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Abstract

We study a quasi-one-dimensional steady-state Poisson-Nernst-Planck model
for ionic flows through membrane channels. Excess chemical potentials are in-
cluded in this work to account for finite ion size effects. This is the main difference
from the classical Poisson-Nernst-Planck models, which treat ion species as point
charges and neglect ion-to-ion interactions. In addition to ion sizes, the qualita-
tive properties of ionic flows, in terms of individual fluxes and total flow rates of
mixture, depend on multiple physical parameters such as boundary concentra-
tions and potentials, diffusion coefficients, and ion valences. For the relatively
simple setting and assumptions of the model in this paper, we are able to charac-
terize, almost completely, the distinct effects of the nonlinear interplay between
these physical parameters. The boundaries of different parameter regions are
identified through a number of critical potential values that are explicitly ex-
pressed in terms of the physical parameters. We believe our results will provide
some useful insights for numerical and even experimental studies of ionic flows
through membrane channels.
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1 Introduction

In this work, we study the qualitative properties of ionic flows through ion channels
via a quasi-one-dimensional steady-state Poisson-Nernst-Planck (PNP) type system.
PNP systems are basic primitive models for electrodiffusion that treat the medium
as a dielectric continuum (see [6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 23, 24, 25, 26,
33, 34, 38, 56], etc.). Under various reasonable conditions, the PNP system can be
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derived from more fundamental models such as the Langevin-Poisson system (see,
for example, [11, 34, 49, 51, 56, 61]) or the Maxwell-Boltzmann equations (see, for
example, [2, 33, 34, 56]), and from an energy variational analysis (see [29, 30, 32,
40, 65, 67]). The classical PNP (cPNP) system contains only the ideal component of
electrochemical potential, which treats ions essentially as point-charges, and neglects
ion size effects. It has been simulated (see, e.g., [8, 9, 10, 12, 23, 28]) and analyzed
(see, e.g., [1, 3, 4, 18, 21, 36, 43, 41, 42, 47, 53, 62, 63, 64, 66]) to a great extent. A
major weak point of the cPNP model is that the treatment of ions as point charges
is only reasonable in the extremely dilute setting. Furthermore, many extremely
important properties of ion channels, such as selectivity, rely on ion sizes critically, in
particular, for ions that have the same valence (number of charges per particle), such
as sodium Na+ and potassium K+, the main difference is their ionic sizes.

The PNP type model considered in this paper contains an additional component,
an uncharged non-local hard-sphere potential (an approximation to the excess chemi-
cal potential defined in (2.6)), to partially account for ion size effects. Physically, this
means that each ion is approximated as a hard-sphere with its charges at the center of
the sphere. Both local and nonlocal models for hard-sphere potentials were introduced
for this purpose. Nonlocal models give the hard-sphere potentials as functionals of ion
concentrations while local models depend pointwise on ion concentrations. An early
local model for hard-sphere potentials was proposed by Bikerman ([5]), which is simple
but unfortunately not ion specific. The Boubĺık-Mansoori-Carnahan-Starling-Leland
local model is ion specific and has been shown to be accurate ([58, 59], etc.). The
PNP models with ion sizes have been investigated computationally for ion channels
and have shown great success (see [22, 24, 25, 26, 27, 29, 30, 32, 37, 38, 44, 46, 52, 67],
etc.). Existence and uniqueness of minimizers and saddle points of the free-energy
equilibrium formulation with ionic interaction have also been mathematically ana-
lyzed (see, for example, [19] and [40]).

As expected, ionic flows through membrane channels exhibit extremely rich phe-
nomena. This is why ion channels are nano-scale valves for essentially all activities of
living organisms. This is also the very reason that it is a great challenge to understand
the mechanisms of ion channel functions. The challenge in mathematical analysis is
due to the fact that, very often, specific dynamics depend on complicated nonlinear
interplays of multiple physical parameters such as boundary conditions (boundary
concentrations and boundary potentials), diffusion coefficients, ion sizes, permanent
charge distributions, etc. There is almost no hope to have explicit solution formu-
lae for such a complicated problem even with simple boundary values. Fortunately,
the recent development in analyzing classical PNP models ([18, 41, 42]) sheds some
lights on the I-V (voltage-current) relations in simplified settings. This development
is based heavily on modern invariant manifold theory of nonlinear dynamical systems,
in particular, the geometric theory of singular perturbations. But, most crucially, the
advance reveals a special structure specific to PNP models. An upshot of this advance
is that, far beyond the existence results, it allows a more or less explicit approxima-
tion formula for solutions, from which one can extract concrete information directly
related to biological measurements.

Recently, extending the approach in [18, 42], the authors of [35] provided an
analytical treatment of a quasi-one-dimensional version of a PNP type system which
involves two oppositely charged ions with zero permanent charge and a non-local hard-
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sphere potential. In particular, an approximation of the I-V relation was derived by
considering the ion sizes to be small parameters, which is crucial for establishing the
following results.

(i) There exists a critical potential Vc such that the current I increases (resp.
decreases) with respect to ion size if the boundary potential V satisfies V >
Vc (resp. V < Vc);

(ii) There exists another critical potential V c such that, the current I increases
(resp. decreases) in λ = r2/r1 where r1 and r2 are, respectively, the diameters
of the positively and negatively charged ions if V > V c (resp. V < V c).

In [46], among other things, the authors successfully designed an algorithm for
numerically detecting these critical potentials (Vc and V c) identified in [35] without
using any analytical formulas from [35], even for the case with nonzero permanent
charge.

In this work, we study a quasi-one-dimensional PNP model with the same setting
as in [35]. We focus on ion size effects on individual fluxes and the total flow rate of
matter, in particular, on the first order terms (in radius) of the individual fluxes and
the total flow rate of matter.

