AUGUST 1988

DAVID J. RAYMOND

501

A C Language-Based Modular System for Analyzing and Displaying
Gridded Numerical Data

DAVID J. RAYMOND

Physics Department and Geophysical Research Center, R&D Division, New Mexico Institute of Mining and Technology,
Socorro, New Mexico

(Manuscript received 18 May 1987, in final form 16 December 1987) ,

ABSTRACT

A system for analyzing and displaying gridded numerical data called Candis is described. The system is written
in the C programming language, and is built on a standard way of representing such data. The analysis package
is modular, hierarchical, and extensible. Facilities available on the UNIX"' operating system enhance its ease

of use.

-1. Introduction

Over the years, a number of formats have been in-
troduced for representing numerical data produced by
various observing systems and numerical models.
These formats have the advantage of providing a well-
defined standard for the benefit of analysis programs.
Examples are the Block Data Set (BDS) of McPherron
(1976), the Universal Format for meteorological radar
data (Barnes 1980), FLATDBMS of Smith and Clauer
(1986), the Common Cartesian Format (CCF) of Mohr
et al. (1986), and the Common Data Format (CDF)
of Treinish and Gough (1987). These systems typically
isolate the programmer from details of data represen-
tation by providing a standard set of access subroutines.
Data files are generally self-defining, in that all the in-
formation required to interpret a dataset is included
in the dataset.

A common feature of all these systems is that access
routines are written in Fortran. One disadvantage of
Fortran is that dynamic allocation of arrays is not
available except possibly in nonportable extensions on
particular operating systems. This makes the construc-
tion of general purpose analysis programs awkward, as
the largest array ever expected must be allocated space
at compile time.

With the spread of the UNIX operating system to a
wide range of hardware, the C programming language
(Kernighan and Ritchie 1978) is becoming widely
available. The C language is generally accompanied by

T UNIX is a trademark of Bell Laboratories.

Corresponding author address: Dr. David J. Raymond, New Mex-
ico Institute of Mining and Technology, Dept. of Physics, Socorro,
NM 87801.

© 1988 American Meteorological Society

a set of libraries to do mathematics, input and output,
and other functions such as dynamic memory alloca-
tion. Though not strictly part of the language definition,
these libraries are quite standardized. The ability to
dynamically allocate memory plus the variable pointer
facility- of C allow the construction of compact and
general analysis programs.

This paper describes a system written in the C lan-
guage for the analysis and display of gridded numerical
data (Candis). As with the systems described above,
Candis is based on a standard way of representing nu-
merical data, with associated standard access methods.
In addition, the system is modular, with individual
modules reading and writing files in standard format.
It may be extended by creating new modules. The sys-
tem is also hierarchical, in that applications are con-
structed by writing shell scripts invoking modules or
other shell scripts.

Unlike some of the above systems, access to data
files is purely sequential. Random access to files facil-
itates many operations in data analysis. However, the
advent of computers with large virtual memories allows
rather large files to be read completely into “memory.”
Subsequent addressing of different parts of such files
corresponds to a form of random disk access, and has
the advantage of being completely transparent to the
user. Some understanding of how paging works is
needed to use this method intelligently, but a similar
comment can be made of more conventional forms of
random access. :

One benefit of using only sequential access is the
ability to construct applications as sequences of mod-
ules in which the output of one module is fed directly
into the input of another. This so-called pipe mecha-
nism first appeared on the UNIX operating system,
but is becoming available on other systems as well.
Advantages are that a proliferation of intermediate files

502

is avoided, and the hierarchical construction of appli-
cations using a shell or command processor is facili-
tated. In addition, new applications may require the
development of only a small number of new programs,
the bulk of the processing being done by existing soft-
ware. This speeds development and makes debugging
easier.

The organization of this paper is as follows. Section
2 describes the data format used with Candis. Section
3 illustrates the operation of Candis using examples of
existing analysis programs. The analysis and display of
Doppler radar data is described in section 4. Section 5
is a summary and discussion.

2. Common data format

In this section I specify the format of data files used
by the system, and then introduce some additional
concepts outside the formal specification, but of great
utility.

a. Formal specification

The file structure used here became locally known
as the common data format before the publication of
the Treinish and Gough (1987) system of the same
name. The collision in terminology is unfortunate, but
I will try to avoid confusion by using lower case letters
for the common data format of the Candis system.
Changing our terminology would be difficult, as it has
become deeply embedded in the documentation.

Common data format files contain three parts, which
occur in sequence (see Fig. 1). The first part is the

HEADER

STATIC SLICE

FIRST VARIABLE SLICE

SECOND VARIABLE SLICE

LAST VARIABLE SLICE

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 5

header, which is a sequence of alphanumeric characters
organized into lines. The second part is called the static
slice, and contains data such as calibration fields. The
third part contains one or more variable slices, each
slice containing a particular instance of a set of data
fields. This partitioning is internally defined so that the
file is nothing more than a stream of bytes to the un-
derlying operating system. In particular, no dependence
is made upon, say, the physical record structure of some
device such as a magnetic tape or a disk drive.

As mentioned above, the header is organized into
lines. Each line must be terminated by a newline char-
acter (i.e., linefeed) and must not exceed 81 characters
in length, including the newline. White space (i.e.,
spaces and tabs) before the final newline is ignored.
The maximum number of lines in a header is norm-
ally 300.

