt ->int
negation - d int ->nt
magnitude abs(J) it -> int
maxirnum max({J K} int,int ->int
i mum min{J. K) intant ->int
equal =K int.int -> bool
not equal d~= K int.int -> bool
greater, less i>K J<K int.nt -> bool
greater ‘egual, i>x K l<=K int,int -> bool

less, equal .

P

=

re
The results of these functions when given error-valued 1-'1:,1*-‘“,' ;‘;u"-’
described in Section 4.3, Also, the Error test described in Section 5.1 4P
integers

ok 7

s

The only two operations that require further clarification are d
integers and modulus Their values are defined as follows:

I/K =1, where | ig the result of computing
J / X using real division and then
Lruncating toward zero.

SISAL Reference Manual Operations

mod (1, K) =1L, where L has the following properties:
0<=|L|<|X]|,sign(L) = sign{K).
and there exists an integer M such that
J=M*K+L

The error value will result from an attempt to use zero as the divisor in txl:?l?,
division or modulus operaticns or from the arithmetic operations if the res
exceeds the range of numbers representable on the target computer.

5.5. Real operations

The real operations are the following:

operation notation functionality
addition X+Y real,real->real
subtraction X-Y real,real->real
multiplication XY real,real->real
division X/Y real,real->real
exponentiation exp{X.Y) real,real->real
exponentiation exp(X,J) real,int->real
with integer
negation -X real->real
magnitude abs(X) real->real
maximum max(X,Y) real,real->real
minimum min(X,Y) real,real->real
equal X=Y real,reai->bool
not equal X~=Y real,real->bool
greater, less XY, XY real,real->bool
greater/equal, X>=Y, X<=Y real,real->bool
less/equal

The error value will result from an attempt to use zero as the divisor in a divi-
sion operation, or if the result of an arithmetic operation exceeds the range of
numbers representable on the target computer.

The results of these functions when given error-valued inputs are as

described in Section 4.3. Also, the Error test described in Section 5.1 applies to
reals.

5-3

Opemu

nce Manual
Ong

QISAlL Refere
s of double_real typ® are identical to those ¢
7 0T vajy
ey

The operations on value

of real Lyp®:

6.6, Character operations

e character operations are the following:

Tk
pperation notation functionalily
/"-‘— .
equal c=D char,char->bool
not equal Cc~=1D char.char->bool
c>D,C<D char,char->bool

greater, less
greater/equal, c>»=D,C<=D char.char->bool

loss/equal

n error-valued inputs are as

of these functions when give
d in Section 5.1 appliesto

The results
4. Also, the Frror test describe

described in Section 4.
characters.

6.7. Array operations
pe array| I'] include creation of nev
lues by appending components to an

The operations for the array data Ly
tenation. Recall that an array value

arrays, selection, producing new array va

array value, and combining arrays by conca
consists of a range deflned by a low index LO, a high index HI, and a sequence of
HI-LO+1 elements of the given type.
operation notation functionality
S
create array type-name [] ->a!‘!‘a)’[T]
create by elements array [type-name] [i:v] int,T->array[T)
create/fill array_fill(LO,HLV) int,int, T->array[T]
select
A[J] ﬂrray[T],int"}T
repl
place A[J:V] srray(T]int. T->array(T
concatenate Al B array[T].arr'ay[T}-:»arraY[Tl
index of highest array_limh(A) array[T]->int
ind 1
ex of lowest array_liml(A) array[T]->int

Operations

SISAL Reference Manual

number of array_size(A) array[T]->int
elements

number of array_prefixsize(A) array[T]->int
elements

set bounds array_adjust(A,LC,HI) array[T].int,int->array[T]

extend high array_addh(A.V) array(T],T->array[T]

extend low array_addl{A. V) array[T],T->array[T]

remove high array_remh(A) array[T}->array{T]

remove low array_reml(A) array[T]->array[T]

get low limit array_setl(A,LO) array[T].int->array[T]

In general, the results of these functions when given error-valued inputs are
as described in Section 4.3, All exceptions to this rule are described below for
each operation. Also, the Error test described in Section 5.1 applies to arrays.

The following subsections give an informal semantics for the operations listed
above. A more formal and precise semantics of these operations can be found in
Appendix G of this manual. This section defines both the normal and error-

handling treatment of arrays in SISAL.

5.7.1. Create
array type-name []

This is an array of the indicated type, whose low index is one, high index is
zero, and which therefore contains no elements. The type-name is mandatory,
Note : The specified type name denotes the type of the array operation, and
therefore must be an array type -- not the type of the component.

5.7.2. Create by elements

array [type-name | [1:V]

This returns an array of the indicated type with low and high indices both J,
and one element V at index J. The iype-name is optional, but if presant, must
conform to the type of V. This operation yields a proper array even if V is the
error value. If J is an error value, then the result is an error array with V

becoming a hidden value for that array.

Note : The specified type name denotes the type of the array operation, and
therefore must be an array type — not the type of the component.

5-5

SISAL Reference Manual Operatiq,,

notations for compositions of select, replac
tions to simplify construction of multiple eli:'m
ent

There are abbreviated
ulti-dimensional arrays. See Section 6.4,

create by elements Opera
arrays and for operating on M

5.7.3. Create/fill
array_fill (LO,HLV)

This creates an array with the gi
value. If LO > HI, the result is a va
If 1O or HI are the error value, the res
This operation yields a proper array even

ven range and all elements equal to the givey
lid empty array with a lower bound set to [
ult is an error array with no hidden values..

if V is an error value.

Example:
array_fill(1,10,6)

is of type array(integer] with 10 elements, all equal to 6.

5.7.4. Select
AlT]

& ;I‘his operfa.i.';lon yields the element of the array
range of the array, the result is error{ T]. Otherwi
; ' / . rwise, the r
2%3: is Tg;sr;c;:gg mth.utbe index value in the array, which may
] lon wi i i
ipratiing 13 Ll access valid portions of erroneocus arrays

A at index J. 1fJ isnot withit
esult is whatever

bhe an err?r
but it

5.7.5. Replace

AlI:V]
IfAL i .
JEAls a vl acray and 1 i withinthe bounds of A, this operation L
ept that the element at index J bas been re laf,gition

value V. If Ais i
A is in error, but has accessible elements, and J refers Uha ing the
a

within those :
accessible elements, then the result is an error array i st
dde?

same accessib o
sible values as A, with the one change of V at position == =y

the result of the T
values. operation is error{ array[T |] with no accessible

5.7.6. Concatepate
AllB

SISAL Reference Manual Operations

If A and B are valid arrays, this returns an array whose size is the sum of the
sizes of A and B, formed by concatenating A and B. The low index of the result is
the same as the low index of A, and the elements of A retain their original
indices. The indices of B are shifted as necessary. In any error situations where
B has nc proper lower bound, the result is unaltered because that lower bound
value has no bearing on this operation. If A has an improper lower bound, the
result also has an improper lower bound. The actual values in the result depe_nd
on whether A and B have accessible values. If A is valid, but B is erroneous with
accessible values, then the result is an array that is in error, but retains all of A
values as accessible elements and has all of B's accessible values added on the
end. If A is erroneous with accessible values, then the result is A (This last case
has some subtle implications if B is a valid array, see Appendix G for the details.)

5.7.7. Index of highest, lowest
array_limh(A), array_liml(A)
These functions return the high or low index of A, respectively. If A is in

errcr, but has a valid lower bound, the low limit operation will return that lower
bound.

5.7.8. Number of elements: good arrays only

array_size(A)

This functicn returns the size of an array in all cases where that size was not
affected by any erroneous values. In addition to returning the proper value for
all non-erroneous arrays, it also produces the correct value if the only errone-

ous aspect of the array is an invalid lower bound. VFor all olher cases this func-
tion returns an error.

5.7.9. Number of elemenls: good or bad arrays

array_prefixsize(A)

This function always returns the number of accessible values in the array A
whether or not A is in error. If the lower bound of A is in error, it returns the

number of elements that would become accessible if this bound were set to any
legal value. In all cases this function returns a valid integer.

5.7.10. Sek bounds
array_adjust{A,LO,HI)
This returns an array with range (LO,HI), containing the same data as A where

possible. If LO is greater than array_liml(A) or HI is less than array_limh(A),
some elements of A will be absent in the result. If 1.0 is less than array_liml{A) or |

5-7

OPeration,

result contains error [T] in the Out-yf. |

A), the
HI is greater than arralemhg Ja.lues in A between LO and HI will be accesgy, |

e sibl
range positions. Any acces eous. The resulting array will be erroneoys only s |

i sult, even if A is erron |
;r;x:t:'ir:;e includes inaccessible portions of A.

SISAL Reference Manual

5.7 11 Extend high low

array_addh(A.V), array_addi(A.V)

These return the array A with its high index increased by one or its low inde
decreased by one, and the given value V as the new elermnent. This definitisn
applies to all possible values for V, including error values. If A s erroneous with |
hidden values, the result is an error vaiue with V added appropriately to the list
of tudden values. In the array_addl operation. if A is an error value wmth access-
ble elements, the result is like A with V appended to the beginning of the array
In the array_addh cperation, Uf A is an error value with accessible elements, the
result is not appended as indicated. For a complete treatment of this last situz
tion, please refer to Appendix G.

5.7.12. Remove high, low

array_remh(A), array_remi(A)

_ These return the array A with its high index decreased by one or its low in¢el
itx::"ea:!‘ed by one. An element of A is lost in the result. [f an array A has siF®
zero. the result is error{ array{ T]]. This definition aiso applies in the siu® f
tions where A is erroneous. The reader should be warned that there are 2 &%
Ei:?:?ﬁﬁn:r?umstances when an erroneous array with hidden or accesside
1 lose - . < 7 i |
situation, please refeﬁoe;r:;:éi;nc.an array_remh. For precise detais of %

5.7.13. Set low limit

array_setl{A LO)

Ttus adds 1O -
array_LimifA) Lo all element indices and to both components o

the range, vi 2 e
s w.anigr Lg:::ld:;g ng:;r:z;;;m{ar to A but with the origin shifted. Itslo¥ md$ |
ments of A as hidden vaiyes. |f he result is an erroneous array ha“ng-?ivi ;:ﬁ’ |

den values. then the resy|t L0 is a valid integer and A is erroneous

being accessible in the res l: * '.hd. array with all of the hidden valu®® “?,'E ‘,

result is stll in error with th: AP A is erroneous with accessible values: g
accessible values based from the new lower 2797

array_setl(array| 2 . X. Y. Z]8)
denotes the same value as
array{ 5. X, Y 7]

STSAL Reference Manual

Operations

where the abbreviated notation is defined in Section 8.4.

