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1 Introduction

This is a continuation of our toy convective ensemble modeling effort with a rewrite of the
model in the Go programming language. Go can be made as fast as C and it is a safer, more
expressive language. This rewrite will allow the application of accumulated knowledge to
make the code faster and more readable.

2 Model details

This represents version 077 of the model.

2.1 Dynamical core

We write the dependent variables in a manner friendly to the flux form of the equations of
motion, i.e., multiplied by the density of air ρ. The mass continuity equation for the dry air
component is

∂ρ

∂t
+∇ · u = 0 (1)

and the momentum equation is

∂u

∂t
+∇ · (uu/ρ+ pI) + g(ρ+ ρt + ρp)k+ fk× u− µ(z)[ρvR(z)− uh] = Su, (2)

where ρt and ρp are the densities of total advected water substance and precipitation. v is
the air velocity, u = ρv, and pI is the stress due to pressure p. vR is a reference horizontal
velocity profile, uh is the horizontal component of u, and

µ(z) = µmax(z − ztp)/(ztop − ztp) (3)

where µ(z) = 0 below the tropopause ztp. The µ(z) term represents a stratospheric sponge
layer. The quantity g is the acceleration of gravity, f is the Coriolis parameter, Su is a source
term to be discussed later, and k is an upward unit vector. Note that we have approximated
the total air density by that for dry air in the definition of u.
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Constant Value Meaning

Rd 287 J K−1 kg−1 Gas constant for air
Rv 461 J K−1 kg−1 Gas constant for water vapor
ϵ 0.623 Rd/Rv

Cpd 1005 J K−1 kg−1 Specific heat of air at const pres
Cvd 718 J K−1 kg−1 Specific heat of air at const vol
Cpv 1850 J K−1 kg−1 Specific heat of water vapor at const pres
Cvv 1390 J K−1 kg−1 Specific heat of water vapor at const vol
Cl 4218 J K−1 kg−1 Specific heat of liquid water
Ci 1959 J K−1 kg−1 Specific heat of ice (−20◦C)
µBL 3.15× 106 J kg−1 Binding energy for liquid water
µBI 2.86× 106 J kg−1 Binding energy for ice
LLF 2.5008× 106 J kg−1 Latent heat of condensation at freezing
LF 3.34× 105 J kg−1 Latent heat of freezing
eSF 611 Pa Saturation vapor pressure at freezing
TF 273.15 K Freezing point
p0 105 Pa Reference pressure
ρ0 1.28 kg m−3 Reference density p0/(RdTF )
r0 0.02 kg kg−1 Reference vapor mixing ratio
κc 0.01 kg m−2 Cloud water absorptivity

Table 1: Thermodynamic constants.

2.2 Thermodynamics

The thermodynamics of the model are defined by Raymond (2013). Table 1 defines constants.
The three primary thermodynamic variables are the total specific moist entropy s =

sa + sp, where sa the entropy of moist air plus advected condensate and sp is the specific
entropy of precipitation, the cloud water mixing ratio rt = rv + rc, where rv and rc are the
mixing ratios of water vapor and advected condensate, and the mixing ratio of precipitation
rp. Both the advected condensate and the precipitation are assumed to be liquid above
freezing and ice below freezing. Precipitation falls relative to the air with a terminal fall
speed of wt. This fall speed is set equal to constant values of wl above freezing and wi below
freezing. Densities rather than mixing ratios, e.g., ρs = ρs, ρt = ρrt, etc., are used in the
flux form of the governing thermodynamic equations, as with the dynamic equations.