Figure 2 shows the contents of a typical header. Since
the header is totally alphanumeric, its contents may
be examined by text editors. As Fig. 2 shows, the header
contains 5 sections, namely, 1) comments, 2) param-
eters, 3) static field descriptions, 4) variable field de-
scriptions, and 5) file format. The header is then ter-
minated with a single line containing an asterisk in the
first position.

The comment section is free form, subject only to
the restrictions on line length, number, and termination
discussed above. Each line of the parameter section
contains a parameter name-parameter value pair sep-
arated by white space. The value is in alphanumeric
form, and need not even be numeric. However, it can’t
contain white space. Following the parameter value,

COMMENTS

PARAMETERS

STATIC FIELD DESCRIPTIONS

VARIABLE FIELD DESCRIPTIONS

FORMAT SPECIFICATION

ELEMENT COUNT

FIRST STATIC FIELD

SECOND STATIC FIELD

LAST STATIC FIELD

" RG. 1. Schematic layout of a common data format file. Variable fields have
the same structure as the static field.

AUGUST 1988

*kkcommentskks
radcedric:

project = SOCO

date 2Aug84

time 11:21:56 MDT

lat. 33:57:10.80

long. = 107:6:29.05
radvert: u v w d wi wt
particle ubc

cdfwindow: z 4 13
cdfwindow: x -2 8 y ~4 6
*kxparameterskxx
azimuth 90.000000 ¢
x0 -2

yo -4

20 4

dx 0.250000
dy 0.250000
dz 0.500000

nwau

DAVID J. RAYMOND

503

azimuth of x-axis relative to north
index parameters

badlim 999.0 # bad data limit

bad 1000.0 # suggested bad data value
kkgtatic fieldswr

x 100 0 s 1 x 41 # east, km (index field)

y 100 0 s 1 y 41 # north, km (index field)
z 100 0 s 1 z 19 # up, km (index field)

rho 10000 0 s 1 z 19 # density, kg/m~3

pres 10 0 s 1 2z 19 # pressure, kPa

2s 100 0 s 1 2 19 # scale height, km

*xkvariable_fields***

time 1000 02 0 #
u320s3 %41y 41 z 19 #
v 3205 3 x 41y 41 z 19 #
w3205 3 x 41y 41 z 19 #
2cpd 32 0 s 3 x 41 y 41 z 19 #
d3208s 3 x 41y 41 2z 19 #
wi 32 08 3 x 41y 41 z 19 #
wt 32 0 s 3 x 41 y 41 z 19 #
ek formatrs

float

*

time after midnight, ksec

particle velocity components, m/s (east)
(north)

(up)

reflectivity, 4dBZ

horizontal divergence, ksec”-1
integrated vertical velocity, m/s
particle terminal velocity, m/s

FIG. 2. Example of a common data format header.

and separated by white space, is an optional comment.
The comment must begin with a pound sign. This pro-
vides commenting capability in addition to the com-

13) Array size of the fourth dimension, dsized
14) An optional comment as in the parameter de-
scription lines.

ments found in the first section of the header. Use of

parameters is up to the programmer—they play no

direct role in defining the rest of the file.

The static field section describes the data that occur
in the static slice. Each line describes a field. A field is
an array of numbers in zero, one, two, three, or four
dimensions, and is the basic unit of data in the common
data format representation. Fields described in this

section occur in the same order in the static slice.

A field description contains a series of alphanumeric
strings separated by white space. These strings have the

following meaning in sequence:

1) The name of the field
2) The multiplicative scaling constant, smu/
3) The additive scaling constant, sadd

4) The precision in packed integer format (c, s,

orl)

5) The dimensionality of the field (0, 1, 2,

or4)
6) Name of the first dimension, dnamel
7) Array size of the first dimension, dsizel
8) Name of the second dimension, dname2
9) Array size of the second dimension, dsize2
10) Name of the third dimension, dname3
11) Array size of the third dimension, dsize3
12) Name of the fourth dimension, dnamed

Only as many of entries 6-13 need be included as is
justified by the dimensionality of the field, e.g., a two
dimensional field would require 6-9, while a zero di-
mensional field (a scalar field) would require none.
The meanings of entries 2—-4 will be explained below
in the description of the format section.

The variable field section describes the structure of
variable slices in the same format used for the static
field section. Multiple variable slices can occur, but
they all must have the same structure. This restriction
makes the storage of variable length data somewhat
awkward, but greatly simplifies analysis programs.

The format section contains just one line that has a
string equal to “float,” “int,” or “ascii.” This indicates
the way in which data elements in the static and vari-
able fields are represented. In the float format, data
elements are stored sequentially in the internal single
precision floating point format used by the subject
computer. In ascii format data elements are in ASCII
character set floating point form (g format in Fortran
or C) separated by white space. In this case, white space
can include newlines as well as space characters and
tabs. In int format the field elements are stored se-
quentially as integers in binary representation at a level
of precision specified by entry 4 in the associated field
definition line. The one character codes here refer to

3,

504

associated types in the C language, namely, ¢ = char,
or nominally 8 bits, s = short, or nominally 16 bits,
and / = long, or nominally 32 bits. The quoted numbers
of bits refer to the values used in C compilers on com-
monly available computers, but there is no guarantee
that these values will always hold.