5.8. Stream operations

The stream operations are the following:

operation notation functionality

create stream type-name [] ->stream[T]

append stream_append(G,V) stream[T],T->stream[T]
select first stream_first(G) stream([T]->T

select all but first stream_rest(G) stream[T]->stream[T]

test for empty

number of
elements

number of
elements

concatenate

stream_empty(G)

stream_size(G)
stream_prefixsize{G)

G| H

stream|T]->boolean

stream|[T]->integer
stream[T]->integer

stream[T],stream[T]->stream[T]

In general, the results of these functions when given error-valued inputs are
as described in Section 4.3. All exceptions to this rule are described below for
each operation. Also, the Error test described in Section 5.1 applies to streams.

5.8.1. Create

gtream type-name []

This is a stream of the indicated type which contains no elements. The type-

and therefore must be a stream type -- it is not the type of the stream's com-

name is mandatory. Note : the type-name is the type of the stream operation I

ponents.

5.8.2. Append

stream_append(G,V)

This operation returns a stream that is identical to the input stream except
that the element V has been added to the end of the stream. If V is the error

~y

SISAL Reference Manual

Dpel‘atl%

value, it is appended to the stream G. If the stream G is an erpop value, then,
result is G. s

5.8.3. Select first element

stream_first(G)

This operation returns the first element of the stream. If the stream g ,, |
error value but has accessible elements, the first of those elements 1s the resul,
If the stream is empty, it returns error{ T]. |
5.8.4. Select all but first element

stream_rest{G)

This operation returns a stream that is identical to the input stream, except
that the first element has been removed. If the stream is in error with a

ceessi
ble values, this rule still applies. If the stream is empty it retuns
error] stream[T]).

0.8.5. Test for empty

stream_empty(G)

This operation r

j eturns true if the stream has no elements, otherwise false.-
the stream is in er

ror with accessible values, this rule still applies.

5.8.8. Number of elements: Don-erroneous streams
stream_size(G)

This returns the

4

gsu
error. number of elements in G. If G is error-valued, the '

5.8.7. Number of elements; a)) Streams
stream -prefixsize(G) |

It B
resd’ |
elements in G. If G is error-valued, the

SISAL Reference Manual Operations

5.8.8. Concatenate
G| H

This operation returns a new stream containing all the elements of G followed
by all the elements of H. The order of all elements in G and H is preserved. If G
is any error value, the result is G. If G is a non-erroneous stream but H is an
error value, the result is an error-valued stream with the following accessible
elements: all elements of G followed by any accessible elements of E.

There are abbreviated notations for composition of the create and append
operations to simplify construction of multiple element streams. See Section

8.5.

5.9. Record operations

The record operations for a record type specified as T = record] N1: T'L; ...; Nk
: Tk] are the following. N1,..Nk are the fleld names, and T1,..,Tk are the

corresponding types.

operation notation functionality

create record | type-name Tl DT
[Nl : VI ...; Nk: Vk

select, 1<=1<=k R. Ni T->Ti

replace, 1<=i<=k R replace[Ni: V] T,Ti->T

In general, the resuits of these functions when given error-valued inputs are
as described in Section 4.3. All exceptions to this rule are described below for
each operation. Also, the Error test described in Section 5.1 applies to records.

5.8.1. Create

record [type-name] [N1:V1; ..; Nk: Vk]

This builds a record value { (N1, V1), ..., (Nk, Vk) {. All of the field names asso-
ciated with the type of record being constructed must appear in the list, though

some may appear with error values. The type-name is o tional, but if
the record value must conform to the designated type. P if present,

5.8.2. Select
R.N

-11

o
i

SISAL Reference Manual Opemﬁ%
turns the value of the named field, that is, Vi if N.= Ni.
This return

5.9.3. Replace

R replace [N:V]
cept that the N-field value is chy

i imilar to R ex
This returns & record SiITl _ - !
V. This result applies whether or not V is an error value. If R is an errop il

the result is a non-erroneous record with V as the value in fleld N, and q| Dthe?
fields having values of error of the appropriate type. |

d notations are provided for compoun
erations. See Section 8.8.

nged ;

Abbreviate d selectors and muy,
values in replace op

5.10. Operations for union types

The basic operations for a union type specified as T = union| N1: TL; ..; N
Tk] are a create operation and a test of a tag. The tagcase control structure
explained in Section 7.3 is the mechanism for accessing constituent values from
a value of union type. In the following, N1,....Nk are the tag names, and T1,..Tk

are the corresponding constituent types.

operation notation functionality

create, 1<=i<=k union type-name [Ni[:V]] Ti->T

tag test, 1<=i<=k is Ni(U) T->bool
IR

In general, the results of these functi i 1 ol
ey ; ctions when given error-valued inputs
as described in Section 4.3. All sxceptions to this rule are described below

each operation. Also, the Error test described in Section 5.1 applies to union$:

5.10.1. Create
union type-name [N[: V]]

The result of this oy _ v gt
and an element V. Thjg 490,15 & Union value of the indicated type "\ e

1S definiti ; - ;
‘t’he colon and the element \?2:.1:0]? ?PPIIE_S wheth_er or not V is an error typeﬂr
must conform to the ot provided, V is assumed to be nil.

type corresponding to tag N.

SISAL Reference Manual Operations

5.8.8. Concatenate
G| H

This operation returns a new stream containing all the elements of G followed
by all the elements of H. The order of all elements in G and H is preserved. If G
is any error value, the result is G. If G is a ncn-erroneous stream but H is an
error value, the result is an error-valued stream with the following accessible
elements: all elements of G followed by any accessible elements of H.

There are abbreviated notations for composition of the create and append
operations to simplify construction of multiple element streams. See Section

8.5,

6.9. Record operations

The record operations for a record type specified as T = record] N1:T1;..; Nk
. Tk] are the following. N1,...Nk are the fleld names, and T1,....Tk are the

correspending types.

operation notation functionality

create record [type-name T1,....Tk->T
[N1:V1:..:Nk: Vk

select, 1<=i<=k R . Ni T->Ti

replace, 1<=i<=k R replace[Ni: V] T,Ti->T

In general, the results of these functions when given error-valued inputs are
as described in Section 4.3. All exceptions to this rule are described below for
each operation. Also, the Error test described in Section 5.1 applies to records.

5.9.1. Create
record [type-name] [N1:V1:...; Nk: Vk]

This builds a record value § (N1, V1), ..., (Nk, Vk) {. All of the field names asso-
ciated with the type of record being constructed must appear in the list, though
some may appear with error values. The type-name is optional, but if present,
the record value must conform to the designated type.

6.9.2. Select
R.N

SISAL Referenc® Mapual Ope“ﬁ%

turns the value of the named field, that is, Vi if N = Ni.
This retur

5.9.3. Replace

R replace [N: V]
imi t that the N-field value j
.« returns a record similar to R excep lue is cha
v TIk‘nhfsrfe:ult applies whether or not V is an error value. If Ris an erro?gv;?u?
the result is a non-erroneous record mth\f as the value in field N, and a .,
fields having values of error of the appropriate type. .
Abbreviated notations are provided for compound selectors and multipk
values in replace operations. See Section 8.8.

5.10. Operations for union types

The basic operations for a union type specified as T = union[N1: T1; .. N
Tk] are a create operation and a test of a tag. The tagcase control structur
explained in Section 7.3 is the mechanism for accessing constituent values fron
a value of union type. In the following, N1.....Nk are the tag names, and T1,..Ik

are the corresponding constituent types.

operation notation functionality
e
create, 1<=i<=k union type-name [Ni[: V]] Ti->T
tag test, 1<=i<=k is Ni(U) T->bool
: t|
In general, the results of these functions when given error-valued nglgizr

as described in Section 4.3. All i i ibed be
. -3. sxceptions to this rule are describec b
each operation. Also, the Error test described in Section 5.1 applies t© s

5.10.1. Create

union type-name [N[: v]]
The i ‘
and anr:lseuri:eifttms v?-gieration_ is a union value of the indicated YYP® M:t;:w “
2o an leme the_EI s definition applies whether or not V is 20 e_rro
Vg o the tement V are not provided, V is assurned to b€ %
o the type corresponding to-tag N.

SISAL Reference Manual Operations

5.10.2. Tag test
is N(U)

The result of this operation is true if U was created with a tag N and value V.

}LU is error{ T | the result is as specified in Section 4.3 . Otherwise, the result is
Se.

9.11. Type conversion operations

Type conversion operations are provided between integers and reals and
between integers and echaracters. The operations use the basic type names as if
they were function names. In all cases, the rules for handling erroneous inputs
follow the general guidelines in Section 4.3.

operation notation functionality
real-to-integer floor(X) real->int, double_real->int
integer{X) real->int, double_real->int
trune(X) real->int, double_real->int
integer-to-real real(J) int->real
double_real(J) int->double_real
real-to-real real(X) double_real->real
double_real(X) real->double_real
character-to-integer integer{C) char->int
integer-to-character character(J) int->char

5.11.1. Floor(X)

If X is larger in magnitude than is representable as a proper element of
integer, the result is error{ integer]. Otherwise, the result is the largest integer
not greater than X.

5.11.2. Integer{X)

If X is larger in magnitude than is representable as a proper element of
integer, the result is error] integer | Otherwise, the result is obtained by
adding .5 to X and then applying floar.

operat.i ons
SISAL Reference Manual

5.11.3. Trune(X)

er element of
_If X is larger in magnitude than is representable asltaispggfamed by delet:
integer, the result is error| integer . Otherwise, the resu
Ing any non-integral portion of X.

5.11.4. Real(J). Double _real(d)

; eals. The conver-
All proper values of J are converted to the corresponding

sion to real or double_real is rounded.

5.11.5. Real(X)

i . The conver-
All proper values of X are converted to the corresponding reals E

sion from double_real to real is rounded.

5.11.6. Double_real(X)

All proper values of X are converted to the corresponding double reais.

5.11.7. Integer(C)

This operation yields the ASCII code for the character C.

5.11.8. Character(J)

This operation is the inverse of integer(C). If the value of J does not produce
an ASCII character, the result is error{ character].

5.12. Type correctness of operations

In SISAL the type of value produced by each expression can be determined by
the translator from the properties of the operations as specified in this section.
An operation in a program is type correct if and only if the types of its argument
expressions conform with the argument types specifled for the operation. Note

that for each operator the types of the results are determined when the Lypes of
the arguments are known.

