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Predicting convective rainfall over tropical oceans from
environmental conditions
David J. Raymond1 and Marcos M. Flores1
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Abstract A cloud resolving model in spectral weak temperature gradient mode is used to explore sys-
tematically the response of mean convective rainfall to variations tropical environmental conditions. A very
large fraction of the variance in modeled rainfall is explained by three variables, the surface moist entropy
flux, the instability index (a measure of low to midlevel moist convective instability), and the saturation frac-
tion (a kind of column-averaged relative humidity). The results of these calculations are compared with the
inferred rainfall from 37 case studies of convection over the tropical west Pacific, the tropical Atlantic, and
the Caribbean, as well as in the NCEP FNL analysis and the ERA-Interim reanalysis. The model shows signifi-
cant predictive skill in all of these cases. However, it consistently overpredicts precipitation by about a factor
of three, due possibly to simplifications made in the model. These calculations also show that the saturation
fraction is not a predictor of rainfall in the case of strong convection. Instead, saturation fraction covaries
with the precipitation as a result of a moisture quasi-equilibrium process.

1. Introduction

Prediction of convective rainfall is one of the most important functions of cumulus parameterizations in
large-scale numerical models. The problem with many cumulus parameterizations is that their performance
is difficult to untangle from other effects in a large-scale model. However, this situation is changing with the
employment of various cloud-resolving numerical modeling techniques. Such models are not the real world,
but results from super parameterization schemes, in which a small cloud model is run in each large-scale
grid box, are often better than conventional cumulus parameterizations in their predictions, indicating that
they have something to teach us [Khairoutdinov et al., 2005, 2008].

Cumulus parameterizations are generally constrained to use only current, resolved-scale conditions avail-
able from the encompassing large-scale model. These potentially include surface fluxes of heat, moisture,
and momentum, sea surface temperature (over oceans), radiative forcing, and the vertical profiles of tem-
perature, humidity, and wind.

Treatments of cumulus convection have traditionally been deterministic, in that the behavior of the convec-
tion is completely specified by the resolved-scale conditions. However, there is increasing interest in incor-
porating random fluctuations in parameterizations so as to reproduce the observed variability of convection
and precipitation [Palmer, 2001; Lin and Neelin, 2000, 2003; Plant and Craig, 2008; Khouider et al., 2010; Groe-
nemeijer and Craig, 2012; Peters et al., 2013; Dorrestijn et al., 2015].

Nondeterminate fluctuations in convection and rainfall are an important part of the cumulus parameteriza-
tion problem. However, our goal in this paper is to understand the determinate part of these phenomena,
as this forms the mean state about which fluctuations take place.

There is a temptation to use gradient quantities such as mass and moisture convergence to drive cumulus
parameterizations in models. However, this is likely to be problematic, as these convergence-related varia-
bles are at least partly a result of the convection itself rather than a cause [see e.g., Raymond and Emanuel,
1993], at least in the tropics where quasi-geostrophic forcing is minimal. Even in middle latitudes the total
convergence is the sum of the large-scale balanced contribution (mostly quasi-geostrophic or boundary
layer in origin) and convergence induced by the convection itself. Models such as wave-CISK (convective
instability of the second kind), e.g., Lindzen [1974] that drive parameterized convection with gradient quan-
tities like mass or moisture convergence, often exhibit an ‘‘ultraviolet catastrophe’’ in which instability
growth rates asymptote to infinity for large wavenumbers. Ooyama [1982] characterizes these as aliased
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models of convective instability of the first kind in disguise. We therefore hypothesize that the average state
of convection, and the precipitation in particular, is a function only of nongradient environmental variables.

Ooyama [1982] further asserted that convection can only be parameterized in terms of the balanced part of
the environmental flow. This part of the flow is derived from the potential vorticity distribution and generally
has an evolution time scale longer than that of the convection itself, indicating that the arrow of causality
points from the balanced flow to the convection. The unbalanced part of the flow is related in an intimate
and complex manner to the convection itself and it is impossible to say that one causes the other—they
coevolve. This coevolution and the fact that the convection is turbulent means that the unbalanced part of
the flow (including the convection) has a chaotic component. Only the statistical behavior of the convection
can be predicted and this prediction must come from the balanced part of the environmental flow.

The particular mechanism of convective control of most interest to Ooyama [1982] was the ‘‘cooperative
intensification mechanism’’ that occurs in the core of tropical storms. In this mechanism boundary layer fric-
tional convergence drives convection, which in turn increases the boundary layer circulation via the hydro-
static decrease in surface pressure due to convective warming aloft. This only acts reliably when the
vorticity is strong enough to make the Rossby radius comparable to the spatial scale of a convective cell. In
less extreme situations, the balanced flow may still control the statistical characteristics of the convection,
but the mechanism is likely to be different. As Ooyama [1982] points out, frictional convergence may still
exist in this case, but it is typically less effective than other mechanisms, e.g., surface heat and moisture
fluxes, in destabilizing the atmosphere to moist convection.