The total moist entropy governing equation in flux form is

∂ρs
∂t

+∇ · (us) = Ss (4)

where Ss is the source term for moist entropy. The cloud water governing equation is

∂ρt
∂t

+∇ · (urt) = St (5)

where St is the source term for advected condensate. The precipitation governing equation
is

∂ρp
∂t

+∇ · (urp) = Sp (6)

2



where ρp is the density of precipitation and Sp is the corresponding source term.
The specific entropy of precipitation is

sp = rp

(
Cx ln

T

TF

− LX

TF

)
(7)

and the advected moist entropy written in terms of temperature and density is

sa = (Cv + rvCvv + rcCx) ln
T

TF

− (Rd + rvRv) ln
ρ

ρ0
− rvRv ln

p0rv
ϵeSF

+
LLF rv − LXrc

TF

(8)

where pd is the partial pressure of dry air, Cv and Cvv are respectively the specific heats
at constant volume for air and water vapor. Cx equals the specific heat of liquid water Cl

above freezing and ice Ci below freezing. The quantity LX equals zero above freezing and
the latent heat of freezing LF below freezing, while LLF is the latent heat of condensation at
freezing. The quantities p0 and ρ0 are respectively the reference pressure and density while
eSF is the saturation vapor pressure at freezing.

The pressure of air is diagnosed from the temperature and density of dry air and water
vapor using the ideal gas law

p = pd + pv = Rd(1 + rv/ϵ)Tρ (9)

where the partial pressure of water vapor pv = pdrv/ϵ with ϵ = Rd/Rv, the ratio of gas
constants for dry air and water vapor. The temperature in turn is diagnosed from the
density, the advected moist entropy, and the cloud water mixing ratio:

T = T (ρ, sa, rt). (10)

There are two cases in this diagnosis, the unsaturated case in which rt = rv and the saturated
case in which rt = rv + rc = rs(ρ, T ) + rc, where rs is the saturation mixing ratio and rc is
the mixing ratio of the advected condensate.

The theoretical equation for saturation vapor pressure over liquid water is used,

es(T ) = eSF

(
TF

T

)(Cl−Cpv)/Rv

exp

(
µBL

TF

− µBL

T

)
(11)

where Cpv is the specific heat of air at constant pressure, Cl is the specific heat of liquid
water, and µBL is a constant related to the latent heat of condensation. Over ice the same
equation applies except that Cl is replaced by Ci and µBL is replaced by µBI .

2.3 Source terms

Equations (1) - (6) describe the fast dynamical core of the model. The source terms on
the right sides, Su, Ss, St, and Sp represent quantities such as turbulent frictional terms,
heat, moisture, and momentum fluxes, precipitation formation, fall, and evaporation, and
radiative heating/cooling, that change less rapidly with time.

First, the eddy mixing coefficient:

K = CρE∆z2 (12)
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where C is a dimensionless scale factor, ∆z is the vertical grid size, and E is related to the
strain rate and the Brunt frequency

E = (D2 − 2N2)1/2 (13)

where we set E = 0 if D2 − 2N2 < 0.
The strain rate is

D = Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(14)

and
D2 = DijDij (15)

with implicit summation on repeated indices assumed.
The Brunt frequency is a blend of dry and moist values depending on the relative hu-

midity:

N2 =
g

Cp

(
ν
∂sa
∂z

+ (1− ν)
∂sd
∂z

)
(16)

where sa is the specific advected moist entropy (8),

sd = (Cv + rvCvv) ln
T

TF

− (Rd + rvRv) ln
ρ

ρ0
− rvRv ln

p0rv
ϵeSF

(17)

is the specific dry entropy, and

ν = 0.5[(Z − 1)/∆Z + 1] (18)

where Z = rt/rs is the relative humidity and ∆Z = 0.02 produces a smooth switch between
a saturated and unsaturated environment. ν is limited to the range [0, 1].

The source terms are functions of the eddy fluxes F... (defined below) and various other
quantities:

Su = −∇ · Fu + Suwtg (19)

for velocity,
Ss = −∇ · (Fs − ρspwtk) + ρR/T + Sswtg (20)

for entropy, where R is the radiative heating per unit mass with Cpd being the specific heat
of dry air at constant pressure. The source term for cloud water mixing ratio is

St = −∇ · Ft − ρP + Stwtg (21)

where P is the precipitation formation rate per unit mass, and the precipitation source term
is

Sp = −∇ · (Fp − ρrpwtk) + ρP (22)

where wt is the hydrometeor terminal velocity. Different values of wt can be assigned above
and below the freezing level. The terms Suwtg, Sswtg, and Stwtg are weak temperature gradient
approximation source terms, as described below. The first term for all variables is minus the
divergence of the eddy flux of the quantity in question.
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The precipitation formation rate is given by

P = Cpreciprc − Cevap(rs − r)rp (23)

where rc is the mixing ratio of advected condensate and r = rt−rc is the water vapor mixing
ratio. The constant Cprecip equals Crain or Csnow depending on whether the temperature is
above or below freezing.