The integer format actually contains data that are
scaled so as to be representable as an integer. The scal-
ing parameters smu/ and sadd are defined in the header
for each field, and it is up to the creator of the file to
give these sensible values. The integer representation
is obtained from the equation 7 = F*smul + sadd
+ 0.5*s where Fis the floating point value and / is the
integer value. The inverse transformation is F = (/
~ sadd)smul. The term 0.5*s in the first equation is
to enforce rounding rather than truncation in the float
to integer conversion. If F*smul + sadd is positive, s
= +1. If negative, s = —1 for computers that truncate
negative floats toward zero, and +1 otherwise. The dif-
ferent integer precisions allow tradeoffs between pre-
cision and dynamic range on one hand, and data stor-
age space on the other hand. Since a separate precision
is defined for each field, this tradeoff can be made on
a field-by-field basis.

A consequence of the above definitions is that the
only file format that can generally be expected to trans-
port from one computer type to another without mod-
ification is the ascii form. The float format will very
rarely transport. Storage of data as 16 bit integers is
frequently used to facilitate transport between com-
puters, but even this can be tricky, as different com-
puters may represent integers with different byte order.
The main criterion with the ascii format is that both
computers do indeed use the 7 bit ASCII standard to
represent characters. Issues having to do with parity
bits and extraneous characters such as carriage returns
and nulls at the ends of lines need also to be considered.

Each slice has the following structure. At the begin-
ning there is an 8 byte subheader that contains the
element count, or the number of elements in the slice.
The elements from each field then occur in sequence.
The element sequence for multidimensional fields is
the same as in the C language, i.e., the last dimension
mentioned in the field definition is iterated most rap-
idly.

The element count is obtained by adding up the ele-
ments from all constituent fields. The number of ele-
ments in a field is simply unity times dsizel times
dsize2 . . . , where as many dimension sizes are included
as there are dimensions. For example, a scalar, or zero
dimensional field would have an element size of one,
whereas a two dimensional field would have dsizel
times dsize2. The element count is represented in the
slice subheader as an ASCII-coded decimal integer.

In the header, all section sub-headers (e.g., * * *pa-
rameters** *—see Fig. 2) must be present, even if there
are no entries for that section. There must be one or
more variable slices, and if there are no static fields,

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

/7
VOLUME 5

the static slice element count must still be present, albeit
with a value of zero.

b. Useful constructs

I now discuss a number of concepts that are not a
formal part of the common data format specification,
but that turn out to be quite useful. _

Even though successive variable slices are typically
envisioned to represent fields at successive times, no
special mechanism is provided to specify the time of
each slice. Instead, one simply defines a scalar variable
field called, for instance, “time,” that contains the time
information. This sequence field need not even be
time—it could be, for instance, elevation, with the idea
that successive slices represent fields at different levels
rather than different times. For use with certain soft-
ware, it should be monotonically increasing with po-
sition in the file. :

Another useful construct is the index field. Index
fields are one dimensional static fields with the same
dimension name and field name. They are useful for
specifying the domain over which data are defined. For
instance, if data are defined for x between O and 10
km at intervals of 2 km, then one would define an
index field “named” “x” with dsizel = 6. The suc-
cessive elements of this field would be assigned the val-
ues 0, 2, 4, 6, 8, 10. Index fields aid plotting routines,
and it is good practice to define an index field for each
dimension used in a common data format file. Note
that the elements of index fields need not be equally
spaced. For instance, if data points were closer together
for small x in the above example, the index field might
take on values 0, 0.5, 1, 2, §, 10.

A more economical way of defining a domain is to
specify index parameters. These are typically used when
equally spaced data points must be guaranteed. Some
programs search the parameter section of the header
for parameters of the form dname0 and ddname, where
dname is a dimension name that occurs in a field def-
inition. For instance, if a dimension name “x” is found,
parameters with the names “x0” and “dx’ are sought.
These are the index parameters for the dimension X,
and are interpreted respectively as the starting value
and increment for points in the x domain on which
field values are defined. For example, if x0 = 3 and
dx = 2.5, then the x values 3, 5.5, 8, . .. are implied.
Most programs that use index parameters assume de-
fault values of 0 and 1 respectively for the starting value
and the increment if the corresponding parameters are
not found.

Many observational datasets have regions of bad or
missing data. The prime example is radar data, wherein
data are only defined in regions containing precipita-~
tion particles. Many of the programs written for com-
mon data format files look for parameters called “bad”
and “badlim.” The value of the latter parameter is as-
sumed to define the range of valid numerical data. Val-

AUGUST 1988

ues larger than “badlim” in absolute magnitude are
assumed to indicate that the datum is bad or missing.
The parameter “bad” suggests a value (greater than
the value of “badlim™) to be used to indicate bad data.
If these parameters are missing, default values of 1.e30
and 9.99¢e29 are respectively assumed.

3. Hierarchical approach to data analysis

Programs in the Candis system can be classified into
one of three levels, namely primitive functions, filters,
and shell scripts. Casual users should be able to obtain
considerable utility from the system by programming
at the highest and simplest level, namely the shell script
level. However, new projects will often require the cre-
ation of new analysis programs, or filters. Generally
these can be kept quite simple, as many standard func-
tions will already be available to solve standard parts
of the analysis problem. The shell script and pipe
mechanisms provide an effective way of combining
standard and non-standard operations. Recourse to the
lowest level should rarely if ever be necessary. This is
the level of direct manipulation of common data for-
mat files, and is adequately done by a library of prim-
itive C language functions.