Al Helsrence Manual Constants, Value Names and Expressions

0 CUMBTANTS, VALUE NAMES, AND EXPRESSIONS

A cspreaslon ds the basie syntactie unit denoting a tuple of values of some

lypwsa The arily of an expression is the size of the tuple of values it denoles.
'wu vapressions are said to conform if they have the same arily and the
Currespanding values are of Lthe same type. The design of the SISAL language s
abicl Whal Lhe anity and Lypes of an expression, and hence the conformily of two
paj dasiohs, ey be determined by inspection of the program. The sirmplest
by e ol i [ifesslun of arity one is a econstant, a value name, or an operatmn
applisd Lu olher expressions of arity one. The simpiest type of expression of
Wigheo anty is a series of expressions of arity one separated by commas.

01 Canslanls

A cunstant is o lewcal unit of arity one whose value and type are manifest
(v s forma. The syntax for constants follows.

Vitifaabalal = failse
nil
trus
| integer-numbuer
l real-number
[character-constant
[character-string-constant
[error | type-spec]

[l walue error] type-spec | denotes an error value of the type indicated in
Vi |ygus-spec, For example, error{ array{ integer]] denotes the undefined
value uf Lype array| integer |. This constant exists for all types, including array,
slysarm, recard, and union types. The remaining constants for each data type

aire as Follnws

I'fie nly constant of Lthe null type is the reserved word nil.
Ve consbants of Lhe boolean type are the reserved words true and false.

Wi nnnstants of the integer and real types are integer and real numbers, the
furrials of which are given in Section 3.

(s congtants of the character type are the ASCIl characters enclosed in sin-
@le quiles, as described in section 3.

rheracter string enclosed in double quotes is a constant of type
nr‘rcud character | containing the individual characters of the string as ele-
inienls. The first character is at index one,

I'sre are no olher array, stream, record, or union constants, but the various
crealion speratings rmay be used with constant arguments to denote "constant”
wrrays, streams, records, or union elements,

Videniiipolizs:

ames and Expressiong

SISAL Reference Manual Constants, Value N

gee Section 6.4

array 1: 1,2,3,4.5] % array constant, P
stream[1,2,3,4,5] 7 stream constant, s€€ Section O-
record A: 6 B:7.3] % record constant &
union T[A: 8] % constant of union type T. 128

8.2. Value names
mputed value of a specified

A value name is a name which denotes a single co i
type. Every value name is introduced either in the]_'15::3;21}9:;_1 giir? glerglttﬁir;
definition (if the value name is a formal argument of the ﬁ;{lc l-lcg o eitgher . e
or in a program construct such as a let block or & f_or ori ¢ ik ’tt a?E.
each value name has a scope and a type. and he_ts a unique va ‘ule1 Oh' 1'? th}-’PE' or
each instantiation during execution of the function or blcc_k with wnich the V&l\;e
name is associated. The scope of a value name 1S the region of program text in
which a reference to the value name denotes its value. The scope and type of
any value name may be determined by inspection of the program construct that
introduces it. Its value of course depends on the values present during the par-
ticular instantiation of the function or block.

introduced as a formal argument of a function is

the entire function definition, less any inner scopes that re-introduce the same

value name. The type of such a value name is given by a type de claration in the
function header. Its value is the value of the corresponding argument for the

relevant invocation of the function. See Sections 8.4 and 8.5 for a more com-

plete discussion.

The scope of a value name

Example:

function F { X : integer returns real)

<expression>
end function

An appearance of the value name X in the expression denotes the value of the
argument with which F was invoked. Its type is integer.

The scope of a value name introduced in a
] _ program construct such as a let of
fl:!' bl:)cllc is some region of the construct that depends on the nature of the con”
struct, less any inner scopes thal reiniroduce the same v ame. The
: L alue name-
manner in which the type and value of the value name are established depe”':ls

on the form of the construct.

Example:
let
X :real :=3.0:
- : .
o other declarations and/or definitions>;
<expression>
end let

The scope of X is the entire block, including the expression after in, less any

6-2

Y

SISAL Reference Manual

Constants, Value Names and Expressions

inner scopes that re-introduce X. Its type is real; its value is 3.0. The let con-
struct is described in Section 7.2. If this block had appeared within the scope of
an X 1ntroduced by some outer construct, that X, with its value and type. would
disappear within this let block.

6.3. Expressions

Expressions are built out of smaller expressions by means of operation sym-

bols.

Syntax:
eXpression
simple-expression
unary-op

binary-op

primary

simple-expression [, simple-expression | ...

primary [binary-op primary] ...

constant
unary-op primary
old value-name
value-name

(expression)

invocation

array-ref
array-generator
stream-generator
record-ref
record-generator
union-test
union-generator
error-test
prefix-operation

conditional-exp
let-in-exp
tagcase-exp
iteration-exp

(arity 1)

(arity 1)

{arity 1)

{arity 1)

{(arity of expression
in parentheses)
(arity is the number of
values returned)
(arity 1)

{arity 1)}

{arity 1)

(arity 1)

(arity 1)

(arity 1)

(arity 1)

{arity 1)

{arity 1)

(These four expressions
are described in
Section 7. They have
arbitrary arity.)

M d

es and
SISAL Reference Manual Constants, Velue Nam:

Expressions

value-name ot name
arentheses must be equal to

In an invocation, the arity of the expression I P
the number of arguments required by the function:

1)

: : ; ion
invocation n= function-name ([expressi®

array-ref = primary [expression]
array type-name []

l array [type-name] [expr-pair.] ot
| primary [expr-pair [; expr-pair Tesal 5

array-generator

expr-pair .= expression I expression

stream type-name []
| stream [type-name] [

stream-generator .
gxpression]

primary . field-name

i

record-ref

record [type-name] [field-def [; field-def Tl £1)

| primary replace [field : expression
[; field : expression] ... [;]]

i

record-generator

field-def = field-name : expression

field n= field-name [. field-name] ...

union-test := istag-name (expression)

union-generator = union type-name | tag-name [: expression] |

error-test = is error (expression)

field-name %= name

tag-name u= name

prefix-operation u= prefix-name (expression)

prefiz-name n= ,
e,
, touiie. renl (arity 1)
i integer (arity 1)

real (arity 1)

Operat,
P ors obey the customary precedence rules, from highest to lowest:

8-4

SISAL Reference Manual Constants, Value Names and Expressions

unary arithmetic
multiplicative
binary additive
concatenate
relational

unary boolean
conjunction
disjunction

=4 %+
%

TR A

Examples of expressions of arity one:

A

true

3.7k-02

v

"XYZ" || array{ 1:C]| "PQR"

array| |

X>2&7Z]|Y % equivalent to ({(X > 2) & Z) | Y
-X+3*B % equivalent to E-X) +{3*B)
3*(X+7Y)

fune(3 + X, Y) % if "func” returns one value

array| 3:7 |

87
ﬁ% 4,J] % see Seclion 6.4 for this,
RXY.Z % see Section 6.6 for this,
record| A: P; B: Q] % this,
R replace AX:P; B.Y: Q] % and this
is A (U)
union T[A: 3]
is error{X)
error] real |
if P then 4 eise 5 end if 7% see Section 7

8.4. Abbreviations for array cperations

The syntax provides abbreviated forms for the select, replace, and create by
elements operations, to allow convenienl array creation and handling of multi-

dimensional arrays.

Since multi-dimensional arrays are represented as arrays of arrays, the
straightforward way to select an clement is with an expression such as

AL I[K](L]
This may be written
AlJ, X, L]
The expression within brackets has arity three.

The replace operation can be used for multi-dimensional arrays by using an
expression of arity greater than one for the subscripts. Thus:

AlJ, K, L:V]

e

M

SISAL Reference Manual Constants, Val

e Names and Expressions

15 equivalent Lo
AlJ ALK = AL, K[Ls VT
thal is, A with its J,K.L element replaced by V.
Replace operalions may be composed by writing the 1V pairs in SEATERSE
within the brackets, separaled by sermnicolons.
AJL: V1 JR2:V2; .. IN: VN]
15 equivalent Lo
A[JL: VLI[J2 : V2] [N : VN]
where, as noted below, Ji and/or Vi may be expressions of any S

ive indi / an expression
Several values may be replaced at consecutive indices by USINg P

of arity greater than one.
AlJ:V, W, X]

is equivalent to:
Al :V; J+1: W J+2: X]

If multi-dimensional arrays are being used, the last index is the one that
varies when multiple data iterns are present.

AlJK.L: VWX]
is equivalent to:
ALJKL: Vi I KL+1: W JLKL+2: X]

These expressions need not be constructed by listing expressions of arity one
separated by commas. Other forms of expressions with higher arity will be
described in Section 6.7. For example:

A[J : TRIPLE(X,Y.Z)]

fills in indices I, J+1, and J+2 if TRIPLE is a function returning three values.

All of the abbreviations permissible for the replace operation are pev.-w:nn.issifi’16
for the create by elements operation, with one exception. Array creates cannot
be composed by writing a sequence of index-value pairs; such creates can only
specify the base index of the array followed by a list of th'e array values.

Examples:
array [3: X,Y.Z]

1s an array with range (3,5), and elements X, Y, and 2.

array [1: A

SISAL Reference Manual Constants, Value Names and Expressions
is & "'singleton” array with low and high indices both one.

6.5. Abbreviations [or stream operations
The append and create operations may be composed. Assuming the type
declaration

type Integer_stream = stream| integer]
the expression
stream| 2, 3, 4, 5]

is equivalent to:

stream_append(
stream_append(
strearm_append(
stream_append(
stream Integer_stream [],
2).
3),
4),
5)

8.6. Abbreviations for record operalions
There are abbreviated forms for the replace operation to allow convenient

handling of compound selectors and multiple data elements.

Accessing records with compound selectors is performed in the straightfor-

ward way:

R.A.B.C

Compound selectors may be used in replace operations by writing the field
names separated by periods:

R replace [A.B.C : V]
is equivalent to

R replace [A : R.A replace [B : R A.B replace € V1]
that is, R with its A.B.C subcomponent replaced by V.

Replace operations may be composed by writing the N:V pairs 1n sequence
within the brackets, separated by semicolons.