We take particular advantage of the work in [35] to provide a detailed explanation
of how these physical parameters interact to produce a wide spectrum of behaviors
for ionic flows. The main contribution of this paper is that we give explicit parameter
ranges for qualitatively distinct effects on ionic fluxes. We emphasize that our results,
for the relatively simple setting and assumptions of our model, are rigorous. We
believe these results will provide useful insights for numerical and even experimental
studies of ionic flows through membrane channels. It should be pointed out the quasi-
one-dimensional PNP model and the non-local hard-sphere model (see (2.7) below)
adopted in [35] and in this paper are rather simple. Aside the trivial fact that they will
miss the three-dimensional features of the problem, a major weakness is the missing
of the excess electrostatic component in the excess potentials. Important phenomena
such as charge inversion and layering may not be detected by this simple model.

The following scaling laws are also established (see Propositions 2.4 and 3.9):

(a) The contribution to the individual fluxes, the I-V relations and the total flow
rate of matter from the ideal component of the electrochemical potential scales
linearly in boundary concentrations;

(b) The contribution (up to the leading order in radii of ion species) to the individual
fluxes, the I-V relations and the total flow rate of matter from the non-local
hard-sphere component of the electrochemical potential scales quadratically in
boundary concentrations;

(c) All critical potentials (Vc and V c from [35], V̂c, V̂
c, V1v, V2c, V

c
1 and V c

2 iden-
tified in this work) scale invariantly in boundary concentrations.

The rest of the paper is organized as follows. In Section 2, we describe the quasi-
one-dimensional PNP model of ion flows, a non-local model for hard-sphere (HS)
potentials, the formulation of the boundary value problem of the singularly perturbed
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PNP-HS system, and the basic assumptions. Results from [35] are recalled, and these
will be the starting point of our study.

In Section 3, we study ion size effects on individual fluxes and the total flow
rate of matter. Six critical potentials Vjc, V

c
j for j = 1, 2, V̂c and V̂ c are identified.

Each of these critical potentials depends on other physical parameters, and hence,
divides the space of all parameters into two regions. The physical parameter space is
thus decomposed by these critical potentials into different regions and, over different
regions, the ion size effects on individual fluxes (resp. the total flow rate of matter)
are different and are rigorously analyzed (Section 3.1). The relations between the
six critical potentials and those of Vc, V

c identified in [35] are established; moreover,
partial orders and total orders among all critical potentials are provided in terms of
conditions on other parameters (Section 3.2). A rather striking result on the sensitive
dependence of these critical potentials on boundary concentrations for nearly equal
left and right boundary concentrations is obtained (Section 3.3).

The paper ends with a concluding remark provided in Section 4.

2 Models and two critical potentials

In this section, we briefly recall the model of PNP systems with non-local hard sphere
potentials for ion sizes and the main result obtained in [35], which characterizes ion
size effects on the I-V relations.

2.1 A one-dimensional PNP-type system

We assume the channel is narrow so that it can be effectively viewed as a one-
dimensional channel that connects the interior and the exterior of the channel. A
quasi-one-dimensional steady-state PNP model for ion flows of n ion species though
a single channel is (see [45, 50])

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e

( n∑
j=1

zjCj(X) +Q(X)

)
,

dJi
dX

= 0, −Ji =
1

kBT
Di(X)A(X)Ci(X)

dµi
dX

, i = 1, 2, · · · , n,

(2.1)

where X ∈ [0, l], e is the elementary charge, kB is the Boltzmann constant, T is the
absolute temperature; Φ is the electric potential, Q(X) is the permanent charge of
the channel, εr(X) is the relative dielectric coefficient, ε0 is the vacuum permittivity;
A(X) is the area of the cross-section of the channel over the point X ∈ [0, l]; for the
ith ion species, Ci is the concentration (number of ith ions per volume), zi is the
valence (number of charges per particle) that is positive for cations and negative for
anions, µi is the electrochemical potential, Ji is the flux density, and Di(X) is the
diffusion coefficient.

For system (2.1), we impose the following boundary conditions (see, [18] for jus-
tification), for k = 1, 2, · · · , n,

Φ(0) = V, Ci(0) = Li > 0; Φ(l) = 0, Ci(l) = Ri > 0. (2.2)
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Ion channels link macroscopic reservoirs. The boundaries are treated as the macro-
scopic reservoirs in which the electroneutrality conditions

n∑
j=1

zjLj =

n∑
j=1

zjRj = 0 (2.3)

are typically maintained.

Remark 2.1. Without electroneutrality boundary conditions, there will be boundary
layers, one at each boundary. In this case, say, for the boundary layer at the left
boundary x = 0, the values ΦL and cLi ’s of the potential and concentrations of the
limiting points of the boundary layer can be determined uniquely from the boundary
condition V and Li’s alone and the electroneutrality conditions hold for {cLi } (see
[18, 42]). One can then replace the boundary condition (V,Li) at x = 0 with (ΦL, cLi )
to perform the analysis.

For simplicity, throughout this paper, we will assume the electroneutrality bound-
ary conditions (2.3).

For ion channels, an important characteristic is the so-called I-V relations (current-
voltage relations). For a solution of the steady-state boundary value problem (2.1)-
(2.2), the rate of flow of charge through a cross-section or current I is

I =
n∑
j=1

zjeJj . (2.4)

For fixed boundary concentrations Li’s and Ri’s, Jj ’s depend on V only and formula
(2.4) provides a relation of the current I on the voltage V . This relation is the I-V
relation.