The primary exception to this rule occurs when a
common data format file is created by a program in a
language different from C. In this case the C primitives
can’t be used. However, creation of a particular com-
mon data format file is much easier than interpreting
an arbitrary file, so this presents no particular problems.
(A word of caution: It is generally not safe to assume
that languages other than C produce binary data in a
form that is compatible with the C representation. For
instance, Fortran implementations sometimes write
binary data in a record structure with embedded byte
counts, checksums, etc. Thus, translation between lan-
guages, even on the same computer, can cause prob-
lems. Use of ascii format should minimize these prob-
lems. Recall, however, the different order in which
multidimensional arrays are stored in Fortran and in
most other languages, including C.)

I now describe the approaches used and specific
functions developed for the three levels of program-
ming. v

a. Primitive functions

The required primitive functions fall into four cat-
egories, namely functions to create common data for-
mat headers, to interpret these headers, to read and
write headers and data slices, and to access fields within
slices. Header information may be needed throughout
the period in which a data file is being accessed, so the
philosophy is to read it into a user-defined buffer that
can be retained. The imposition of a maximum number
of header lines allows static allocation of buffer mem-

DAVID J. RAYMOND

505

ory. This is memory-inefficient for small headers, but
simplifies programming.

The technique for creating a new common data for-
mat header is to create a null header (with just the
section labels) and then add comments, parameters,
and fields on a line-by-line basis. Functions exist to
perform each of these tasks. If a new header consists
of an old header plus additions, it can be created by
copying the old header to a new buffer and then ap-
plying the above functions. Partial copies of individual
sections of headers can also be accomplished.

Interpretation of headers is perhaps the most difficult
task. Functions exist to extract the comment section
from a common data format header and to determine
the format of the data file. In addition, there are func-
tions to extract parameter values and field character-
istics by either name or position in the header. If re-
quested parameters or fields do not exist, a special code
is returned, and appropriate action can be taken by
the calling program.

There are functions to read and write headers and
slices, as well as a function to query the header as to
the expected number of elements in a static or variable
slice. This information is needed so that consistency
with the element count in the appropriate slice may
be checked. As mentioned above, it is customary to
statically allocate memory for header buffers. However,
data slices of unpredictable size can occur, and dynamic
allocation of memory is important here. Once the
header is read, the memory required for static and dy-
namic slices is readily computed. Space can then be
allocated using a C language library function. There is
a Candis routine that simplifies this operation.

Accessing particular fields within a data slice is done
by assigning a pointer to the start of the field of interest.
Two functions exist to accomplish this task, one of
which also returns additional information about the
field in question.

Important declaration information is kept in a file
named “cdfhdr.h.” Any program calling the primitive
functions needs to include this file. Visual inspection
of the file can also enhance understanding of their op-
eration. Table 1 gives the names and summarizes the
uses of available primitive functions.

b. Standard filters

In the context of UNIX, a filter is a program that
reads data from the standard input, transforms it in
some way, and sends the result to the standard output.
Standard input and output are pre-defined ports that
normally read from and write to the user’s terminal,
but may be redirected to a file or another program.
The operation of all but the simplest filters is controlled
by command line arguments. If errors occur, error
messages are sent to standard error, another pre-defined
output port. The standard error writes to the user’s
terminal, and normally isn’t redirected like the standard

506

TABLE 1. Primitive functions and their use. Functions that deal
with fields can be directed either to the static or variable section of
the header. Getslice and putslice only work on files in float format.
Special handling is required for slices in other formats.

Name .Use

gethdr read header from designated stream to a header
buffer

getelent read an element count from designated stream

getslice read data slice from designated stream

puthdr write header to designated stream from a header
buffer

putslice write data slice to designated stream

nullhdr create null header in specified buffer

copycmt copy comment section to new header buffer

copypar copy parameter section to new buffer

copyfld copy static or variable field section to new buffer

addcline add comment line to specified header buffer

addpar add parameter entry to specified header buffer

addfld add field description to speécified header buffer

getcmt extract comment from specified header buffer

getpar extract parameter name and value by position from
a header buffer

seekpar extract parameter value by name from a header
buffer

getfld extract field characteristics by position from a
header buffer

seekfld extract field characteristics by name from a header
buffer

getfint extract file format from a header buffer

elemcnt extract expected element count from a header buffer

getbuff allocate memory for a slice buffer

getptr compute a pointer for a specified field

getptr2 compute a pointer and return field information

output. This provides a mechanism for separating data
from error messages. When filters are invoked with an
incorrect number of arguments, a “usage” statement
is printed to standard error, and the filter exits. This
provides a simple form of on-line help. Candis filters
typically read and write common data format files and
record their actions in the comment section of the out-
put file. Translating filters convert foreign data formats
to common data format. Programs that read or write
more than one data file do not fit into the filter para-
digm and must obtain names of desired files from the
command line. However, most desired operations on
data can indeed be regarded as filters. A naming con-
vention has been adopted, in which all general purpose
filters begin with the prefix “cdf.” _

The natural data format for most numerical work
is the float format. Most filters therefore only work on
comimon data format files in this format. A filter
(cdftrans) is provided to transform files from any for-
mat into any other.

One of the most commonly needed operations is to
determine the contents of a common data format file.
“Cdflook” fulfills this need by displaying the header
and selected information about each slice on the stan-
dard output.