The eddy fluxes for each variable are defined

Fu = −KD− ρ(KhDh +KzDz) (24)

where Dh is D with vertical velocities and derivatives omitted and Dz has horizontal veloc-
ities and derivatives omitted,

Fs = −
(
K∇+ ρKh∇h + ρKz

∂

∂z

)
s (25)

Ft =

(
K∇+ ρKh∇h + ρKz

∂

∂z

)
rt (26)

Fp = −
(
K∇+ ρKh∇h + ρKz

∂

∂z

)
rp (27)

Lower boundary conditions on the fluxes are defined by surface bulk fluxes except for pre-
cipitation. For this variable the lower boundary condition is just the surface precipitation
rate wtρp.

Extra smoothing is needed in the horizontal for numerical reasons. This is provided by
the horizontal mixing coefficient

Kh = λh(∆x2 +∆y2)/∆t (28)

where (∆x,∆y,∆z) and ∆t are respectively the grid box dimensions and fine scale time step.
Typically, λh = 0.01. The precipitation needs additional vertical smoothing for numerical
reasons as well, with

Kz = λz∆z2/∆t, (29)

where λz ≈ 0.004. All other variables have vertical smoothing with λz = λw ≈ 3 × 10−5 at
the surface, tapering to zero at the tropopause.

The surface fluxes for each variable are given by bulk flux formulas

Fsu = −ρblCDUeubl (30)

Fss = ρblCDUe(sss − sbl)− ρblrpshwt (31)

Fst = BρblCDUe(rss − rtbl) (32)

Fsp = −ρblrpwt (33)

where a subscripted bl indicates a boundary layer value of ρ, a subscripted ss indicates a
saturated sea surface value, CD is the surface drag coefficient and thermodynamics transfer
coefficient, and Ue = (|ubl|2 +W 2)1/2 is the effective surface wind, where W is the gustiness
correction. The Bowen parameter B in the mixing ratio equation equals 1 over the ocean
and is 0 ≤ B ≤ 1 over the land, depending on how moist the surface is. In addition to the
above bulk fluxes, the entropy and precipitation equations have terms related to the flow of
rain into the surface.
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2.4 Radiation

Radiative heating is provided either by a fixed radiative heating profile or an extension to
the toy radiative heating model of Raymond and Torres (1998) and Raymond (2000b).

2.4.1 Fixed radiation

The fixed radiation representation is very simple, with a constant radiative temperature ten-
dency (generally negative) up to a fixed altitude, tapering linearly to zero at the tropopause.

2.4.2 Interactive radiation

Instead of working with sums of integrals over frequency intervals as is convectionally done in
radiative transfer calculations, we sort the radiative contributions of water vapor in particular
into bins representing different ranges of absorption coefficient. These ranges are small
enough to assume that the Beer-Lambert law can applied separately for each bin using an
average absorption coefficient for each bin. The vertical radiative flux is assumed to equal
the difference between upward and downward streams:

Fr(z) =
∑
i

(I i+ − I i−) + Si+ − Si− (34)

where the sum is over all thermal infrared bins I∗ plus separate terms S∗ for solar radiation.
The radiative heating per unit mass R (see (20)) is given by

R = −1

ρ

∂Fr

∂z
. (35)

The upward and downward fluxes for each thermal infrared bin satisfy the equations

dI i+

dτi
= fiσSBT

4 − I i+
dI i−

dτi
= fiσSBT

4 + I i− (36)

where fi is the fraction of the spectrum associated with each bin, σSB is the Stefan-Boltzmann
constant, T is the absolute temperature, and τi is the optical depth for each bin, starting
upward from the surface. The differential dτi is given by

dτi = ρ(Ciκi + rlκc)dz (37)

where Ci is a constant depending on the bin, κi is the absorptivity of the gas associated
with each bin, rl is the mixing ratio of condensed cloud water, and κc is the cloud water
absorptivity. (Precipitation particles are assumed to be large enough to have small radiative
effect.)