The electrochemical potential µi for the ith ion species consists of the concentration-
independent component µ0i (x) (e.g. a hard-well potential), the ideal component
µidi (x), and the excess component µexi (x):

µi(x) = µ0i (x) + µidi (x) + µexi (x)

where

µidi (x) = zieφ(x) + kT ln
ci(x)

c0
(2.5)

with some characteristic number density c0. The excess chemical potential µexi (x) to
account for the finite size effect of charges consists of two components: the hard-sphere
component µHSi and the electrostatic component µESi ([57, 58]); that is,

µexi = µHSi + µESi . (2.6)

The Density Functional Theory (DFT) ([31, 39, 48], etc.) states that µexi (x) is actually
a functional of the concentrations, {cj(x)}. But no explicit formula for the functional
dependence is available.

For the hard-sphere component µHSi with two ion species, one has ([20, 54, 55,
60, 57, 58])

µHSi =
δΩ({cj})
δci

, (2.7)
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where

Ω({cj}) =−
∫
n0(x; c1, c2) ln(1− n1(x; c1, c2))dx,

nl(x; c1, c2) =

2∑
j=1

∫
cj(x

′)ωjl (x− x
′)dx′, (l = 0, 1),

ωj0(x) =
δ(x− rj) + δ(x+ rj)

2
, ωj1(x) = Θ(rj − |x|),

(2.8)

where δ is the Dirac delta function, Θ is the Heaviside function, and rj is the radius
of the jth ion species.

2.2 The steady-state boundary value problem and assumptions

The main goal of this paper is to examine the qualitative properties of the ion size
effect on ionic flows via the steady-state PNP system (2.1)-(2.2).

For definiteness, we will take essentially the same setting as that in [35], that is,

(A1). We consider two ion species (n = 2) with z1 > 0 and z2 < 0.

(A2). We assume the permanent charge Q(X) to be zero.

(A3). For the electrochemical potential µi, in addition to the ideal component µidi
defined in (2.5), we also include non-local hard sphere potential (2.7) to ap-
proximate the excess component µex.

(A4). The relative dielectric coefficient and the diffusion coefficient are constants, that
is, εr(X) = εr and Di(X) = Di.

In the sequel, we will assume (A1)–(A4). We first make a dimensionless rescaling
following ([21]). Set C0 = max{Li,Ri : i = 1, 2} and let

ε2 =
εrε0kBT

e2l2C0
, x =

X

l
, h(x) =

A(X)

l2
, Di = lC0Di;

φ(x) =
e

kBT
Φ(X), ci(x) =

Ci(X)

C0
, Ji =

Ji
Di

;

V̄ =
e

kBT
V, Li =

Li
C0

; Ri =
Ri
C0
.

(2.9)

The BVP (2.1)-(2.2) then becomes

ε2

h(x)

d

dx

(
h(x)

d

dx
φ

)
= −z1c1 − z2c2,

dc1
dx

+ z1c1
dφ

dx
+
c1(x)

kBT

d

dx
µHS1 (x) = − J1

h(x)
,

dc2
dx

+ z2c2
dφ

dx
+
c2(x)

kBT

d

dx
µHS2 (x) = − J2

h(x)
,

dJ1
dx

=
dJ2
dx

= 0,

(2.10)
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with the boundary conditions

φ(0) = V̄ , ci(0) = Li; φ(1) = 0, ci(1) = Ri. (2.11)

We now recall some results obtained in [35], which are crucial for our study and
which will be frequently used. In [35], assuming h(x) = 1 over the whole interval [0, 1]
and treating ε and r = r1 as small parameters, the authors derive approximations for
the current (total flow rate of charge) I expanded in r with λ = r2

r :

I(V ; ε, r) =ez1J1 + ez2J2 = ez1D1J1 + ez2D2J2 = I0(V ; ε) + I1(V ; ε)r + o(r),

where

I0(V ; 0) =ez1D1J10(V ; 0) + ez2D2J20(V ; 0),

I1(V ; 0) =ez1D1J11(V ; 0) + ez2D2J21(V ; 0),

Under electroneutrality conditions, one has

J10 =
L−R
z1

+ f0(L,R)
e

kBT
V,

J20 =− L−R
z2

− f0(L,R)
e

kBT
V,

J11 =
2

z1z2

(
(λ− 1)(L−R)f0(L,R)− (z1λ− z2)(L2 −R2)

z1

− (z1λ− z2)f1(L,R)
e

kBT
V

)
,

J21 =
2

z1z2

(
− (λ− 1)(L−R)f0(L,R) +

(z1λ− z2)(L2 −R2)

z2

+ (z1λ− z2)f1(L,R)
e

kBT
V

)
.

(2.12)

In particular,

I0(V ; 0) =e(D1 −D2)(L−R) +
e2(z1D1 − z2D2)

kBT
f0(L,R)V,

I1(V ; 0) =− 2e(D1 −D2)(z1λ− z2)(L2 −R2)

z1z2
+

2e(z1D1 − z2D2)(λ− 1)(L−R)

z1z2
f0(L,R)

− 2e2(z1D1 − z2D2)(z1λ− z2)
z1z2kBT

f1(L,R)V,

(2.13)

where

f0(L,R) =
L−R

lnL− lnR
,

f1(L,R) =
(L2 −R2)(lnL− lnR)− 2(L−R)2

(lnL− lnR)2

=− 2f0(L,R)

(
f0(L,R)− L+R

2

)
.

(2.14)
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The explicit approximation in (2.13) allows the authors of [35] to realize the
existence of two critical potential values Vc and V c defined, respectively, by

I1(Vc; 0) = 0,
d

dλ
I1(V

c; 0) = 0. (2.15)

They are given, in this setting, by

Vc =
kBT

e

L2 −R2

f1(L,R)

(
λ− 1

z1λ− z2
f0(L,R)

L+R
− D1 −D2

z1D1 − z2D2

)
,

V c =
kBT

e

L2 −R2

f1(L,R)

(
1

z1

f0(L,R)

L+R
− D1 −D2

z1D1 − z2D2

)
.