R replace [A: V; B: W; C.D: X]

Constants, Yalue Names and Expressions

SISAL Reference Manual

is equivalent to

(R replace [A : V]) replace [B: W]) replace [C.D: X]

6.7. Expressions of higher arity
. oa1 somputation and
The program structures provided in SISAL for condﬁ:;!::ﬁbed E} Section 7.
iteration are expressions of arbitrary arity, and are rogram text in places
Such expressions, or function invocations, may occur . Emegnt list of an opera-
that require a tuple of values of specified types: the argﬂn' tiom a list of array
tion or function invocation, the body of @ funpuon defini lts in S satigEe
indices or elements in an array operation, the list of elgmsen tion 7
erator, or in building the program structures presented in S€¢ : ’

8.8. Function invocations

A function invocation consists of the name of the function followed by an argu-

ment list within parentheses. The argument list is an expression, whose arity
and types conform to the arguments required by the function. This information
is given in the header of the function definition (see Section 8), The argument
list is usually written as a series of expressions of arity one separated by com-
mas, but it may be any expression. If a function has no input parameters, its
invocation must still have the parentheses following the function name-L.¢., &

null argurnent list.

A function invocation is itself an expression whose arity and types are the
number and types of the values returned by the function, which information also
appears in expressions with complete generality, such as an argument to arith-
metic, array, stream, and record operations. An invocation that returns several
values may only be used where expressions of higher arity are permitled.

In the following examples, Single, Double, and Triple each take 3 argurments
and return 1, 2, and 3 values, respectively:

K:=3 +(Z * Single(X+1, 3, Single{X + 2, 4, W)))

In the following example, if P is false, F LY. 2
while H is defined to be W: BEGER Gelned 1 b BOUtIE, &)

F,G H:=ifP Fhel:en Triple(X, Y, Z)
Double(X, Y,
end if { N

Since the argument list for any

multiple-result function invocation function may be any expression, it may P¢ 2

or other program structure.
3 + Single(Triple(X, Y, Z))

3 + Single(P, Double(X, Y, Z))

4 + Single(If P then 4, 5 elge Double(P, Q, R) end if, X)

SISAL Reference Manual Constants, Value Names and Expressions

The last example invokes Slngle with three argunlg“ts‘ of which the first two
are either 4 and 5 or the two values returned by Double. The third argument to
Single is always X.

SISAL: Reference Manual Program Structures

7. PROGRAM STRUCTURES

The pregram structures described in this section are specific forms of expres-
sions. lf their arity is one, they may appear in arithmetic operations.

Example:
if Pthen X else Y end if + 3

This expression has value X + 3 or Y + 3, depending on P.

7.1. The IF construct

The conditional expression selects one of several expressions, depending on
the values of boolean expressions.

Syntax
conditional-exp s if expression then expression

[elseif expression then expression] ...

else expression

end if
The expressions following if and elseif are test expressions. Their arity must be
one and their type boolean. The expressions following then and else are the
arms. They must conform to each other, and the entire construct conforms to
the arms.

The entire construct is an expression whose tuple of values is that of the first
erm whose test expression is true, or the final arm if all test expressions are
falge. If any test expression needed to evaluate the construct is an error value,
the value of the entire construct iz a tuple of error values of the appropriate
types. (If a test expression has value true, later test expressions are not needed
and may have error values without affecting evaluation of the construct).

The if construct introduces no value names. All value name scopes pass into
an if consiruct. If the scope of a value name includes an if construct, it includes
all of the expressions of that construct, so that the value name may be used any-

where inside the conditional construct.

7.2. The LET construct

The purpose of the let construct is to introduce one or more value names,
define their values, and evaluate an expression within their scope (that is, mak-

ing use of their defined values).

Syntax:

Program Structures
SISAL Reference Manual
lBt-i.n-exp e let
decldef-part
in
expression
end let
decldef-part .= decldef [; decldef] - [:]
decldef P decl
l def _
| decl [, decl] .. *% expression
decl .= value-name [, value-name]... : type-spec
def .= value-name [, value-name]...:= expression

Every value name introduced in a let block may be t_iecla.r‘Ed at most once and
deflned exactly once in that block. The declaration may be part of the
definition, or it may be by itself preceding the definiticn. A value name need not

be declared.

Examples:
X : integer; % declaration
Y:real := 4.7+ Q % declaration as part of definition
W:= 20.0; 7 definition without type declaration

The declaration of a value name (if given) must precede or be part of its
definition. Each value name must be defined before it is used (on the right hand
side of another definition). Declarations and definitions may be mixed in any
order as long as these requirements are met.

Several value names may be declared at once. The f Ilowi declares
all three nammes to be real. ' ollowing phrase

X Y, Z,: real;

es of the

Several value names may be deflned at once. The number and typ d
ht han

names must conf i 4
pide. st conform to the arity and types of the expression on the rig

1.0, 2.0, 3.0;
Triple(X, Y, Z):

nu

XY Z:
P,Q R:

Several value names /
may be declared and defined at once. In this cas® t?:cof

of a group of value :
that type. names preceding a type specification are declared t°

X:integer, Y, Z: real := 3, 4.0, 5.0

y

SISAL Reference Manual Program Structures

This declares X Lo be an integer, and both Y and Z to be real

The declarations, definition : : o
separated by semicolons. ons, and combined declarations and defimtions are

an'f:t%e scepe of each value name introduced in a let block is the entire block less
2 y inner conspructs th.at reintroduce the same value name. However, a value
ame must not be used in the definitions preceding its own definition.

bl MLSC}?WS for value names not introduced in a given let block pass into that
_ of = ience, if the scope of a value name (introduced by an outer construct)
includes a let block and that velue name is not reintroduced, it may be referred
to freely within the block.

Example:

X*T
end let

In this example, the value of P is imported from the ocuter context. The
scopes of T and X are both the entire block. A reference to X in the definition of
T would be illegal because it is within the scope of X but dces not follow the
definition of X. The arity of this construct is one, and its type is real, because
X * T bas arity one and type real

Since a value name may not be used until after it has been defined, and must
be defined only cnce in a block, it may nol appear in its own definition. Hence
definitions such as

I:=1+1;

are never legal in let blocks (though a similar construct may occur in the itera-
tion clauses of for blocks; see Section 7.4)

The expression following the word in is in the scope of all of the introduced

value names, and hence can make use of their definitions. The entire let con-
struct conforms to this expression.

7.3. The TAGCASE construct

This selects one of a number of expressions, depending on the tag of a union
value, and extracts the constituent value.

Syntax

\ : |

SISAL Reference Manual

program Structures

1 expressmﬂ

tagcase [value-name ==
tag-list : expression

[tag-list : expression]
[otherwise : expression
end tagcase

tagcase-exp

tag-list = tag tag-name [, tag-name £

those of the expres-
The entire construct is one expression whose \ralutfisui;ié'etest R préssion. 1ng
sion in the arm whose tag name matches the value che on following the word
match is found, and an otherwise clause is present- and the entire con-
otherwise is used. All arms must conform to each other,
struct conforms to the arms.
ust be of arity one and of a union
f the construct must be tags of
type., the otherwise arm is

The expression following the word tagcase m
type. The tag names appearing in the arms ©
that union type. If they comprise all the tags of that
not used; if not, the otherwise arm is required.

If a value name and ":=" appear after the word tagcase, that name is intro-

duced for each arm of the construct except the otherwise arm. Its scope in
each case is the expression in that arm, and its type Is the constituent type indi-
cated by the tag name for that arm. If an arm is evaluated {meaning that the
tag of the test expression matches the tag name of the arm), the value name is
defined to be the constituent value from the test expression. If the value name
and ":=" do not appear, the constituent value is not made available inside the
arms.

Example:
Let X be of type

union{ A : integer, B : arrayf integer |, C : real; D : boolean |
If X has tag A and constituent value 3,

tagease P:= X
tag A :
P+4
tag B :

P[6]
otherwise :
<)
end tagcase

has value 7. The first arm is taken, and P

defined to be 3, the constit (whose type is integer in that arm)

uent value of X. If X has tag B and constituent valu®

- If X has tag C or D, the construct has V0.
value is not available, since the Vﬂlue_“amrm
rwise arm. (This is because the otherwis¢ aluld
tuent types, so the type of the value name e

5. In that case the ‘
conetity

scopes do not include the ott:::zt

¢an encompass different const;

7-4

SIHAL Keference Manual Program Structures

nob ba determined.,)

More Lhan one Lag nome may share the same arm if they indicale Lhe same

Lype. In Lhin cane, the Lag names are all listed, separated by commas, after the
word Lag,

Ixample:
Let £ be of Lype

union| A integer, 1 : real; C - integer|

Then Lhe following 18 permissble,

Lagease P = X
tag A,
expression (P s integer here)
Lag I} :
expressionn (P is real here)
end tagease

All seopes of value names other than the one appearing after the word lagcase
pass into Lthe construct. An outer scope for a value name with the same name as
Lhe one appearing after Lhe word tagease does not pass into the tagcase con-

struct,

If the value of the Lest expression is an error value, the value of the entire
construct is a tuple of error values of Lhe appropriate types.

7.4. The FOR construcl

There are two forms of Lhis construet, one of which allows inner and/or outer
(Cartesian) array and stream index products to be specified ("product’ form),
the other of which does not {('non-product’ form). The non-product form per-
forms sequential iteration in which one iteration cycle depends on Lhe results of
previous cycles. The product form is a special case of the non-product form that
provides a more concise way to specify array and stream index and element
Both forms may generate a tuple of values of any type. The following text
escribes Lthe semantics of the various for expression options. For
.d information on the precise semantics, vonsult Appendix F. This
acribes a set of transformations that convert SISAL programs with
quivalent SISAL programs that use recursion instead.

wety,
informally d
more delatle
appendix de
for expressions into e

The scope of any value name defined in an ouler construct passes intc a for
construct, unless that name 1s redefined within the for eonstruct. ‘

Syntax:

S S . e s

e

SISAL Reference Manual Program Structures

iteration-exp »= for initial (non-product form)

decldef-part
iterator-terminator
returns return-exp-list
end for

for in-exp-list (product form)
[decldef-part]

returns return-exp-list

end for

iterator-terminator :: iterator termination-test
5 termination-test iterator

1"

iterator n= repeat
iterator-body

termination-test = while expression
until expression

iterator-body n= decldef-part
in-exp-list = n-8xp
‘ in-exp dot in-exp [dot in-exp | ..

in-exp crossin-exp [eross in-exp | ...