We estimate κc = 1/(ρcL) ≈ 10 m2/kg, where we assume that the cloud water condensate
density ρc ≈ 10−4 kg/m3 results in an optical depth of unity over a geometrical distance of
L ≈ 100 m. This is roughly consistent with spherical cloud droplets of radius 10−5 m.

The equations in (36) are integrated from the bottom up for I i+ and from the top down
for I i−. The lower boundary condition on the former is I i+surf = fiσSBT

4
s where Ts is
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Bin fi κi (m
2/kg) Purpose

1 0.11 0.002 carbon dioxide
2 0.20 0.0005 windows and continuum
3 0.13 0.001 water vapor bands
4 0.11 0.00316 water vapor bands
5 0.09 0.01 water vapor bands
6 0.08 0.0316 water vapor bands
7 0.07 0.1 water vapor bands
8 0.06 0.316 water vapor bands
9 0.05 1.0 water vapor bands
10 0.04 3.16 water vapor bands
11 0.03 10.0 water vapor bands
12 0.02 31.6 water vapor bands
13 0.01 100.0 water vapor bands

Table 2: Values of constants for each thermal infrared bin.

the surface temperature and the surface is assumed to radiate as a black body. The upper
boundary condition is I i−top = 0.

The Ci have different meanings for different bins. For carbon dioxide, Ci represents the
effect of pressure broadening and takes the form

Ci = Cco2 = (ρ/ρ0)(T/TF )
1/2, (38)

where ρ0 and TF are respectively density and temperature reference values. (See table 1.)
For water vapor bands,

Ci = Ch2o = (rv/r0)(ρ/ρ0)(T/TF )
1/2, (39)

where r0 is a reference value of the water vapor mixing ratio rv. For the water vapor
continuum,

Ci = Ccont = (rv/r0)
2. (40)

The current implementation of the toy radiative model incorporates 13 thermal infrared
bins, a single bin each for carbon dioxide and for radiative windows and continuum, and 11
bins for water vapor bands. Constants used for each bin are listed in table 2.

Equations (36) are solved numerically on cell-edge levels

I i+j+1 = I i+j exp(−δj) + [1− exp(−δj)]fiσSBT
4
j+1/2 (41)

and
I i−j = I i−j+1 exp(−δj) + [1− exp(−δj)]fiσSBT

4
j+1/2 (42)

where δj = τj+1 − τj and Tj+1/2 is the cell-centered temperature.
Solar radiation is confined to a single separate bin. The equations for the upward and

downward fluxes of solar radiation are slightly different than for the thermal infrared be-
cause scattering by cloud particles between the upward and downward beams is important.
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Cloud particles can also absorb a certain fraction of the solar radiation as can water vapor.
Interaction of solar radiation with carbon dioxide is currently ignored. The upward (S+)
and downward (S−) beams of solar radiation obey

dS+

dz
= ρκcrl(S

− − ϵS+)− ρκwvrvS
+ (43)

and
dS−

dz
= ρκcrl(S

+ + ϵS−) + ρκwvrvS
− (44)

where ϵ is the fraction of scattered solar radiation that is absorbed by cloud condensate. The
last term in (43) and (44) represents absorption by the water vapor continuum. A reasonable
value of κwv = 0.0005 m2/kg. This gives about 1 K/day solar heating rate near the surface
in tropical conditions.