Several filters are available to limit the domain over
which data are passed to the output file. “Cdfwindow”

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 5

passes only data within requested limits for specified
dimension names. “Cdftsel” passes only variable slices
that have values of a specified sequence field within a
particular range. “Cdfextr” passes only those fields
specified as command line arguments. “Cdfrdim”
passes only data defined at a particular value of a spec-
ified dimension name, and thus reduces the dimen-
sionality of those fields with a dimension of that name.

Three programs combine data into bigger chunks.
“Cdfcat” combines all variable slices of a particular file
into a single variable slice. A specified sequence field
is turned into an index field, and the dimensionality
of all other fields is increased, with the new dimension
being given the name of the new index field. “Cdfcatf™
merges homogeneous files such as successive radar vol-
umes into a single file. “Cdfcatf™ is not a filter, be-
cause it obtains its input from files listed on the com-
mand line. Compatibility between files is checked.
“Cdfmerge” combines heterogeneous files, each with
only a single variable slice. Static and variable slices
from each file are merged into a single file. This allows,
for instance, the merging of aircraft and radar data for
common display. (Unlike the CCF system mentioned
in the Introduction, no conversion to a common
Cartesian coordinate system is done by this program.)
Collisions between field names are prevented by ap-
pending a unique suffix to fields from each input file.

Rtape, as its name suggests, reads magnetic tape files
onto disk. Since some existing data formats depend on
a particular record structure for their decoding, rtape
passes on information about the physical record struc-
ture on the tape by prepending each record with a byte
count for that record. Tape records of arbitrary size
can be read, and different record sizes can be mixed
within a particular tape file. A number of common -
data format filters use rtape output.

Numerous other filters have been written, but the
above examples give the flavor of the Candis system.
One filter not mentioned so far is a plotting filter called
cdfplot. This is sufficiently complex that it is discussed
separately. UNIX-style documentation exists for all of
the above filters, and on the primitive functions as well.

¢. Shell scripts

All operating systems have some form of command
interpreter. Marny are suitable for constructing complex
applications by combining calls to programs in a script
or text file which is read by the interpreter. The UNIX
command interpreter is called the “shell,” and I illus-
trate its use with an example taken from the analysis
of the output of a time-dependent, two-dimensional
numerical model.

The sample shell script, named “slice,” reads as fol-
lows:

: make arbitrary slice and plot
if test $# -1t 4

AUGUST 1988 DAVID J.

then echo “Usage: slice testnumber reducevar reduceval
cmdlist ...”
else
if test -f txz$1
then
echo -n
else
echo -n “making txz file ...”
expand 0 < test_$1 | cdfcat time 0 201 51 > txz$1
echo “done”
fi
foriin $4 $5 $6 $7 $8 $9
do list="8list $i”
done
cdfrdim $2 $3 < txz$1 | cdfplot $list
$PG
fi

The function of slice is to make contour and vector
plots over two-dimensional subspaces of the three-di-
mensional space of the model, x, z, and time. These
subspaces include snapshots at a given time and time
sections at constant x and constant z. The input to
slice consists of a common data format file containing
multiple variable slices, one per time level. This file is
created by the numerical model, and is assumed to
have the name “test__N” where N is the number of
the test run. The first function of slice is to create a file
named “txzN,” in which all variable slices have been
combined into one using cdfcat, and in which certain
auxiliary fields have been computed by a special pur-
pose program “expand.” The vertical bar in the line
containing these programs indicates that the output of
expand is piped into the input of cdfcat. This sequence
is only invoked if the file txzN doesn’t already exist,
so that this relatively time consuming operation need
not be repeated. The subspace extraction and plot gen-
eration is accomplished by the line containing cdfrdim
and cdfplot.

The symbols “<” and “>" respectively indicate re-
direction of standard input and output from keyboard
and terminal to the indicated files. Character sequences
consisting of a dollar sign and a number are dummy
variables replaced by the corresponding command line
arguments to slice. Thus, $1 refers to the desired test,
$2 to the dimension to be held constant, and $3 to the
desired value of that dimension. Subsequent dummy
variables contain instructions to the plotting routine,
cdfplot. These are concatenated into a single string by
the looping construct that begins with “for.” $PG is a
variable that is set previous to the invocation of slice
indicating which graphics device should receive the
plots. One of the features of slice is that if less than
four command line arguments are typed, a usage state-
ment is printed and the shell script exits.

Though relatively simple, this shell script illustrates
the features needed to make a command processor
useful in the context of Candis, namely dummy vari-
able replacement, looping, and branching. It is also
useful if shell scripts can invoke other shell scripts. It

2999

RAYMOND

507

is evident from the above example that individual filters
must not operate in an interactive manner through the
user’s terminal. All control over filter operation must
be via command line arguments. This is necessary to
avoid collisions between terminal input and output
from different filters. If interactivity is desired, it should
be limited to the uppermost level, i.e., the shell script
itself.

d. The portable graphics system

The filter cdfplot referred to above invokes a locally
developed graphics system called Pgraf. Candis makes
no commitment to any particular graphics system.
However, Pgraf (for “portable graphics™) provides
some useful lessons that are worth describing, even
though its capabilities are relatively primitive.