Raymond et al. [2015] proposed a model for the interaction between convection and balanced circulations
that are not strong enough to activate Ooyama’s cooperative intensification mechanism. In this ‘‘thermody-
namic’’ regime, which covers many if not most tropical disturbances, convection is hypothesized to be
forced primarily by thermodynamic effects. A key diagnostic in this case is the gross moist stability. A partic-
ular version of this variable called the normalized gross moist stability was defined by Raymond and Sessions
[2007] and expanded upon by Raymond et al. [2009]. In the steady state, this quantity becomes

C5
TRðFs2RÞ
LðP2EÞ (1)

where Fs is the surface moist entropy flux, E is the surface evaporation rate, R is the radiative sink of entropy
integrated over the troposphere, and P is the precipitation rate. Normalizing constants are a reference tem-
perature TR and the latent heat of condensation L. Solving this for the net precipitation rate (precipitation
minus evaporation) yields

P2E5
TRðFs2RÞ

LC
: (2)

For (2) to be useful, a model is needed for the the normalized gross moist stability. This comes from the real-
ization that in a steady state Fs2R equals the vertically integrated lateral detainment of moist entropy. (The
irreversible generation of entropy is assumed to be negligible here, but can be added to the analysis if
needed.) This detrainment rate is a function of the structure and areal density of convection; the smaller
this detrainment rate for a single convective cell, the larger is the number of cells per unit area needed to
balance the steady state entropy budget.

Assuming positive C, the net precipitation rate is only positive when the surface entropy flux exceeds the
radiative loss of entropy from the troposphere. Thus, strong surface entropy flux is a prerequisite for intense
mean precipitation in this model. Furthermore, the effects of the surface entropy flux are amplified by low
values of the gross moist stability. Observations, theory, and modeling have shown that the surface moist
entropy flux exerts strong control over the amount of deep convection and mean rainfall rates [Ooyama,
1969; Emanuel, 1986, 1987; Yano and Emanuel, 1991; Raymond, 1995; Raymond et al., 2003; Maloney and
Sobel, 2004; Back and Bretherton, 2005; Raymond and Zeng, 2005; Raymond et al., 2006; Raymond and Ses-
sions, 2007; Sobel et al., 2009; Wang and Sobel, 2011, 2012]. This dependence is important for the develop-
ment of both tropical cyclones and intraseasonal oscillations.

Observations also show that small changes in the vertical profiles of temperature and humidity have dramatic
effects on the gross moist stability and hence the rainfall rate over tropical oceans [Raymond et al., 2011;
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Komaromi, 2013; Gjorgjievska and Raymond, 2014; Sentić et al., 2015]. In particular, increased saturation fraction
(a kind of column-averaged relative humidity) and decreased low to midlevel moist convective instability

(characterized by the instability index) are associated with an increase in the mean convective precipitation

rate in developing tropical storms. In addition, decreased instability is related to an increase in convective

mass fluxes at low levels and a decrease aloft, i.e., it makes these mass fluxes more bottom-heavy. Both of

these effects act by decreasing the gross moist stability, as illustrated by (2). Basically, this occurs by increasing

the vertically integrated moisture convergence, which increases precipitation in the steady state.

Weak temperature gradient (WTG) convective simulations [Sobel and Bretherton, 2000; Raymond and Zeng,
2005; Raymond and Sessions, 2007; Wang et al., 2013; Herman and Raymond, 2014; Sessions et al., 2015; Sentić
et al., 2015] are in agreement with these observations, suggesting that this modeling technique is a useful
tool in understanding deep convection over tropical oceans.

This paper reports on a systematic exploration of the sensitivity of time and space averaged precipitation to

variations in environmental conditions in convection simulated using a WTG convective model. By taking

an average, we exclude the chaotic variations in convection resulting from small-scale turbulent dynamics

and concentrate on those properties of convection constrained by balanced dynamics and thermodynamic

conservation laws. Thus, comparison of model precipitation with real world values requires a large degree

of smoothing of observations.

An important aspect of any convective modeling exercise is determining how to relate model results to the
real world. This is particularly tricky when questions of causality arise. For instance, are the surface moist
entropy fluxes, the instability index, and the saturation fraction imposed by the environment or are they
artifacts of the convection itself? Considerable effort is addressed to this issue here.

This investigation is preliminary in that certain simplifying assumptions are made, to be discussed later in the
paper. The results are nevertheless interesting in that the model for precipitation rate resulting from these
simulations exhibits significant skill in reproducing actual mean precipitation rates via mechanisms observed
in the real world.

The experimental design of the study is reported in section 2 and the results of the modeling are presented
in section 3. A comparison with observations is given in section 4 and conclusions are presented and dis-
cussed in section 5.