Note that κc is the same parameter that occurs in (37). Note also that z rather than
optical depth τ is used as the height variable. The upper boundary condition on (44) is that
S−top = Sconst cos(ϕz) is the downward component of the solar flux, equal to the product of
the solar constant Sconst and the cosine of the solar zenith angle ϕz. The surface is assumed
to have zero albedo so that S+surface = 0. Both equations are integrated from the surface up
with S−surface = 1. The solutions are then normalized so that S−top takes on the assumed
upper boundary condition value.

There are three options for the cosine of the solar zenith angle ϕz. Option 0 sets this to
zero, which means that solar radiation is ignored. Option 1 sets it to 1/π, which corresponds
to a diurnal average value. Option 2 computes the actual value as a function of time,
assuming that the sun is directly overhead at noon.

2.5 Weak temperature gradient approximation

The weak temperature gradient (WTG) approximation here implements a modified version
of spectral WTG as documented by Herman and Raymond (2014). In this version the
potential temperature is replaced by the specific dry entropy. The WTG vertical velocity is
computed as a Fourier reconstruction over the model levels

wwtg(zk) =
n∑

j=1

Cj sin(mjzk) (45)

where the zk are the grid cell levels. We assume that wwtg = 0 at and above the tropopause.
Note that n is defined so as to retain all vertical modes in the troposphere.

Since the application of WTG in the boundary layer is questionable, the value of wwtg

below the boundary layer top b is linearly interpolated to zero at the surface from the
boundary layer top value:

wwtg(z) = wwtg(b)(z/b) z < b. (46)

If we set b = 0, this interpolation is eliminated.
The Fourier coefficients Cj are given by

Cj =
2

n

n∑
k=1

ωjδ(zk) sin(mjzk) (47)
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where n is the number of levels in the troposphere and the spectral relaxation rate is

ωj =
τ 2j

(f 2 + τ 2j )
1/2

(48)

where f is the Coriolis parameter, j is the vertical mode number, and

τj = τt/j. (49)

The quantity τt is taken to be the inverse of the time required for a fundamental mode
inertial-gravity wave to cross the model domain

τt = c/D (50)

where c is the phase speed of the fundamental, non-rotating gravity wave mode and D is the
domain size. The term on the right side of (48) divided by τt is the factor by which rotation
reduces the group velocity of hydrostatic gravity waves from the non-rotating value. The
quantity δ is defined

δ(z) =
sd(z)− sdR(z)

dsdR/dz
, (51)

where sd(z) is the domain-mean dry entropy profile and sdR is the reference profile of dry
entropy.

The WTG vertical velocity also implies lateral inflow and outflow, together constituting
a “virtual” large-scale flow that relaxes the dry entropy profile toward an assumed reference
profile. This virtual flow produces real tendencies in the moist entropy and total cloud water
which counter the tendencies produced by latent heat release, surface fluxes, and radiation,
as represented in by Sswtg and Stwtg in (20) and (21).

The WTG entropy source is given by

Sswtg = −ρRwwtg
∂s

∂z
− (s− sR)Θ

(
dMwtg

dz
+ κ|uR|

)
(52)

where s is the model domain mean moist entropy, ρR and sR are the reference profiles for
density and entropy, Mwtg = ρRwwtg is the vertical mass flux, uR is the reference profile for
horizontal momentum density, and Θ(x) = x for x > 0 and Θ(x) = 0 for x < 0. A similar
equation exists for total cloud water mixing ratio rt. The first term in (52) represents
the vertical advection of domain-mean entropy by the WTG vertical velocity, while the
second represents the entrainment of reference profile entropy by the horizontal convergence
associated with increasing Mwtg with height. The κ term adds the effect of ventilation by
the ambient wind and is taken to be the inverse of the domain size D,

κ = 1/D, (53)

implying that the time scale for relaxation of the domain-mean entropy to the reference
profile value resulting from ventilation is the time for a parcel to cross the computational
domain.
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domain top

surface

Figure 1: The computational domain for a single processor is illustrated. See the text for
further explanation.

If the computational domain is assumed to be moving with some velocity vsys, then uR

is replaced by uR − ρRvsys in (52). In this case corresponding compensations must be made
in the bulk surface flux equations so that fluxes are always calculated using earth-relative
winds.