(2.16)

The importance of Vc and V c is evident and we summarize it here ([35]).

Theorem 2.2. Let Vc and V c be defined by (2.15). For ε > 0 small and r > 0 small,
one has

(i) If V > Vc (resp. V < Vc), then I(V ; ε, r) > I(V ; ε, 0) (resp. I(V ; ε, r) <
I(V ; ε, 0) );

(ii) If V > V c (resp. V < V c), then the current I is increasing (resp. decreasing)
in λ.

We next state a result that will be used frequently in the following sections, whose
proof is straightforward and will be omitted.

Lemma 2.3. Assume L 6= R. One has f0(L,R) > 0 and f1(L,R) > 0, where f0(L,R)
and f1(L,R) are defined in (2.14). With R > 0 being fixed,

lim
L→R

f0(L,R) = R and lim
L→R

f1(L,R) = 0.

As a by-product, we study the so-called total flow rate of matter defined as follows:

T (V ;λ, ε) = eD1J1(V ;λ, ε) + eD2J2(V ;λ, ε). (2.17)

Similarly, approximations for the total flow rate of charge T expanded in r with
λ = r2

r can be obtained

T (V ; ε, r) =eJ1 + eJ2 = eD1J1 + eD2J2 = T0(V ; ε) + T1(V ; ε)r + o(r),

where

T0(V ; 0) =eD1J10(V ; 0) + eD2J20(V ; 0),

T1(V ; 0) =eD1J11(V ; 0) + eD2J21(V ; 0).

Together with (2.12), one has

T0(V ; 0) =
e(z2D1 − z1D2)(L−R)

z1z2
+ (D1 −D2)f0(L,R)

e2

kBT
V,

T1(V ; 0) =
2e(z1D2 − z2D1)(z1λ− z2)(L2 −R2)

z21z
2
2

+
2e(D1 −D2)(λ− 1)(L−R)

z1z2
f0(L,R)

− 2e2(D1 −D2)(z1λ− z2)f1(L,R)

z1z2kBT
V.

(2.18)
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We end this section with a very interesting observation from (2.12), (2.13) and
(2.18).

Proposition 2.4. Viewing Ji0, Ji1, I0, I1, T0 and T1 as functions of (L,R), one
has

(i) Ji0, I0 and T0 are homogeneous of degree one in (L,R), that is, for any s > 0,

Ji0(V ; sL, sR) = sJi0(V ;L,R), I0(V ; sL, sR) = sI0(V ;L,R)

and
T0(V ; sL, sR) = sT0(V ;L,R).

(ii) Ji1, I1 and T1 are homogeneous of degree two in (L,R), that is, for any s > 0,

Ji1(V ; sL, sR) = s2Ji1(V ;L,R), I1(V ; sL, sR) = s2I0(V ;L,R)

and
T1(V ; sL, sR) = s2T1(V ;L,R).

3 Ion size effects on ionic flows

In this section, our main focus is to provide a detailed analysis of ion size effects on
individual fluxes and the total flow rate of matter.

3.1 Critical potentials for the total flow rate of matter and individual
fluxes

Notice that ion sizes do not play roles for DiJ10. We will focus on DiJi1 (and hence,
ziDiJi1) and T1 = eD1J11 + eD2J21, the leading terms containing ion size effects.

For the individual flux, we observe

(i) the sign of Ji1 determines whether ion sizes enhance (i.e. Ji1(V ; ε, r) > Ji1(V ; ε, 0))
or reduce (i.e. Ji1(V ; ε, r) < Ji1(V ; ε, 0)) the flux of the ith ion species;

(ii) the sign of dJi1/dλ determines if the flux of ith ion species is increasing or
decreasing in λ.

Remark 3.1. Similar arguments can be applied to the total flow rate of matter in
terms of the leading term T1(V ; ε, r).

We therefore introduce six critical potentials (four for individual fluxes and two
for the total flow rate of matter)– zeros of these quantities– that separate the signs
of these quantities.

Definition 3.2. Let V1c, V2c, V
c
1 , V

c
2 , V̂c, and V̂ c be defined, respectively, through

J11(V1c;λ, 0) = 0, J21(V2c;λ, 0) = 0,

d

dλ
J11(V

c
1 ;λ, 0) = 0,

d

dλ
J21(V

c
2 ;λ, 0) = 0,

T1(V̂c;λ, 0) = 0,
d

dλ
T1(V̂

c;λ, 0) = 0.
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From (2.12) and (2.18), a direct calculation gives

Lemma 3.3. Suppose L 6= R. One has, for i = 1, 2,

Vic =− kBT

e

L2 −R2

f1(L,R)

(
1

zi
+

1− λ
λz1 − z2

f0(L,R)

L+R

)
,

V c
i =− kBT

e

L2 −R2

f1(L,R)

(
1

zi
− 1

z1

f0(L,R)

L+R

)
,

V̂c =
kBT

e

L2 −R2

f1(L,R)

(
z1D2 − z2D1

z1z2(D1 −D2)
+

λ− 1

z1λ− z2
f0(L,R)

L+R

)
,

V̂ c =
kBT

e

L2 −R2

f1(L,R)

(
1

z1

f0(L,R)

L+R
+

z1D2 − z2D1

z1z2(D1 −D2)

)
.

We would like to point out the following interesting but reasonable observation
related to the individual flux from Lemma 3.3:

(i) V1c and V2c depend on λ, z1 and z2. Take Na+Cl− and K+Cl− for example,
since Na+ and K+ have the same valence but different ion sizes, the values of
V1c and V2c are different due to the ion size effect. For Na+Cl− and Ca++Cl−,
since Na+ and Ca++ have essentially the same size but different valences, the
values of V1c and V2c are different due to the ion valence effect.