= value-name in expression | at index-list |

in-exp n=
index-list = value-name [, value-name | ...
return-exp-list n= return-clause ...
return-clause 2= [old] return-exp [masking-clause] i
|
masking-clause = unless expression |
when expression '
return-exp = value of [[direction | reduction-op] expressior
| array of expression ’
stream of expression ‘
direction n= left
;' right
: tree
7-6

SISAL Reference Manual Program Structures

reduction—op = sum
preduct
least
greatest
catenate

7.4.1. The non-product form of the FOR construct

7.4.1.1. Description

This expression computes its results based on iterative execution. It con-
tains separate sections that handle initialization, repetitive action, termination
testing, and result calculation. The general strategy is to introduce new (lecal)
identifiers, called loop names, within the expression and on sach loop pass to
compute new values for the loop names based on their previous values., When
the termination test is satisfied, the expression produces results that can be
based on either the final values of each loop name, or on the sequence of values
given to the loop names during their execution. The general structure of the
expression is shown below.

Syntax:
iteration-exp . u= for initial
decldef-part
iterator-terminator
returns return-exp-list
end for

The scope of each loop name introduced in a for construct is the entire con-
struct less any inner constructs that introduce the same value name. Loop
names may be used in the definition of other loop names, so long as the
‘definition before use' rule is observed. Each loop name must be defined before

the end of the decldef-part.

The behavior of the non-product form is as follows. The loop namnes are initial-
nce to the values indicated in the definitions appearing after the
] loop names that will carry values from one loop pass to the next
and all loop names that will be used in the returns clause must be given initial
values. This initialization is treated as th_e first iteration of the expression. Sub-
sequent execution depends on the lo_catlon of the ‘terrmnation test. If the test
appears prior to the repeat section, it executes prior to any r.eb'lmdings defined
in the iterator body. Otherwise, the test occurs after the rebindings. When the
expression evaluates to falge in a while test, or true in an until test, the itera-

tion terminates.

The iterator body {denoted by repgat.) conveys the new set of bindings to be
established for the current loop iteration. A loop name's new value may require
values computed in the previous iteration. Access to such values can be accom-
plished by using the old attribute (e.g, 1:=o0ld 1 + 1 ;). Within the iterator
body, use of a loop name without the old attribute indicates the current
iteration's loop name value, and this name cannot be used until after its value

ized exactly o
word initial. Al

T-7

Program Structurey
SISAL Reference Manual

has been specified within the repeat section. Use of the °ld£§r.l’f lét‘f;)”:im:::i
the value the loop name had on the previous loop pafss'b'ndingﬁ in Lhn:'!tt;r‘-(ﬁ
throughout the iterator body. Any lonpaames o ;,s local to each ‘l‘rar:
tor body but were not given initiel values are freated nx tnal;:je next. Their valy .
pass--they cannot carry information from one iteration to after" the iterat rL 5
can, however, be accessed in termination tests that Iappeil;le nion b‘{ ;d 1 Jn‘
body. Any loop names that are not given new values mthmd a]ed S T },Jdr.E:
assumed 10 be loop constants. All loop names can be:recciil v TRESE Tk

within the iterator body.

\ some point during loop execution each loop name's vaiue must make 4
transition sopthat theu\:glue ‘Enund to a loop name becomes the vf'a.lpel bound te
the old loop name. This transition is defined to take place immediately prior to
the execution of each iterator body. Therefore, termination tests appearing
after the iteration body have access to both the current and old versions C_?f_ the
loop names and they have the same values as if they were to appear in the 1'Lta‘r'a~
tion body. Termination tests appearing before the iteration body cannot use the
old attribute. Any references to loop names in such tests denote the most
recent binding of values.

If an error occurs during evaluation of the boolean expression controlling the
iteration, the iteration terminates and returns as its value a tuple of error
values of Lhe types specified by the return-exp-list. Array and stream results
produced within a return expression (via array of, stream of, or value of caten-
ate) have as accessible values any components correctly computed prior to the
control error. If an error occurs during initial evaluation of the loop name
values, or anywhere in the iterator-body, iteration continues using the resulting

error values. If an error occurs during evaluation of a return-exp, the error
value simply appears in the result tuple.

7.4.1.2. Result Values

The resulﬁ value of a for construct is the tuple of values defined by the
return-exp-list. As indicated earlier, the results of each for expression may
depend on all values bound to the loop names during the course of a for evalu®
tion. Fach return-exp must contain some expression that describes a resull i
be produced. For purposes of semantic definition, assume that each such
expressior is evaluated after every cycle of the loop {counting initialization as
one cycle), Therefore, each resull has a sequence of values associated with I

SISAL provides two different mea : ask-
: ns for aiter and mas
ing clauses) before they are us ing these sequences {old :

] ed for produci < rovides
three different mechanisms for constrp eyl B R

: the
ue om
altered sequences: value of, array of, ting the atctual result values fr

7.41.2.1. The OLD Modifier

E ’ i l
optici? hism;ﬂntn-?tause- may be optionelly prefixed with the modifier o1 s?:ﬂs
appearingﬁ-lthel - lleut‘of allowing its arbitrary use within expriﬁ -.sraluesl
used to produce resuits L o L0€ 0ld modifier alters the sequence % it ¥

produced by the Jast iter:.{i;s.moﬂng the last element of the sequenc®

e

SISAL Reference Manual Program Structures

7.4.1.2.2. The Masking clause Modifier

) Each resull clause may be optionally follewed by a masking clause. 4 mask-
ing clause is a boolean expression preceded by either a when or unless indica-
tor. These clauses act as filters to determine if specific sequence values should
be taken out of the sequence prior to final result calculations. After each itera-
tion cycle, the masking clauses are evaluated. If a when clause is false or if an
unless clause is true, the corresponding expression value is dropped from the
sequence. In cases where the boolean expression evaluates to an error value,
the precise influence of the masking clause depends on the type of result being

formed.

7.4.1.2.3. YALUE OF

The value of prefix signifies that the following phrase produces a single value
in one of two ways.

If the value of is not followed by one of the reduction operators, the result
produced by this clause is the last element of the sequence (as described
above). Note that if there is a masking clause, the result will be the last value
satisfied by the filter. If there is uncertainty about which value is the last one
(because the last masking clause produced an error, the resuit is error.

If a reduction operator is in the clause, it means that all elements of the
sequence will be combined using the reduction operator to produce the single
value. In this case, the type of Lhe sequence elements must be appropriate to
the specific operator: sum and product accept integer, real, double_real, and
boolean: least and greatest accept integer, real, and double_real; catenate
accepts array and stream types. The following table summarizes the use of each

of these operators.

operator name reduction operation

integer, real, or double_real addition (+), boolean or (/)

psur:tliuct integer, real, or double_real multiplieation(™),
boolean and (&)

least integer, real, or double_real minimum {min)

greatest integer, real, or double_real maximum (max)

catenate array and stream concatenation {n.

In the value of clauses that use & reduction operaltor, any masking clauses
that produce errors (i.e., it cannot be determined whether or not to include a
particular value in the sequence) causes an error value of the appropriate type
to be inserted into the sequence. Hence, all of the reduction operators except
catenate will yield the value error if any masking clause produces and error. In
the case of catenate, the result will be an erroneous array or stream that has as

ted prior to the flrst masking clause error.

aceessible values all values compu _
Note that all of the catenates after the first error are still performed. For the

7-9

spagram Slructurey
SISAL Reference Manual Fros

full implications of this action, see appendix G.
: . _rvn|1 words Ie

A reduction operator may be preceded by one of fLEI?, ::t;rmmd. right :n:‘"
right, or tree. If it is not preceded by one of theae, le dn define tho or c|r~rmlf
not be used with catenate. These three reserqu wor "m,"u:ril. A MEveED fryr-lﬁ
imposed on the reduction operation. In the following ML::;L Lhe sum oper al or Iy
iteration has produced the values 1,2,3.4,5.6 ﬂf’d T mldd they are pr‘l}flnr-r:fi I :
specified. left requires the values to be used 1N the or u:w'i o = W by
the iteration, i.e., from left to right. The equ“’”“’nt' e '

(((((1+2]+3)+4)+5}+3)+7

e used in the reverse o
ion is

rder Lhey are produced

Right requires the values to b
by the iteration. The equivalent express

1+(2+(3+(a+ {5+ (6 + 7))
Tree forces the processor to perform the reduction in i logarithrme Tashian,

The equivalent expression Is
(1+2)+(@+4) +(5+6)+(7+0)

of the reduction tree is not a powe
effect is as if the number of identity values for the operation necessary Lo bring
the number of leaves up to a power of two were added on the right. (i.e., the
rightmost value or expression is associated with a level closer to the root of the
tree). Other examples, using shorter and longer sequences, are

It the number of leaves r of twa, then the

((1+2)+ @3+ 4)) + (9)
((1+2)+(3+4) +(5+6)
((1+2)+(3+4) +((5+86)+(7+8))

'I'.h.e id.enti_ty values are: zero and false for sum, one and true for product,
positive infinity for least, negative infinity for greatest, and the empty array of
stream for catenate. '

7.4.1.2.4. ARRAY OF

d earlier
nce

aerﬁl ntrr%y of prefix signifles that elements of the sequence describe |
bef:omesoane return:-:led in the form of an array. Each element of the seque ‘
i seatiga{' :uement. where the filling begins at index position one 20
soRg el Czl-adnl y from there. If a masking clause associated with tb¥
s produces an error, the resulting array will be erroneous but all g€
e array computed prior to the first masking error will be visible.

7.4.1.2.5. STREAM OF
fief l

iped edf
ribe ot |

The atre o
am of prefix signifies that elements of the sequence desc
he sequ®”

are all :
all to be returned in the form of a stream. Fach element of t

7-10

Y

SISAL Reference Manual Program Structures

becomes a stream element, the order of the elements of the stream is the same
as the order of values in the sequence used to produce the results. If_ a masking
clause associated with this result form produces an error, the ra_-sultmg stream
will be erroneous but all elements of the stream computed prior to the et
masking errcr will be visible.

7.4.2. The product form of the FOR construct

7.4.2.1. Description

The product form of the for construct is a special version of the non-product
form that provides a more concise way to specify array and stream index and
element sets. The values in the result tuple depend only on the values defined by
the in-exp-list and decldef-part.

Syntax:
iteration-exp fi= for in-exp-list
[decldef-part]
returns return-exp-list
end for
in-exp-list = in-exp
| in-exp dot in-exp [dot in-exp] ...
! in-exp crossin-exp [crossin-exp | ...
in-exp = value-name in expression [at index-list |
index-list = value-name [, value-name | ...

All computations that can be expressed by the product form can also be
expressed by the nen-product form. The converse is not true.