Pgraf, as the name implies, was developed to port
easily from one graphics device and computer to an-
other. To facilitate this, a main program interfaces to
hardware through six simple, low level subroutines.
These are easily rewritten for each graphics device, and
versions could be made to drive various graphics stan-
dards as well. User programs actually invoke subrou-
tines that create a file containing a device-independent
graphics metacode, A separate program then reads the
metacode file and draws the graphics images on the
desired device. Available graphics functions include
station plots, line graphs, scatter plots, contour plots
with optional hatching for emphasis, and vector plots.

The filter cdfplot serves as a general purpose link
between Candis and the portable graphics system, al-
lowing arbitrary one and two-dimensional fields to be
graphed, contoured, etc. It therefore largely eliminates
the need to write special purpose programs to generate
plots. A complete description of the operation of cdfplot
is beyond the scope of this paper, but examples of its
use will be cited in the next section.

One important feature of cdfplot is that by default
it prints out a copy of the entire comment section of
the common data format header adjacent to the actual
plot. Since Candis filters record their actions as com-
ments, this provides a complete history of significant
operations on the data with every plot.

4. Synthesized radar data

The National Center for Atmospheric Research
(NCAR) has developed programs to synthesize mul-
tiple Doppler radar data and extract three dimensional
particle and wind velocities (Mohr et al. 1986). One
of the first major uses of the Candis system has been
to further analyze output data from these programs.

- In this section I present our efforts in this area as a

hopefully nontrivial example of the use of Candis.
Several specialized filters were developed to handle
the output of NCAR’s programs. The first, called rad-
cedric, simply converts the output of the CEDRIC pro-
gram into a common data format file. Radcedric re-

508 JOURNAL OF ATMOSPHERIC
quires that NCAR tapes be read onto disk by rtape,
which is discussed in the previous section. CEDRIC
presents data fields as a sequence of two dimensional
arrays at different levels. Radcedric converts these into
a single three dimensional field in x, y and z for each
variable at each analysis time. Typically one then has
Cartesian components of particle velocities, reflectiv-
ities from one or more radars, and possibly vertical air
motion obtained from integration of the continuity
equation. CEDRIC field names are retained, but con-
verted to lower case. The prefix “rad” indicates pro-
grams dealing exclusively with radar data.

Radvert recomputes the vertical air motion based
on a locally-derived algorithm (Krehbiel, personal
communication). The ambient pressure and density
fields are computed and stored in the static slice in the
course of these computations.

Figure 3 shows a contour plot of vertical and hori-
zontal winds for a thunderstorm that occurred over
Langmuir Laboratory in central New Mexico. It was
created with the following command:

cdfrdim z 7 < b16 | cdfplot 6,6,t/u,v,3,3,v/
wi,4,1,c/wi,-4,4,1,f; $PG

Radcedric, radvert, and cdfwindow were used sepa-
rately to create the file “b16.” Cdfrdim then extracted
a slice through the data at an elevation of 7 km. The
result was passed to cdfplot, which made a vector plot
of the horizontal wind components, u and v, and 4 m
s~! contours of the vertical wind, wi. Vertical hatching
indicates wi > 4 m s~!, while horizontal hatching in-

AND OCEANIC TECHNOLOGY VOLUME 5

dicates wi < —4 m s~!. Horizontal wind vectors have
a cross‘at their tail indicating the analysis point. Vector
components one grid interval in length equal 3 m s ™.

A filter called cdfocut can substitute for cdfrdim with
the result that the subspace is a vertical plane with ar-
bitrary azimuth and location. Bilinear interpolation is
made to the desired plane, and horizontal velocity
components in and normal to the plane are also com-
puted. Replacement of cdfrdim by cdfocut in the above
script makes possible the examination of data along
noncardinal directions. .

CEDRIC works with data at one analysis time (ac-
tually, the range of times over which all radars complete
a single volume scan) and combines it into a single file
called a volume. The resulting common data format
files thus contain a single variable slice. Certain analyses
such as the computation of Lagrangian parcel trajec-
tories require data at different times. Cdfcatf provides
a way to combine multiple volumes into a single file.
Cdflagr then uses such a file to compute trajectories
from specified starting points in space and time. In-
tegrations can proceed both forward and backward in
time, and either air parcel or particle trajectories can
be computed. In addition to the actual trajectories,
cdflagr interpolates and stores the values of all fields
along the trajectories.

As an example of the use of cdflagr, we compute the
trajectories of air parcels reaching z = 10 km at x = 4
km at the time of Fig. 3. Figure 4 shows air velocities
and reflectivity in a vertical plane defined by x = 4
km, while Fig. 5 shows the projection into this plane
of trajectories reaching the above-defined line at time

o Sty -
= & T radcedric:
- project = S0CO
date = 2Aug84 .
time = 11:21:56 MDT
4.00 r— lat. = 33:57:10.80
long. = 107:6:29.05
radvert: u vwd wi wt
particle ubc
cdfwindow: z 4 13
2.00 cdfwindow: x -2 8 y -4 6
cdfrdim: z 7
vector (uxi,vx1,3,3)
contour (wixi,4,1)
N fill(wizxl,-4,4,1)
0.00 - p 4'.'1 ! . z=7
gl:sn; i ll! time = 40.916
N
NHRRE 5
W NNY
!ﬂ DY 1
2,001 VRS !
S a Sosasamaa
s Y 7 / ._.,w-/: o=
Y '// ///,:1 ~e
e ////rr— . Y ey
~4.00 % 55 5% !
-2.00 0.00 2.00 . 4.00 6.00
Yy VS X