(ii) V c
1 and V c

2 do not depend on λ. We also comment that V c
1 depends on z1 but

not on z2, and V c
2 depends on both z1 and z2. This asymmetric dependence on

valences is due to the asymmetric appearance of λ in (2.12).

Remark 3.4. Similar arguments can be obtained for V̂c and V̂ c.

The significance of the six critical potentials is apparent from their definitions.
The values V1c and V2c (resp. V̂c) are the potentials that balance the ion size effects
on individual fluxes (resp. the total flow rate of matter), and the values V c

1 and
V c
2 (resp. V̂ c) are the potentials that separate the relative size effects on individual

fluxes (resp. the total flow rate of matter). The precise statements are collected in
two theorems below, the first one for V1c, V2c and V̂c, the other one for V c

1 , V
c
2 and

V̂ c.
It first follows from (2.12) and (2.18) that

Lemma 3.5. Suppose L 6= R. One has,

(i) ∂V J11 > 0 and ∂2V λJ11 > 0;

(ii) ∂V J21 < 0 and ∂2V λJ21 < 0;

(iii) ∂V T1 > 0 (resp. ∂V T1 > 0), if D1 > D2 (resp. D1 < D2); ∂2V λT1 > 0 (resp.
∂2V λT1 > 0), if D1 > D2 (resp. D1 < D2).

In addition, with R > 0 fixed,

lim
L→R

∂V Jj1 = lim
L→R

∂2V λJj1 = lim
L→R

∂V T1 = lim
L→R

∂2V λT1 = 0.

The next two results follow directly from (2.12), Definition 3.2 and Lemma 3.5.
Their proofs are omitted.
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Theorem 3.6. Assume D1 < D2. One has, for ε > 0 small and r > 0 small,

(i) if V < V1c (resp. V > V1c), then J1(V ; ε, d) < J1(V ; ε, 0) (resp. J1(V ; ε, d) >
J1(V ; ε, 0));

(ii) if V < V2c (resp. V > V2c), then J2(V ; ε, d) > J2(V ; ε, 0) (resp. J2(V ; ε, d) <
J2(V ; ε, 0));

(iii) if V < V̂c (resp. V > V̂c), then T (V ; ε, d) > T (V ; ε, 0) (resp. T (V ; ε, d) <
T (V ; ε, 0)).

Recall from Lemma 3.3 that V c
1 , V

c
2 and V̂ c are independent of λ.

Theorem 3.7. Assume D1 < D2. One has, for ε > 0 small and r > 0 small,

(i) if V < V c
1 (resp. V > V c

1 ), then J1 is decreasing (resp. increasing) in λ;

(ii) if V < V c
2 (resp. V > V c

2 ), then J2 is increasing (resp. decreasing) in λ,

(iii) if V < V̂ c (resp. V > V̂ c), then T (V ; ε, d) is increasing in (resp. decreasing)
in λ.

Remark 3.8. Similar arguments for the total flow rate of matter can be obtained for
the case with D1 > D2.

Theorems 3.6 and 3.7, together with Theorem 2.2, provide the roles of those
critical potentials in the classification of ion sizes effects on ionic flows of individual
fluxes, the current, and the total flow rate of matter.

3.2 Relations among critical potentials

In view of the above results, to understand how boundary conditions and diffusion
coefficients interact with the ion sizes and valences to affect ionic flows, we will study
the dependence of critical potentials on these parameters. The relations among the
critical potentials discussed in this subsection will provide detailed insight for ion size
effects and have not been described previously, to the best of our knowledge.

We will discuss the roles of each of these critical potentials V1c, V2c, V
c
1 , V

c
2 , Vc, V

c, V̂c
and V̂ c, and (partial) orders among them.

We start with a scaling law on these critical potentials, which can be easily verified
from (2.16) and (3.3).

Proposition 3.9. Viewing Vc, V
c, Vic, V

c
i , V̂c and V̂ c as functions of (L,R), one

has Vc, V
c, Vic, V

c
i , V̂c and V̂ c are all homogeneous of degree zero in (L,R), that is,

for any s > 0,

Vc(sL, sR) = Vc(L,R), V c(sL, sR) = V c(L,R), Vic(sL, sR) = Vic(L,R),

V c
i (sL, sR) = V c

i (L,R), V̂c(sL, sR) = V̂c(L,R), V̂ c(sL, sR) = V̂ c(L,R).

On the basis of the physical meanings of the critical potentials, it is expected that
Vc and V̂c depend on V1c and V2c, and V c and V̂ c depend on V c

1 and V c
2 . The explicit

relations follow from (2.16), (3.3) and Lemma 3.3 and are provided in the next result.
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Proposition 3.10. Assume L 6= R. Then,

Vc =
z1D1V1c − z2D2V2c

z1D1 − z2D2
, V c =

z1D1V
c
1 − z2D2V

c
2

z1D1 − z2D2
, (3.1)

and, for D1 6= D2,

V̂c =
D1V1c −D2V2c

D1 −D2
, V̂ c =

D1V
c
1 −D2V

c
2

D1 −D2
. (3.2)

Furthermore,

V1c − V2c =V c
1 − V c

2 =
kBT

e

L2 −R2

f1(L,R)

z1 − z2
z1z2

,

V1c − V c
1 =V2c − V c

2 = Vc − V c = V̂c − V̂ c

=− kBT

e

L2 −R2

f1(L,R)

f0(L,R)

L+R

z1 − z2
z1(λz1 − z2)

,

Vc − V̂c =V c − V̂ c =
kBT

e

L2 −R2

f1(L,R)

(z1 − z2)2D1D2

z1z2(D1 −D2)(z1D1 − z2D2)
.