This construct may introduce zerc or more index value names of type integer
zero or more element value names of the base type of an array or stream, ancl
zero or more temporary value names, the latter in the same manner as in & let
block. At least one index or element value name must be introduced. That is
there must be at least one in-exp following the word for. :

The index, element, and temporary value names must all be different. Their
scopes are the entire construct less any inner biocks that reintroduce the same
value name.

It any of the in-exp range expressions produces an error (i.e., either of th
bounds of an integer range is an error value, the array expr‘essi::m is an er .
value, or the stream expression is an error value), the results in i
value tuple will be error of the appropriate types. However, for erron
and stream generators, if the array or stream has accessible op hid,

the return
eous array
den values,

T-11

——————

Program Structures
SISAL Reference Manual

2 ay and strearm
the expression will execute over those values and produc® anyrf;l':g’;‘_f fé,”i;,:.q Ur‘.;
results with accessible or hidden values, respectively: If the r"‘i“;io’“ i an array
empty (i.e., an integer index range has Kl < L0, the array pr;?w;t-s) ek bymeot
range has no elements, or the stream expression has no i id beiow: ol .
range result produces the appropriate default value as liste

e <name> errof) -
sum <Ir§ame> 0 or [false Edependl_ng on Lype)
product <name> 1 or true depending on Lype)
least <name> error

atest <name> error _ .
gt‘iﬂnale <pame> empty array (low and high boun(‘..s
1 and 0, respectively) of empty stream
array of <name> emply array, low and high bounds
1 and 0, respectively
stream of <name> empty stream

7.4.2.2. IN expressions
Each in-exp makes a set of indices and/or elements of an array or sireas

available for use in computing a result value. There are three variations on the
theme. Any or all variations may be specified in a particular for construct

7.4.2.2.1. Index IN expressions

This introduces one or more index value names of type integer
Syntax:
in-exp u= value-name In expression

The expression appearing after the word in must be of arity two. The first anc
secend values are the lower and upper bounds, inclusive, for the index. For eac?
number within those bounds, the index is defined to be that number, 1f
definitions of the temporary names that depend on that index are made, and 2

the return expressions that depend on that index are evaluated. Each value &
the range expression must be of type integer.

7.4.2.2.2. Array element IN expressions

This introduces an element value name of the base type of an array.
Syntax:

in-exp

value-name in expression [at index-list |

index-list =

value-name [, vaiue-name] ...

SISAL Reference Manual Program Structures

_The elemenl name appears before the word in. The expression must be of
arity one and of an array type. In this case, the shape of the array defines the
range of execution of the for expression. If the array has one dimension, that
dimension defines the range of execution. The body of the for executes once for
each element of the array and during execution the identifier "value-name” is
bound to the correspending array element. If the optional clause, at, is present,
the value names following at denote index values of type integer corresponding
to the current element value's position in the array. It is an error if the number
of value names in the index list is greater than the number of dimensions of the
array expression.

_If the array given in the expression is multi-dimensional, and no at clause is
given, the default range of the for expression is over the outermost dimension
{that dimension that varies most slowly in a create-by-elements operation) of
the array, since it must be defined as an array of arrays. If the at option is
specified, then the range of the for expression is the cross product over the
number of ranges specified by the number of names in the index list. For exam-

ple, assume the following declarations are in effect:

Arrayl : array [integer]
Array2 : array [array[array [integer] | |

The following range headers would have the mearnung indicated:

1. Elem in Arrayl =>» process all elements of the array
same as above, but as values are
bound to Elem, bind the
corresponding array index value
tol

2. Elem in Arrayl at] =>

3. Elemn in Array2 => process across the outermost
dimension of Array2

4 Flem in Array? at] => process the same dimension, but
¢ N bind to I as described above

5 Flem in Array2 atl, J => process two outer dimensions

6. Elem in Array2 atl, J, K => process all dimensions

e of "Elem" varies among these examples. In the first two
s type is integer. In the third and fourth cases its
in the fifth case its type is

Notice that the typ ;
cases and the last case, Elem 5
type is array [array [integer]] an

array [integer].

This introduces an element value name of the base type of a stream.

Syntax:
in-exp = value-name in expression [at value-list |

7-13

am Strucltureg
SISAL Reference Manual Ervgt

ssion must be of
The element name appears before the word in. The Bfggince for each ele-
arity one and of a stream type. The body of the for ex?c:lue—name“ is bound to
ment of the stream and during execution the idgntlﬂt‘l‘l ‘ixse at, is present, the
the corresponding stream element. If the optional cia co'rreSponding to each
name following at denotes an offset value of type integex ¢ with an offset value
element value, The first element of the stream is associate
of one, the second with two, and sc on.

The stream range header defines a set. of index values. j}fﬁt ?13 :hl‘: ’(;‘i“:;g?gf
header and array range header do. The lower buund of this rang he
upper bound is defined by stream_size(expression).

7.4.2.2.4. DOT products in IN expression lists

: : i i in- -list, separated b
A sequence of index expressions may be given in the in-exp y
the re;:erved word dot. This range definition produces an inner, or det, praduet
range of index expressions. For example

lin 1,10 dot J in 11,20
defines the set of ten index pairs [1.11], [2,12], [3,13], etc. If all the index
ranges do not contain the same number of values, the number of tuples is t.he
number of values in the widest range. Narrower ranges are extended with
error{integer] values to equal the number of values in the widest range. For
example:

Iin 1.8 dot Jin 2529 dot K in 4,6

defines six triples :

I J K |
1 20 4

] 28 5

3 27 8

4 <8 error| integer

5 29 error| integer

6 error{ integer] error{integer

Any index expression may be dotted with any other, that is, an integer rangé
may be used with an array range and a stream range, etec. However, dot an€
products cannot be intermixed in one in-exp-list. Note that use of the at
clause with multiple indices is considered to be an implied cross product an

there;‘ore cannot be used in conjunction with the dot option. For example e
following for header is illegal.

for Aelem in Aarrayat 1,J dot
Belem in Barray at K [,

(TLLEGAL SISAL!)

Such an expression

. would ; values &
and L given values fop | andlffve to be written so as to compute the

SISAL Reference Manual Program Structures

Nam:e SC'Ogiing 15 inﬂuenceq by the use of the dot notation. FEach index
o i o mHFOduceS a new identifier name that is local tc the entire for
egree:;s;ggér A%‘;ever_! Ay such names introduced cannct be used later in the
5 : IS rule Insures that all i S M : -
dent of each other. index ranges defined by dot are indepen

7.4.2.2.5. CROSS products in IN expression lists

A sequence of index expressions may be given in the in-exp-list separated bv
the reserved word cross. The index range thus formed is the Cartesian, or
outer, product of the index expressicns. For example

I'in 1,10 crossJin 11,20

deflnes an index range consisting of the tuples [1J], where 1<=I<=10 and
11<=J<=20.

Ain Arrayl cross B in Array2

defines an index range consisting of the tuples [,J], where

array_liml(Arrayl) <= 1 <= array_limh{Array!)and
array_liml(Array2) <= J <= array_limh(Array2).

A form which allows explicit use of the index values is

A in Arrayl at] cross B in Array2 at J.

Similar forms may be used to cross stream ranges. Any index expression may
be erossed with any other, that is, an integer range may be used with an array
range and a stream range, etc. However, it is illegal to use both dot and eross in
the same in-exp-list.

Name scoping is influenced by the use of the cross nctation. Fach index
expression introduces a new identifler name that is local to the entire for
expression. Unlike the dot case, these identifiers are immediately available for

use in defining later ranges within the for header. So for example, the following

header would allow processing of a stream of arrays.

for Selemn in StreamS cross
Aelem in Selem

7.4.2.3. Result Values

The result value of the product form of the for construct is the tuple of values
defined by the return-exp-list, as for the non-product form. The value of, array
of, and stream of prefix expressions behave in a manner similar to when they

7-15

Program Structures
SISAL Reference Manual

: ders and

expression hea
the ff”f;ions‘ In the pnon-produet
d expia e sequence of

ing on th
ral ordeﬂélg form, since all ele-

tural ordering is not so
pose an ordering

appear in the non-product form, however,
cross product coptions require more detaile
form, the Ior expression execution defines a natu S
values that can be used to produce results. ILI thinp:zrna
ments of the range are independent of each other, -
clear. However, to insure determinate behavior. SISAL does ¢
of the results produced by the product form.
. : ach result cla

The basic case is the single range expression. 13%;15 f::jl.t:&; these eva]lll.l?:
is evaluated once for each element of the range. 6;0“_5 L Firig(rom Ieast
S L g L product form, masking

to greatest) as the segquence ordering. As in the non-p ™ :
clauses may be used to eliminate specific results trom this sequence. \erefore

the resulting sequence may be shorter than the original range S1ze. SISAL also

. _ 4 e on the result seguence
allows the old option on results; it has the same mﬁuencuy el i3y s

as it had in the non-product case. (This decision is mMoS : K
do not expect this particular combination of features to be particularly useful.)
Dot range expressions produce results in an analogous manner.

Cross range expressions differ in that they produce & sequence of sequences
in their pattern for generating results. If there are no modifying clauses, the
structure of the results exactly matches the structure of the Cross ranges. The
outermost sequence corresponds to the first range expression in the header.
Masking clauses may be applied as in the earlier cases, but the results may be
somewhat surprising. If a result element is masked, it causes a compression of
valid elements in the last dimension of the ranges described in the header.
Compressions can only occur in this dimension.

Given these basic extensions for defining the ordering on results produced by
the product form of the for expression, each of the specific types of result
clauses operates essentially the same as in the non-product case, exceptl as
described below.

7.4.2.3.1. VALUE OF

If value of is not followed by one of the reduction operators, the result pro-
duced by this clause is the last element of the sequence as defined above. In the
case of cross product ranges, it is the value of the last element of the last
sequence.

If value of is followed by one of the reduction oper ion is per
formed on the cn‘degtion of values in the seque?'lceafto{'ts;etzidza'egit‘ﬁgicshPl-be
rffgctmqfopera_.tmn is performed is subject to the left, right, and tree co%
:ior?lir; %r;t Spe?ﬁed- In the case of cross preduct ranges, the reduction oper®
and th performed on all elements within the lowest dimensioned sequence

en successively applied to all higher level dimensioned sequences.

7.4.2.3.2. ARRAY OF

Array of)
y ol produces an array having size equal to that of the sequenc ¢

result i
deﬂnefi isy %Ezc:i‘:biinabove and containing exactly those values in the ord®’
quence. The lower bound of the array is equal to the nd?}

value from th "
€ range clause that produced the first element of the sequerlce' ’

7-18

SISAL Reference Manua] —

the tor deflines a cross product range, theg the resulting array is multi-

ATy | | he o ¥ .
dimensional, the shape corresponding to the structure of the sequence of
sequences defined above.