The addition of WTG domain ventilation is new to this version of the model and does
not appear in Herman and Raymond (2014).

A nudging term that relaxes the horizontal mean of the horizontal velocity toward a
reference profile, as represented in (19), is included as a part of the WTG package:

Suwtg = τd[uR − uh(ρR/ρ)] (54)

where τd is the dynamical relaxation rate, uh is the horizontal model domain-mean wind
velocity times density, and uR is the reference profile wind times density. The ratio of refer-
ence profile to mean densities in the last term insures that velocities rather than momentum
densities are nudged.

2.6 Numerical issues

The code for this model is written in the Go language and is set up for parallel processing
using the message passing interface (MPI) protocol. Go is a modern language which empha-
sizes clarity and safety of code as well as execution speed. Table 3 lists the output variables
of the model along with their meaning and units.

Lax-Wendroff differencing is used to advance the computation in time. Executing one
time step is a two-part process. First, fluxes of the prognostic variables are computed on the
unstaggered grid. Flux divergences are then computed on the staggered grid using these data,
advancing the calculation by half a time step. Fluxes are then computed on the staggered
grid and the divergences of these fluxes are used to advance a full time step from the original
unstaggered grid data. Lax-Wendroff is second-order in both space and time and is inherently
flux-conservative, which means that thermodynamic variables are accurately conserved over
long time periods.

Since the governing equations are fully compressible, sound waves are computed explicitly,
and the time step is necessarily small using an explicit scheme such as Lax-Wendroff. For
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Variable Description Units
v(x,y)sys system horizontal velocity m/s
wtgu(x,y,z) WTG reference air momentum density kg/m2/s
wtgpres WTG reference pressure Pa
wtgrho WTG reference density kg/m3

wtgdrt WTG reference total cloud water density kg/m3

wtgddryent WTG reference dry entropy density J/K/m3

wtgdent WTG reference moist entropy density J/K/m3

wtgdsatent WTG reference saturated entropy density J/K/m3

wtgrt WTG reference mixing ratio g/g
wtgdryent WTG reference dry entropy J/K/kg
wtgent WTG reference moist entropy J/K/kg
wtgsatent WTG reference saturated entropy J/K/kg
wtgv(x,y) WTG reference horizontal air velocity m/s
wtgsrcv(x,y) WTG source of horizontal momentum kg/m2/s2

wtgsrcrt WTG source of total cloud water kg/m3/s
wtgsrcent WTG source of moist entropy W/K/m3

wtgsrcrtcum Cumulative source of wtgsrcrt kg/m3

wtgsrcentcum Cumulative source of wtgsrcent J/K/m3

rho air density kg/m3

pres air pressure Pa
u(x,y,z) air momentum density kg/m2/s
ddryent dry entropy density J/K/m3

dent moist entropy density J/K/m3

dsatent saturated entropy density J/K/m3

drt total cloud water density kg/m3

drr precipitation density kg/m3

drsat saturated water vapor density kg/m3

Table 3: Model variables. “Density” indicates the mixing ratio of a quantity times the air
density. Parentheses in the first column indicate the vector components of a quantity.
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greater computational efficiency, slowly changing source terms are calculated every nth time
step where typically n = 10. Source terms are applied only to the full-step calculation.

The model domain is broken up into a horizontal rectangular grid of processor domains.
The grid in a processor domain is illustrated in figure 1. Domains are three-dimensional with
the same structure in the dimension normal to the page. Each processor domain is split into
cells as shown. The data grid used to produce the output is cell-centered, as illustrated by the
blue dots. The red dots represent a staggered grid that is used in intermediate calculations
at each time step associated with the Lax-Wendroff scheme. No stretched grids are used; all
grid cells are the same size.

Communication is needed with adjacent processor domains. The green dots represent
data in the boundary cells of the adjacent domains. Boundary information is transferred
between processor domains using MPI. These transfers wrap around the model domain for
processor domains on the edge of the model domain. Thus, the full model domain is subject
to periodic boundary conditions.
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