(3.3)

Remark 3.11. Relations (3.1) and (3.2) among the critical potentials are indepen-
dent of L and R although the values of the differences in (3.3) do depend on L and R.
Moreover, certain relations like (3.1) and (3.2) are expected for the relevant critical
potentials; on the other hand, relations in (3.3) are not immediately intuitive and
have important consequences in our following studies.

We next examine further relations among these critical potentials– orders or par-
tial orders. Theoe relations are more sophisticated and, more importantly, reveal
detailed interplays between electric potentials and other system parameters: bound-
ary concentrations (L,R) and diffusion coefficients (D1, D2).

Proposition 3.12. One has the following partial orders among the critical potentials.

(i) If L > R, then

V1c < V c
1 < 0 < V2c < V c

2 , Vc < V c, V̂c < V̂ c, V1c < Vc < V2c, V
c
1 < V c < V c

2 ;

Furthermore, if D1 > D2, then V̂c < V1c and V̂ c < V c
1 ; if D1 < D2, then

V2c < V̂c and V c
2 < V̂ c.

(ii) If L < R, then

V1c > V c
1 > 0 > V2c > V c

2 , Vc > V c, V̂c > V̂ c, V1c > Vc > V2c, V
c
1 > V c > V c

2 ;

Furthermore, if D1 > D2, then V̂c > V1c and V̂ c > V c
1 ; if D1 < D2, then

V2c > V̂c and V c
2 > V̂ c.

The above partial orders rely on simple conditions on (L,R) and (D1, D2). Further
details depend on more complicated conditions between (L,R) and (D1, D2). We will
study the sub-case with L < R and D1 < D2. Other cases, such as L < R, D1 > D2,
L > R, D1 > D2 and L > R, D1 < D2 can be analyzed similarly, and we leave it to
readers.

From (2.16), (3.3), Lemmas 2.3 and 3.3, and Proposition 3.12, one has
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Proposition 3.13. Suppose L < R and D1 < D2. Then,

(a) If (z1λ−z2)D2

z1D1−z2D2
< f0(L,R)

L+R < (z1λ−z2)D1

z2(D1−D2)
, and this holds if 1 < D2

D1
< 1−

√
z2(z2−z1)
z2

,
then

V̂ c < V̂c < V c
2 < V2c < V c < V c

1 < Vc < V1c.

(b) If f0(L,R)
L+R > z1λ−z2

z2
max

{
D1

D1−D2
, z2D2
z1D1−z2D2

}
, then

V̂ c < V c
2 < V̂c < V2c < V c < V c

1 < Vc < V1c.

(c) If f0(L,R)
L+R < z1λ−z2

z2
min

{
D1

D1−D2
, z2D2
z1D1−z2D2

}
, then

V̂ c < V̂c < V c
2 < V2c < V c < Vc < V c

1 < V1c.

(d) If f0(L,R)
L+R > (z1λ−z2)D1

z2(D1−D2)
, then

V̂ c < V c
2 < V̂c < V2c < V c < Vc < V c

1 < V1c.

(e) If (z1λ−z2)D1

z2(D1−D2)
< f0(L,R)

L+R < z1λ−z2
z2

min
{
− z1D1
z1D1−z2D2

, z2D2
z1D1−z2D2

}
, and this holds

if D2
D1

> max

{
1−
√
z2(z2−z1)
z2

, 2z1
z1+z2

}
, which is only possible if z1 > −z2, then

V̂ c < V c
2 < V̂c < V2c < V c < V c

1 < Vc < V1c.

(f) If z1λ−z2z2
max

{
− z1D1
z1D1−z2D2

, z2D2
z1D1−z2D2

, D1
D1−D2

}
< f0(L,R)

L+R < (z1−z2)(z1λ−z2)D1D2

z2(D1−D2)(z1D1−z2D2)
,

and this holds if 1 < D2
D1

< 2− z1
z2
, then

V̂ c < V c
2 < V̂c < V c < V2c < Vc < V c

1 < V1c.

(g) If z1λ−z2
z2

max
{

z2D2
z1D1−z2D2

, D1
D1−D2

}
< f0(L,R)

L+R < − z1(z1λ−z2)D1

z2(z1D1−z2D2)
, and this holds

if 2z1
z1+z2

< D2
D1

< − z1
z2

, which is only possible if z1
z2
< −1, then

V̂ c < V c
2 < V̂c < V2c < V c < Vc < V c

1 < V1c.

(h) If z1λ−z2z2
max

{
−z1D1

z1D1−z2D2
, D1
D1−D2

}
< f0(L,R)

L+R < (z1λ−z2)D2

z2(z1D1−z2D2)
min

{
z2,

(z1−z2)D1

D1−D2

}
,

and this holds if D2
D1

> max

{
− z1
z2
, 1−

√
z2(z2−z1)

2z2

}
, then

V̂ c < V c
2 < V̂c < V c < V2c < V c

1 < Vc < V1c.

(i) If f0(L,R)
L+R > z1λ−z2

z2
max

{
− z1D1
z1D1−z2D2

, z2D2
z1D1−z2D2

, D1
D1−D2

, (z1−z2)D1D2

(D1−D2)(z1D1−z2D2)

}
,

then
V̂ c < V c

2 < V c < V̂c < V2c < Vc < V c
1 < V1c.