T.4.2.3.3 STREAM OF

Stream of produces a stream having size equal to that of the sequence of
resulls as described above and containing exactly these values in the order
deflned by the sequence. I the for defines a cross product range, then the
vesulting stream is multi-dimensional, the shape corresponding to the structure
of the sequence of sequences defined above.

Reference Manual ; =
SISAL Punction Definitions and Compilation Units

8. FUNCTION DEFINTTIONS AND) COMPILATION UNITS

: B, 3 type and function itions. ilati
unit g}_(phmhly defines _whlck} of the functions appeariggﬁi?:tf&nzc:pgoﬁlﬁLEE
accessible to other units (via defines) and which functions may be used within
the unit without definition (glubfﬂlﬂ). Compilation units and function definitions
may also include forward function declarations to allow convenient handling of
recursive and mutually recursive functions

o within a compilation unit or function
definition. The syntax of a compilation unit is as follows, b

compilation-unit

1l

define function-name-list
[type-def-part]

[global function-header]
function-def ...

function-name-list = function-name [, functien-name] ...
function-def W= forward function function header
function function-header
[type-def-part]
[function-def] ...

expression
end function
type-def-part = type-def[; type-def]...[;]
type-def := type type-name = type-spec
function-header S function-name ([decl-list] returns type-list)
decl-list n= decl [; decl] ... [:1]
type-list e type-spec [, type-spec | ...
functicn-name == npame
Elﬁarnple:
define Merge, Push, Pop, Empty
type Stack = array [integer]
global Find (Object : Stack; Data : integer returns boclean)

forward function Empty (Object : Stack returns boolean)

ions and Compilation Unj
SISAL Reference Manual Function Definitio »
Stack returns Stack)

Push (Data: integer, Object :

function
Object, Data)

arcay_addh (
end function

function Pop (Object : Stack returns
if Empty(Cbject)

then ‘
error] integer]. Object

else ' .
Object[array_limh(Object

end if
end function

integer. Stack)

y L a.rray__remh(OhjecL}

function Empty (Object - Stack returns boolean)
array_;ize(cbjectj =0

end function

function Merge { Stkl, Stk2: Stack relurns Stack)

for
NewStack := Stkl:

SreStack := Stk2;
untili Empty (SrcStack)

repeat
Flem, SrcStack := Pop (old SrcStack)

NewStack := if Find (Elem, old NewStackS
then old Newstack .
else Push (Elem, old Newstack)

endif ;
returns
value of NewStack
end for

end function
In this example, the compilation unit defines four functions usable by other
This unit must uses one

comp_ilation units and bas no purely local functions.
function (Find) in Merge that it does not define, hence the use of the global
Empty

denotation. The forward decleration allows the Pop function to call

without prior definition of the entire body. Note that by reordering in Lhis case
the need for the forward function can be eliminated. Also, notice that because
SISAL uses structural type checking, there is no need to export type definitions-

B.1. The header and value transmission
The list of formal arguments and thei ificati in L8
header between the left parsnthesis andetitr;etiﬁidsfeiculf;;h?i'isesipg:gfﬂaums
:;:eizlp;a;ated from each other by semicolons. Each declaration may contal®
ue names, which are separated from each other by commas.
Siu'il'}x.elzzs::pa; ;f intlJ:Je formal arguments is the body of the function (the expf‘fw
{ypes ars o gi\rene'r i;nstructs which reintroduce the same value name 18 of
e e pumenty in the heafier‘declarations. and their values are the values
il lis% ‘:;nt at functhn invocation. The types of the returne value?
the Coed il ype Specmcations, separated by comrnas, aPP“"arm rery
s. This list of types must conform to the body- LR

B-2

SISAL Reference Manual Function Definitions and Compilation Units

invocation of a function, the number and types of the arguments and returned
values must match those of the definition,

" The meaning of a function invocation is as follows: If the function F is defined
Y

function F (A1 : T1; ..; An: Tn returns S1, ... | Sk)
body-expression

end function

th:_n, assuming the definition is correct and conforms to its invocation, the invo-
cation

F(argument-expression)

is equivalent to

let
~ A:T1, .. An: Tn:= argument-expression
in
body-expression
end let

B.2. The GLOBAL declaration

All functions used in a unit that are not defined in that unit must be declared
in a global declaration. This declaration consists of the word global followed by a
copy of the function's header, which is used by the translator for type checking.
Global may be used only in the context of a compilation unit. It is legal to iden-
tify a function as being global, and then within the compilation unit define a
function of the same name. In this case, the local definition overrides the global
definition. This choice allows a compilation unit to define a global function (a
situation that would arise if all units use a macro facility to include a file con-

taining all globally defined functions).
Example:
deflne Tan

global Cos (Q : real returns real)
global Sin (Q : real returns real)

function Tan (X : real returns real)
Sin(X) / Cos{X)

end function

i ilati i function Tan. Since it uses the functions Sin
This eomgialion ot Co0 they must appear in global declarations

i not defined here, > . *
?S]i C?—_:.hs th;ceh da:rgn ed in other compilation units or accessed in a sub;ou’tgdje
1ibrayry) The global declarations contain the headers for Sin and Cos, just as

B-3

SISAL Reference Manual Function Definitions and Compilation Uit

i i iti hose two functions. The f

they might appear in the deﬁmtmns"oi t!] e formal

m:;ts sppeai;?ng in the headers ("Q" in the prece_dmg example) havi;rgu.
ncluded only for syntactic consistency. The intentionniz

significance; they are i 1 , \ y
ullgat the headers be copied verbatim from the units defining Sin and Cos into the

unit defining Tan.

ere within a compilation unit that are not defineq i,

All functions used anywh n u
lobal clause at the beginning of the compilation ynit,

that unit must appear in & &

B.3. The FORWARD FUNCTION declaration

The eflective use of mutual recursion (see Section 8. 5) requires that the name
and argument and result types of a function be available before the actual
definition of that function. The forward function declaration provides that infor-
mation. This declaration permits type checking to proceed when a call is made
to a function whose body has not yet been seen.

Example:
forward function X (A : real returns real)

tu:)n(t(:gi)ouY (B : real returns real)
end function

function X (A : real returns real)
Y(A)
end function

_ In the above case the recursion is infinite. A function definition correspond
ing to the forward function declaration must appear before the end of the
enclosing _funct:on or compilation unit. The number, names, and types of Ehe
::Ec?;’?:ﬁ; :gg ithe types of the results provided in the forward functa‘;':
: . 8 corresponding funct i in the Or
in which they were declare%. ng fon definition must match, in

8.4. Inheritance of data, type definitions, and global and forward declarﬂﬁ“""

i 1

da?afvﬂﬁtef l;rl;aiilﬂﬂcess only to the data presented to it in its invocation: No
ported from any enclosing function definition.

tion ufﬁf?’il?;aﬁ?uni and definitions made at the outermost level of & c?mpilﬂ{;
redeclaration or reﬁt;ggigggm i gte lnkecited by el subsidiary funcuag;]esédy

5 -a nested functi ame
declared or defined in an outer context is not pegtlgﬁeg.f a type &

Import declarations netio?

definitions within that made in a compilation unit are inherited PY all fu

compilation unit.

Forward d ' : i
Byl nestedegii:ﬁ;m made in any function or compilation unit are mh:InO 2
compilation unit are. Forward declarations made at the outermost 1670, © 4
are inberited by all functions subsidiary il

8-4

SISAL Reference Manual Function Definitions and Compilation Units

redeclaration in an internal functio E
: n of a forward declared function narme
elready defined in an outer scope is not permitted.

Fun?tion narqes defined in any function or compilation unit are inherited by
Bl nes '_Ed‘ functlmr_m. All function names at the outermost level of a compilation
unit must be distinct. A redefinition of a function already defined in an outer
scope is not permitted.

8.5. Scope of function definitions

The scope of a function definition identifies the parts of the compilation unit
that can invoke that function. The scope of a function definition in SISAL
includes the function's own body, all functions declared alter that function at
the same declaration level, and the body of the immediately enclosing function.
The scope of a function declared in a forward function declaration includes (in
addition) all functions declared after the forward declaration. Note that this
permits recursion and mutual recursion.

Example:

type MT1 = <type-spec>
global EF1 (<EF1-header>)
global EF2 (<EF2-header>)
forward function M2 { <M2-header>)
function M1 (<M1-header>)
type T = <type-spec>

function G { <G-header>)
type U = <type-spec>

function M { <M-header>)
function N (<N-header>)
<N-body>
end function

<M-body>
end function

<G-body>
end function

function H { <H-header>)
tunction P (<P-header>)
<P-body>
end function

<H-body>
end function

: Compilation Units
SISAL Reference Manual Funetion Definitions and

<M1-body>
end Munction

function M2 { <M2-header>)
<M2-body>)
end function

The legal function invocations are as follows.

the body of may invoke functions

i o =

M1 M1, M2, EF1, EF2, G.

TrZZQ
=
3
=
DX
=)
rx]
i
=
el
N
oona

This example illustrates the possible non-symlr)netiry of acc%ss(zgéwsﬁnh:?g%ﬁ
function bodies. Since H is not declared to be orward, t :
scopes to G) cannot call H, even though they are at the same lexical legil' a}nd in
the same definition block. H can, however, call G because that definition is

specified before H. Since Pis internal to H, P can access any object that H can.

The legal uses of defined types are as follows.

the header of may use defined types
M1 MT1,

G MTL, T

M MT1. T, U

N MT1, T, U

H MT1, T

P MT1, T

the body of may use defined types
M1 MT1, T

G MT1, T, U

M MT1, T, U

N MT1, T, U

H MT1, T

P MT1, T

The compilation units comprising a program are translated separately: The

manner in which functions are linked | '< implement®
o deparent, ed into a complete program is 1mp

A

SISAL Reference Manual Function Definitions and Compilation Units

redeclaration in an interna] function of ¢ _
already defined in an outer ScCope is not perr?ﬁttc:e?ard B

Function names defined in
all nested functions. All funct

unit must be distinet. A red
scope is not permitted.

any function or compilation unit are inherited by
1on names at the outermost level of a compilation
efinition of a function already defined in an outer

8.5. Scope of function definitions

The scope of a function definition identifies the parts of the compilation unit

that can invoke t_hﬂt‘ function. The scope of a function definition in SISAL
includes the function's own body, all functions declared after that function at
the same declaration level, and the body of the immediately enclosing function.