FiG. 3. Example of a plot produced by the filter cdfplot. Radar-derived horizontal and vertical
winds are shown in a horizontal plane at 7 km. A vector equal to a grid interval in length represents
3 m s~! in horizontal wind. The cross defines the analysis point and indicates the tail of the vector.
Vertical wind contours are at 4 m s~ intervals, with horizontal hatching indicating vertical winds
less than —4 m s™~! and vertical hatching for vertical winds greater than +4 m s~

AUGUST 1988

DAVID J. RAYMOND

509

T I T
4 // radcedric:
L P project = S0CO
12.0 j ‘ /7 date = 2Aug84
: iy time = 11:21:56 WDT
oo b I /w-\\u/m//// lat. = 3?(:)?[7;1%835
ong. = 16:29,
\\\\ww\\} \{{’J"!{ "/"’“(//(™ radvert: uv wd wi wt
10.0 1:4// ,0‘('0\1 IIH particle ubc
f///////} \‘/,/,ﬁ\\!‘l\ \l Cde}ndOW:Z413
cdfwindow: x -2 8 y -4 6
9.00 - e/l ///{] f'\ ',,/,4\\),;\\\\4% cdfrdim: x 4
RN i ~// N SN\ | vector (vl wixl, 3,6)
pornes 1 Fill(zcpasi,-30,30,3)
8.00 ~ ll‘ t—// \} \ \\4/)/*\\4,;#\\\4—5 x=4ch ’ P
r’o.g;\;// /xr/[/ti’ % \\;/}/4\\4,;1\\\;; time = 40.916
7.00 “—%#kk(/// 0/0\%// /(‘?sf \-1,@///4\\-./,4#\\\40-4
T L//// /o\g////f /[}-./p/o,o/um\—a/oa\’\\\w
6.00 h‘a’(!‘/{ (\s//// 4N '4/0,¢ﬂ,¢~4\4A4\ \\ -
(Y] 0\'///I‘L NAHLA A A E E A S g \
5.00 “‘ t\(///t‘)‘ 4 —?:f'h\id'l'/}\(~
i 14‘4 1!4;»4-» n A ,o\\
g CrHA
4.00 La WKLY 1ot H [
~-4.00 -2,00 0.00 2.00 4.00
zvsy

FIG. 4. Vertical section at x = 4 km at the same time as Fig. 3. Wind components in the y-z

plane are shown. Vector components equal to a horizontal grid interval represent 3 ms™',

while

the corresponding vertical scaling is 6 m s}, The difference reflects the different grid intervals in
the vertical (500 m) and horizontal (250 m). Radar reflectivities exceeding 30 dBZ are indicated

by vertical hatching.

= 409 ks (kiloseconds after midnight). Successive
diamonds indicate parcel positions at intervals of 100
s. The results clearly show that some parcels originated
from near cloud base at 4 km, even though vertical
velocities at lower levels are quite small by the analysis
time. Figure 5 was created with the following com-
mand:

cdflagr u v wi time 40.9 -0.1 21 x 4 z 10 < b0 | cdfplot
-4.6,x/4,13,y/6,10,t/y,z.1,p/y,z,4,m ; $PG

The input file “b0™ was created by concatenating sev-
eral successive volumes with cdfcatf.

Cdflagr works by creating a new common data for-
mat file consisting of two dimensional fields, the two

T 1 T T]

radcedric:

12. 4 project = SOCO

20 date = 2Aug2d
time = 10:45:47 MDT

11.¢0 L | lat. = 33:57:10.80
long. = 107:6:29.05
radvert: uv w d wi wt

10.0 0000000 > particle ubc
cdfwindow: z 4 13
cdfwindow: x -2 8 y -4 6

9.00 |- cdfcatf:
b4 b7 b10 bi3 bié
cdflagr: u v wi time

8.00 40.9 ~.1 21 2 10 x 4
graph (yx1,z=1,1)

7.00 - mark (yx1,z%1,4)

6.00

5.00 L

4.00 L n

-4.00 -2.00 0.00 2.00 4.00
ZVsy

FIG. 5. Projection into the y~z plane of trajectories of parcels reaching the line x = 4 km, z
= 10 km at the time of Figs. 3 and 4. Integration is backward in time for a maximum of 2000 s.
Parcel positions at 100 s intervals are denoted by the diamonds. Note that some parcels originated

from as low as 4 km,

510

dimensions being parcel number and time. Three of
these fields are called “x,” “y,” and “z,” and in the
above example, “y” and “z” are plotted against each
other. In addition to these fields, cdflagr creates addi-
tional fields with the same names as fields in the input
file. These contain the input fields sampled along the
trajectories of the associated parcels. '

One of the recognized problems in meteorological
data analysis is combining data of disparate types. The
Mohr et al. (1986) CCF system solves this problem by
interpolating everything to a Cartesian grid. The Candis
system offers the alternative of combining heteroge-
neous data without modification in the same common
data format file using the cdfmerge utility mentioned
above. Cdfplot can then be used to present these data
sets on the same plot. Figure 6 shows an example of
this procedure, wherein the trajectories of Fig. 5 are
overlayed on the reflectivity field shown in Fig. 4. This
was done by diverting the output cdflagr into a tem-
porary file “lagr1” and then merging this file with the
radar volume of interest, “b16”:

cdfmerge b16 ““ lagrl ”.1” > b16.1

The output file was given the name “b16.1,” and all
fields from the parcel trajectory file were given the suffix
“.1.” Fields from b16 were given a null suffix. Figure
6 was then made using the command

cdfrdim x 4 < b16.1 | cdfplot 6,10,t/zcp4,10,3,c/
2¢cp4,-30,30,3,f/y.1,2.1,1,p/y.1,2.1,4,m ; $PG

The merger process in this case is only graphical,
whereas the CCF system is capable of, say, combining
different sources of wind information on a common

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 5

grid using an objective analysis scheme. The latter ap-
proach is also possible using the Candis system, but
sometimes graphics overlays are all that is required.