ION SIZE EFFECTS ON IONIC FLOWS AND CRITICAL POTENTIALS 14

(j) If z1λ−z2z2
max

{
−z1D1

z1D1−z2D2
, D1
D1−D2

, (z1−z2)D1D2

(D1−D2)(z1D1−z2D2)

}
< f0(L,R)

L+R < (z1λ−z2)D2

z1D1−z2D2
,

and this holds if D2
D1

> max

{
2− z1

z2
, − z1

z2
, 1−

√
z2(z2−z1)

2z2

}
, then

V̂ c < V c
2 < V c < V̂c < V2c < V c

1 < Vc < V1c.

Proof. The proof is elementary and we omit it here.

Remark 3.14. Our main purpose in Proposition 3.13 is to provide a complete clas-
sification of the potential regions based on the critical potentials identified in (2.16),
(3.3) and Definition 3.2 for the sub-case where L < R and D1 < D2. From this, the
distinct effects of the nonlinearity and the interplay among the physical parameter,
such as boundary potentials, boundary concentrations, ion sizes, ion valences and dif-
fusion coefficients can be characterized. Except cases (a) and (d), all the other cases
consist of sub-cases, for example, in case (b), one has the following two sub-cases:

(b1) f0(L,R)
L+R > (z1λ−z2)D1

z2(D1−D2)
, and this holds if 1 < D2

D1
< 1−

√
z2(z2−z1)
z2

;

(b2) f0(L,R)
L+R > (z1λ−z2)D2

z1D1−z2D2
, and this holds if D2

D1
> 1−

√
z2(z2−z1)
z2

.

To further illustrate Proposition 3.13, we consider the following examples

(i) z1 = −z2 = 1

(i1) Taking the positively charged ion species as K+, the negatively charged one
as Cl−, and λ = 1.382, L = 0.005, R = 0.2, D1 = 2, and D2 = 10. For this
set-up, we have f0(L,R)

L+R = 0.2579, (z1λ−z2)D1

z2(D1−D2)
= 0.5955 and (λz1−z2)D2

z1D1−z2D2
=

1.985. This satisfies case (a) in Proposition 3.13 with J1 := JNa and J2 :=
JCl. Based on Theorems 2.2, 3.6 and 3.7, one has Tables 3.1 and 3.2.

(i2) Taking the positively charged ion species as Na+, the negatively charged
one as Cl−, and λ = 1.885, L = 0.02, R = 0.2, D1 = 2, and D2 =
10. For this set-up, we have f0(L,R)

L+R = 0.3553, (z1λ−z2)D1

z2(D1−D2)
= 0.7213, and

(λz1−z2)D2

z1D1−z2D2
= 2.4041. This satisfies case (c) in Proposition 3.13. Similar

tables can be obtained, we leave these to the readers.

(ii) z1 = 2, z2 = −1, taking the positively charged ion species as Ca++, the nega-
tively charged one as Cl−, and λ = 1.382, L = 0.000002, R = 0.002, D1 = 0.1,
and D2 = 10. For this set-up, we have f0(L,R)

L+R = 6.8940, (z1λ−z2)D1

z2(D1−D2)
= 0.0241,

and (λz1−z2)D2

z1D1−z2D2
= 2.3584. This satisfies case (b) in Proposition 3.13.

3.3 Sensitivity of ion size effects near L = R.

We carefully examine the situation when L and R close to each other. It turns out
that the properties of the critical potentials are extremely sensitive to whether L > R
or L < R.
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V region J1 J2 T = eJ1 + eJ2 I = z1eJ1 + z2eJ2

(−∞, V̂c) J1(r) < J1(0) J2(r) > J2(0) T (r) < T (0) I(r) < I(0)

(V̂c, V2c) J1(r) < J1(0) J2(r) > J2(0) T (r) > T (0) I(r) < I(0)

(V2c, Vc) J1(r) < J1(0) J2(r) > J2(0) T (r) > T (0) I(r) < I(0)

(Vc, V1c) J1(r) < J1(0) J2(r) > J2(0) T (r) > T (0) I(r) > I(0)

(V1c,∞) J1(r) > J1(0) J2(r) < J2(0) T (r) > T (0) I(r) > I(0)

Table 1: For convenience, we rewrite J1(V ; ε, r) as J1(r), and so on. Ion size effects
on both the individual fluxes and total flux over different potential regions separated
by the critical potentials are characterized. For example, over the interval (−∞, V̂c),
the ion size reduces J1, enhances J2, but reduces both the total flux of matter T and
the current I; while in (V1c,∞), the ion size enhances J1, reduces J2, but enhances
both T and the current I.

V region J1 J2 T I

(−∞, V̂ c) J1 decreases in λ J2 decreases in λ T decreases in λ I decreases in λ

(V̂ c, V c
2 ) J1 decreases in λ J2 decreases in λ T increases in λ I decreases in λ

(V c
2 , V

c) J1 decreases in λ J2 increases in λ T increases in λ I decreases in λ

(V c, V c
1 ) J1 decreases in λ J2 increases in λ T increases in λ I increases in λ

(V c
1 ,∞) J1 increases in λ J2 decreases in λ T increases in λ I increases in λ

Table 2: For convenience, we rewrite J1(V ; r, ε, λ) = J1, and so on. Relative ion
size effects (in terms of λ := r1

r2
, where r1, the diameter of the positively charged

ion species, and r2 is the diameter of the negatively charged one) on both individual
fluxes and total fluxes over different potential regions are characterized.
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Proposition 3.15. One has,

lim
L→R−

V1c = lim
L→R−

V c
1 = lim

L→R+
V2c = lim

L→R+
V c
2 = +∞,

lim
L→R+

V1c = lim
L→R+

V c
1 = lim

L→R−
V2c = lim

L→R−
V c
2 = −∞.