The scope of a functicn declared in a forward function declaration includes (in
addition) all functions declared after the forward declaration. Note that this
permits recursion and mutual recursion.

Example:

type MT1 = <type-spec>
global EF1 (<EF1-header>)
global EF2 (<EF2-header>)
forward function M2 (<M2-header>)
function M1 (<M1-header>)
type T = <type-spec>

function G { <G-header>)
type U = <type-spec>

function M { <M-header>)
function N { <N-header>)
<N-body>
end function

<M-body>
end function

<G-body> _
end function

function H (<H-header>)
function P (<P-header>)
<P-body>
end function

(H—body >
end function

o

) and Compilation Units

SISAL Reference Manual Funotion Definition®

Mi-body>
end function
function M2 { <M2-header>)

M2-body>
and function

The legal function invecations are as follows,

the body of may invoke functions
M1 M1 M2, BFL EFE, G H

G M1, M2, BF1, BE2, G M

M M1 M2, BF1, BF2 G M N

N ML M2, BF1, EF2, G, M N

H W1 M2, BF1, BF2, G H P

P M1, M2, BFt, EF2, G H P

This example illustrates the possible non-symmelry of acuuss'bel.ween_\ranous
function bodies. Since H is not declared to be [orward, G Umcl all mterngl
scopes to G) cannot call H, even though they are at the same lexical level &-md n
the same definition block. H can, however, call G because that definition is

specified before H. Since P is internal to H, P can access any object that H can.

The legal uses of deflned types are as {ollows,

the header of may use defined types
M1 MT1,

G MTL, T

M MT1, T, U

N MT1, T, U

H MTL, T

2 MTL, T

the body of may use defined types
M1 MT1, T

G MT1, T, U

N MT1, T, U

N MT1, T, U

H MT1, T

F MT1, T

o

The compilation units com
manner in which functions
tion dependent,

i , The
prising a program are transiated separately: .
men

are linked into a complete program is imple

SISAL Reference Manual

APPENDIX A — STSAL Syntax

compilation-unit

define function-name-list

[type-def-part]

[global function-header |
function-def ...

————

function-name-list ::= function-name [, function-name -

It

function-def forward function function-header
[unction function-header

[type-def-part]

[function-def] ...

expression

end function
type-def-part S type-def [; type-def] ... [;]
type-def n= type type-name = type-spec

function-header function-name ([decl-list] returns type-list)

[l

decl-list T decl [; decl] s [:]
type-list = type-spec [, type-spec]

type-spec = basic-type-spec
I compound-type-spec
| type-name

basic-{ype- e boolean
ype-spec | o

1 double_real

| integer

| oot

| real

eompound-t.ype-spec::z array [t)rpe-spec]
] stream [type-spec i
record [field-spec [; field-spe [:]

i union | tag-spec [;tag-spec] .- L:

1]

. ! type-spec
d-pame] ..
ﬁEld-spec He fleld-name [, el

__—4

) SISAL Syntax

SISAL Reference Manual
. type-spec |
tag-spec u= tag-name [, tag-name J e [P
: _egpression] -
expression u= simple-expression[, simple-€ P
simple-expression ;= primary [binary-op primary 1.
unary-op g s | ™
- | = ~=
+ = ||

: *| /| &

| I
primary u= constant (ar}ty 1)

| value-name (arity 1)

(arity of expression
in parentheses)
(arity is the number of

|' (expression)

i invecation

values returned)
| array-ref (arity 1)
i array-generator (arity 1)
i stream-generator {arity 1)
| record-ref (arity 1)
|' record-generator (arity 1)
I union-test (arity 1)
! union-generator {arity 1)
| error-test (arity 1)
| prefix-operation {arity 1)
| conditional-exp
| let-in-exp
|

tagease-exp
[iteration-exp

! old value-name (arity 1)

| unary-op primary {arity 1)
invoeation #= lunction-name ([expression])
array-ref oo primary [gxpression]
array-generator u= array type-name []

| array [type-name | | expr-pair]

| primary | expr-pair | ; expr-pair] ... [;]]
expr-pair i—

expression : expression

SISAL Reference Manual SISAL Syntax
stream-generator = stream type-name [|
| stream [type-name][expression]
record-ref u= primary . field-name
record-generator = record [type-name][field-def [; field-def] ... [;]]

| primary replace [field : expression
[; field : expression] ... [;]]

fleld-def = field-name : expression
field = field-name [. field-name] ...
union-test n= is tag-name (expression)
union-generator u= union type-name [tag-name [: expression |]
error-test = is error (expression)
prefix-operation = prefix-name (expression)
let-in-exp = let

decldef-part

in

expression

end let
decldef-part 3= decldef [; decldef] ... [}]
decidef = decl

| def
{ decl [, decl] ... := expression

decl — value-name [, value-name | ... : type-spec
def .= value-name [, value-name] ... 1= expression
tagcase-exp .= tagcase [value-name :=] expression

tag-list : expression

[tag-list : expression] ..

[otherwise : expression]

end tagcase
tag-list .= tagtag-name [, tag-name e

aal I
SISAL Reference Man SAL Smu
" wg M expression then expression
conditional*e P [elseif expression then expression
else expression
end if
iteration-exp n= fOF initial (non-product form)
decldef-part

iterator—temﬂnator
returns return‘exp-iist
end for

' for in-exp-list (product form)

[decldef-part]

returns return-exp-list

end for

iterator-terminator 0= iterator termination-te st
[termination-test iterator

iterator »= repeat
iterator-body
while expression
i until expression

termination-test

iterator-body = decldef-part

in-exp-list s in-exp
| in-exp dot in-exp [dot in-exp 1

i in-exp cross in-exp [cross in-exp] I

at index-list

in-e v= i
Xp = value-name in expression [
index-li v
x-list == value-name [, value-name s
return-exp-list = return-clause
return-clause e
== [old] return-exp [masking-ciause]
masking-clause :
= unless expressi
on
! when expression
return-exp i
n= 3 SSIO
value of [[direction] reduction-oP] expr®

} array of expression
stream of expression

A-4

A

T SRR IR L ity

SISAL Reference Manual

SISAL Syntax

direction u= left
right
! tree
reduction-op u= sum
product
least

&
I
!s Ereatest
| catenate

constant u= false
| nil
I true

| integer-number

I real-number

\ character-constant

i character-string-constant

| error [type-spec]

prefix-name n=

o character {arity 1)

| double_real (arity 1)

| integer (arity 1)

| real (arity 1)
function-name o name
field-name H= name
tag-name n= name
type-name = name
value-name . name

SISAL Reference Manual Implementation Limits

APPENDIX B — Implementation Limits

1. Streams

An implementation may choose to restrict the b
those whose run time bit size may be computed at
that the base type of a stream may not be

ase type of a stream type to
translation time. This means

1. an array or stream type

2. a type that contains array or stream types as part of its

definition, e.g., a record containing an array or stream
component.

The implications of this for other parts of the language are as follows.

1. The stream of return expression prefix may not be used with
a cross product in-exp-list, since the result is a stream of
streams. See Sections 7.4.1.2.5 and 7.4.2.3.3.

2. The stream of return expression prefix may not be used with
an expression which does not mest the restrictions on the base
type of a stream given above.

An implementation may enforce the above restriction for streams used only
in certain implementation-defined ways. For example, it may enforce the res-
triction only for streams used for Input,/Output purposes.

B S A SN im}iﬁ:]

Reference Manual i
SISAL Pragmas for Various Implementations

APPENDIX C — Pragmas for Various Implementations

A pragma (tga{.‘ .is, a compiler dire.ctiye) may be specified within a comment by
including a doiiar sign character '§' immediately after the percent '%' charac-
ter, followed by the pragma, - c

1. VAX-11 SISAL

The syntax of a pragma is identical to that of a list of function invocations,
separated by commas. The pragma names replace the function names.

comment-pragma
pragma-list 2
pragma e
pragma-name

%3 pragma-list
pragma [, pragma] ...

pragma-name {\ expression)
name

se = T

) An)!' text following the last pragma in the list is treated as a genuine cormment
(x:e.. ignored). Any error encountered during interpretation of the pragma-list
will cause the compiler to produce a warning and ignore the offending pragma.

The following pragmas are supported.

1.1. INCLUDE(string)

This pragma may appear anywhere in the compilation unit. It allows access to

€ text of a SISAIL source file during the translation of another. The pragma is
useful when the same information is used by several compilation units. The con-
tents of the INCLUDEGQ file are inserted at the point where the translator
“hcounters the INCLUDE pragma.

The character string constant denoted by the string parameter must be a
velid file specification for the system running the translator.

When the tr. ds the INCLUDE pragma, it stops reading from the
CUrrent file and begos O einy from the INCLUDEQ flie. When the translator
Teaches the end of the INCLUDEd file, it resumes translation at the poinl in the
original file following the comment containing the INCLUDE pragma.

Exampie
%$ INCLUDE("SIS$LIBRARY:SISLIB.ENV")

The contents of the flle specified by the VAX/VMS file specification
S]S’;LIBRARY:SISUB.ENV are inserted in the SISAL source file.

SISAL Reference Manual Pragmas for Various Implemepgy,
ong

1.2. SUBRANGE{ low-bound, high-bound)

. ma has meaning only when it occurs before a type speg; .
miﬁig i?;gmmger or a subrange thereof. It informs the cogpilgrctfgftlacjn thag
thet type may not be outside the range defined by low-bound ang high-bues of
inclusive. Both low-bound and high-bound must be integer-numbeys - dound_
in Section 3. If low- bound is greater than high-bound, a warning is gm;ﬁned
and the pragma ignored. ated

Example
type Bit3 = %$ SUBRANGE(-4, 3)

integer

defines an integer type whose values are in the range -4 to 3, inclusive.

1.3. PACKED()

This pragma has meaning only when it occurs before a record type
specification. It instructs the compiler to pack the components of the record
into as few bits as possible. The number of bits used for each component and
their alignment depends on the target machine.

Example assuming the previous definition of the subrange type Bit3

type Packed Rec = %Z$ PACKED()
record| | : Bit3; J: Bit3 |

The minimum size of this record is six bits.

1.4 MAIN()

_ . list. It
_ This pragma has meaning only when it occurs before a name in a de?j?:t of the
informs the compiler that the named function represents the entry P unding

: 0
computation, that is, it is the function that is executed by the .
environment.

Example
define F'unc_A'
%& MAIN()
Fanc_Main,
Func_B

: : ironme”
The function Func_Main will be invoked first by the surrounding el