5. Summary and discussion

The key feature of Candis is use of the C program-
ming language for its implementation. Though this a
potential barrier to use by programmers experienced
only in Fortran, the ability to dynamically allocate
memory and to manipulate pointers provide substan-
tial advantages in the construction of general purpose
analysis programs. The general purpose nature of Can-
dis filters derives directly from these characteristics.

Another important feature of Candis is that appli-
cations can be built up in a hierarchical fashion using
a mix of old and new filters in conjunction with a shell
script. The key to this capability is the restriction of
programs to strict serial access of data in the standard
format. The availability of large virtual memory com-
puters alleviates this restriction in cases where random
access is needed; the entire file is simply read into
memory.

The final feature that enhances the utility of Candis
is the flexibility of the common data format. All data -
are represented on grids of from zero to four dimen-
sions, with data defined over different spaces being kept
separate by judicious use of index fields. Unlike CCF
or the CDF system of Treinish and Gough (1987),
heterogeneous data can easily be stored in the same
file. The advantage is that different types of data can
be made available to a common analysis program in
a structured fashion without having to access more than
one file.

————————————

A7 TN 1| cdfrdim: x 4

cdfmerge:

\ b16

...... . lagrl .1

i{ contour (zcpd#1,10,3)
| fill(zcp4dx1,-30,30,3)
graph(y.1%1,z.1%1,1)
> mark (y.1%1,z.1%1,4)
X =4

time = 40.916

2.00

-4.00 -2.00
z Vs y

0.00

4.00

FIG. 6. Regions of high radar reflectivity as in Fig. 4, with the trajectories of Fig. 5 overlaid.
Reflectivity is contoured at 10 dBZ intervals, and regions with reflectivity exceeding 30 dBZ are

. hatched.

AUGUST 1988

One important consequence of the structure of the
common data format is that variable length data are
difficult to store efficiently. By allowing successive
variable slices to be variable in length, this goal could
be accomplished. However, the added complexity was
not judged to be worth the gain in generality. One way
variable length data, e.g., significant-level sounding data
from a collection of stations, could be handled is to
allocate a variable slice of maximum plausible size and
define all unused storage as bad. This approach does,
of course, make files larger than they strictly need
to be.

Efficiency of operation, narrowly defined in terms
of minimizing demands on processor time and disk
storage and access, was »not a goal of this project. The
point was to define a system that minimized the effort
required to develop new applications. In light of the
ever-increasing costs of software and the ever-decreas-
ing costs of hardware, this seems like a reasonable point
of view. In spite of this, response time in data-intensive
applications such as Doppler radar is tolerable on
modern workstations. There will, of course, be appli-
cations in which absolute maximum efficiency must
be extracted from the hardware. Candis may not be
suitable for such applications.

One area in which the Candis system may be useful
is in the direct generation of datasets in the field. The
format is simple enough that very little overhead is
imposed on the data collection system, and the ability
to write an indefinite number of variable slices without
knowing how many there will be beforehand is essential
to field-generated data. Since it is easier to create com-

DAVID J. RAYMOND

511

mon data format files than it is to interpret them, the
real time system need not be restricted to use of the C
language or the UNIX operating system.

Candis software will be made available to other users
through the University Corporation for Atmospheric
Research’s UNIDATA project.

Acknowledgments. The critical comments of Bill
Winn resulted in clearer and more useful constructs at
all stages of this project. The comments of anonymous
reviewers were also appreciated. Student programmers
Sarah Bottomley, Dale Harris, Robert Solomon, and
Dinh Ton That made significant contributions. This
work was supported by National Science Foundation
grants ATM-8311017, ATM-8611364, and ATM-
8605136.

REFERENCES

Barnes, S. L., 1980: Report on a meeting to establish a common
Doppler radar exchange format. Bull. Amer. Meteor. Soc., 61,
1401-1404.

Kernighan, B. W., and D. M. Ritchie, 1978: The C Programming
Language. Prentice-Hall, Inc., 228 pp.

McPherron, R. L., 1976: A self-documenting source-independent data
format for computer processing of tensor time series. Phys. Earth
Planet. Inter., 12, 103~111.

Mohr, C. G., L. J. Miller, R. L. Vaughan and H. W. Frank, 1986:
The merger of mesoscale datasets into a common Cartesian for-
mat for efficient and systematic analyses. J. Atmos. Oceanic
Technol. 3, 143-161.

Smith, A. Q., and C. R. Clauer, 1986: A versatile source-independent
system for digital data management. Eos, Trans. AGU, 67, 188.

Treinish, L. A., and M. L. Gough, 1987: A software package for the

% data-independent management of multidimensional data. Eos,
Trans. AGU, 68, 633-635.