Proof: The second factors in formulas for V1c, V2c, V
c
1 , and V c

2 in Lemma 3.3
satisfy

lim
L→R

( 1

z1
+

1− λ
λz1 − z2

f0(L,R)

L+R

)
=

(1 + λ)z1 − 2z2
2z1(λz1 − z2)

> 0,

lim
L→R

( 1

z2
+

1− λ
λz1 − z2

f0(L,R)

L+R

)
=

2λz1 − (1 + λ)z2
2z2(λz1 − z2)

< 0,

lim
L→R

( 1

z1
− 1

z1

f0(L,R)

L+R

)
=

1

2z1
> 0,

lim
L→R

( 1

z2
− 1

z1

f0(L,R)

L+R

)
=

1

z2
− 1

2z1
< 0.

The results then follow from Lemma 2.3.

Similar sensitive dependence of ion size effects on total fluxes near L = R is
examined below. The result depends naturally on D1 and D2 as well as λ.

Recall that z1 > 0 > z2 and λ > 0. Set

γ =
2λz1 − (λ+ 1)z2
(λ+ 1)z1 − 2z2

and σ =
2z1 − z2

z1
.

Note that 0 < γ < σ.

Proposition 3.16. One has,

(i) if D1/D2 < γ, then

lim
L→R+

Vc = lim
L→R+

V c =∞, lim
L→R−

Vc = lim
L→R−

V c = −∞;

(ii) if γ < D1/D2 < σ, then

lim
L→R+

Vc = lim
L→R−

V c = −∞, lim
L→R−

Vc = lim
L→R+

V c =∞;

(iii) if D1/D2 > σ, then

lim
L→R+

Vc = lim
L→R+

V c = −∞, lim
L→R−

Vc = lim
L→R−

V c =∞.

Proof: A careful calculation gives

lim
L→R+

Vc =
kBT

e
g1(x) · (−∞), lim

L→R+
V c =

kBT

e
g2(x) · (−∞)

and

lim
L→R−

Vc =
kBT

e
g1(x) · ∞, lim

L→R−
V c =

kBT

e
g2(x) · ∞,
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where, with x = D1
D2

,

g1(x) =
x− 1

z1x− z2
+

1− λ
2(λz1 − z2)

and g2(x) =
x− 1

z1x− z2
− 1

2z1
.

Notice that

g1(x) = 0⇐⇒ x = xc :=
D1c

D2c
and g2(x) = 0⇐⇒ x = xc :=

Dc
1

Dc
2

.

In addition, one has xc < xc. Note also that

g′1(x) =
z1 − z2

(z1x− z2)2
> 0 and g′2(x) =

z1 − z2
(z1x− z2)2

> 0 for all x > 0.

Therefore, we have (i) g1(x) < 0 and g2(x) < 0 if x < xc; (ii) g1(x) > 0 and g2(x) < 0
if xc < x < xc; and (iii) g1(x) > 0 and g2(x) > 0 if x > xc. Our results then follow
directly.

The significance of Propositions 3.15 and 3.16 is discussed in the following remark.

Remark 3.17. (i) Combining Proposition 3.15 with Theorems 3.6 and 3.7, we
conclude that the effects on computed ionic flows by including the nonlocal HS
potential are sensitive to whether L > R or L < R when L and R close. More
precisely, on one hand, as L → R+, one has V1c < V < V2c for any fixed
potential V , and hence, Ji(V ; ε; r) > Ji(V ; ε; 0), i = 1, 2; and on the other
hand, as L → R−, exactly the opposite occurs, that is, one has V2c < V < V1c
for any fixed potential V , and hence, Ji(V ; ε; r) < Ji(V ; ε; 0), i = 1, 2 (see, (i)
and (ii) in Theorem 3.6). A similar conclusion applies to results in Theorem
3.7. This sensitive dependence of ion size effects on individual fluxes near L = R
is rather striking, and possibly could be observed experimentally.

(ii) Similarly, when combining Proposition 3.16 with Theorem 2.2, one concludes
sensitive dependence of ion size effects on the current I near L = R. The
precise dependence further involves the quantities D1/D2 relative to γ and σ;
for example, if D1/D2 < γ, on one hand, as L → R+, one has V < Vc and
V < V c for any fixed potential V , and hence, I(V ; ε; r) < I(V ; ε; 0) (see, (i) in
Theorem 2.2) and the current I is always decreasing in λ (see, (ii) in Theorem
2.2); on the other hand, as L → R−, exactly the opposite effect occurs. For
the other cases, the ion size effects as L→ R− are always opposite to those as
L→ R+.

Similar result holds for the critical potentials V̂ c and V̂c.

Proposition 3.18. One has

lim
L→R+

V̂c = lim
L→R+

V̂ c =∞, lim
L→R−

V̂c = lim
L→R−

V̂ c = −∞.
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4 Concluding remarks

In this work, we consider a quasi-one-dimensional PNP model for ionic flows through
membrane channels. Ion size effects on individual fluxes and on total flow rates of
matter and charge of ionic mixtures are carefully analyzed. A unique feature of this
work is its ability to provide a detailed characterization of complicated interactions
among multiple and physically crucial parameters for ionic flows. These parameters
include boundary concentrations and potentials, diffusion coefficients, ion sizes and
ion valences. The results, although established for simple biological settings (two
types of ion species, one positively charged and one negatively charge, with zero
permanent charge in the channel) and with only uncharged nonlocal hard-sphere
potentials, have demonstrated extremely rich behaviors of ionic flows and sensitive
dependence of flow properties on all these parameters. We expect more complex
phenomena for more realistic ion channel models and for general electrolyte solutions.
We believe that this work will be useful for numerical studies and stimulate further
analytical studies of ionic flows through ion channels. We also hope that this work
may provide meaningful insights or a fundamental understanding of mechanisms for
controlling ionic flows.
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