2. Experiment Design

The spectral weak temperature gradient (SWTG) model [Herman and Raymond, 2014] is used in
two-dimensional mode with fixed radiation and sea surface temperature (SST). A radiative-convective equi-
librium calculation is first made to provide a base state about which perturbations in temperature and
humidity profiles, sea surface temperature, and imposed wind speed are made to produce a wide variety of
reference profiles and surface conditions for the weak temperature gradient calculations. The results are
then categorized according to surface moist entropy flux, the instability index, and the saturation fraction.
These parameters have been shown to be important for precipitation production [Gjorgjievska and
Raymond, 2014]. The instability index II is defined

II5s�lo2s�hi ; (3)

where s�lo is the saturated moist entropy averaged over the range ½1; 3� km and s�hi is this quantity averaged
over ½5; 7� km. It is a measure of low to midtroposphere moist convective instability. The saturation fraction
SF is

SF5

Z
rdp

�Z
r�dp (4)

where r is the mixing ratio and r� is the saturation mixing ratio. It is a kind of column-averaged relative
humidity.
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2.1. SWTG Model
WTG convective simulations relax the areally averaged convective domain profile of potential temperature
in a cloud resolving model to a reference profile that is deemed to represent the environment surrounding
the convection. This relaxation is assumed to be the result of gravity wave action that distributes buoyancy
anomalies over a large area [Bretherton and Smolarkiewicz, 1989]. The time scale s for the relaxation is taken
to be that of the gravity waves. A flaw in traditional WTG calculations is that gravity waves of all vertical
scales are assumed to propagate at the same speed. In the real world, gravity waves of different vertical
scales move at different speeds, resulting in multiple time scales.

In the SWTG model, the buoyancy anomaly in the convective domain (i.e., the difference between the con-
vective domain and reference profile potential temperatures) is subjected to a Fourier decomposition in the
vertical. Each Fourier mode with a given vertical wavenumber mj5jp=h is assigned a relaxation time propor-
tional to this wavenumber

sj5Lmj=N5jpL=ðhNÞ j51; 2; 3; . . . (5)

where h is the depth of the troposphere, N is the tropospheric Brunt-V€ais€al€a frequency (assumed constant
with height), and L is an assumed horizontal length scale. Thus, shallower modes relax more slowly to the
reference profile than deeper ones in agreement with the dynamics of hydrostatic gravity waves. This spec-
tral decomposition yields a more physically realistic relaxation process than is obtained by assuming that all
vertical scales relax at the same rate, as is done in classical WTG. The length scale L is assumed to be the dis-
tance traveled by a j 5 1 gravity wave over the convective life cycle time of order 1 hr. We take L5150 km in
the present work.

Precipitating convection differs from other forms of convection in that the subsiding branch of the circula-
tion has a much larger scale than the ascending branch. The SWTG vertical velocity is assumed to represent
the ascending branch of the convective circulation. It is given by

wswtgðzÞ5
X

j

Hj

sj
sin ðmj zÞ (6)

where

Hj5
2
h

Z h

0

h0ðzÞ sin ðmjzÞ
d�h=dz

dz: (7)

The quantity h0ðzÞ is the potential temperature anomaly, defined as the horizontal mean of potential tem-
perature in the convective domain �hðzÞ minus the reference profile hRðzÞ, and Hj is the projection of h0=ðd�h
=dzÞ onto the jth spectral mode.

Moisture and moist entropy are given horizontally uniform source and sink terms in the convective domain
consistent with the lateral entrainment and detrainment of mass implied by wswtg, as described in Herman
and Raymond [2014]. Reference mixing ratio and moist entropy profiles rRðzÞ and sRðzÞ serve to specify the
humidity and moist entropy of the air being entrained into the convective domain from the environment.

Wang and Sobel [2012] treat the effect of environmental humidity on their WTG model by relaxing the con-
vective domain toward a dry reference profile in order to mimic the effect of dry advection on the convec-
tion. The philosophy taken in the present work is that the time constant for advective relaxation is much
greater than the time constant of a convective cell. In this case the effect of moisture advection is repre-
sented indirectly by the actual reference profile and including an additional drying (or moistening) via this
type of relaxation would be redundant.

A two-dimensional version of the cloud model was used to make possible a large number (� 100) of model
runs with different environmental conditions. A domain of 192 km in the horizontal by 20 km in the vertical
was used with a grid box size of 1000 m3250 m. A sponge layer was used in the uppermost 5 km to damp
gravity wave reflections and periodic lateral boundary conditions were imposed.

Zero ambient wind in the x direction was specified and the horizontal mean of the convective domain wind
was relaxed toward this initial profile to suppress the effects of counter-gradient momentum transfer that
tends to occur in two-dimensional models of convection.
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Table 1 lists important cloud resolv-
ing model constants. See Herman
and Raymond [2014] for more infor-
mation. Fixed radiation was used,
with a constant radiative cooling
rate of 1:5Kd21 up to 12 km and a
linear decay to zero at an elevation
of 15 km.

The cloud physics parameterization
is primitive by design, allowing sim-
ple sensitivity tests to be made. Liq-
uid and solid precipitation are
treated equally with 5 ms21 terminal

velocities for both, so the cloud physics of snow that is needed to produce stratiform rain areas is not cur-
rently included. A constant drag coefficient that is the same for both momentum and thermodynamic trans-
fers is also used in conjunction with constant gustiness parameter.

2.2. Model Runs
Model runs were made in two dimensions on a 192 km320 km domain with grid cells of dimensions
1 km3250 m. A long (107s � 116d) radiative-convective equilibrium (RCE) integration of the model with an
SST of 300 K and wind normal to the model plane of vy55 ms21 was done and initial RCE profiles were
obtained by averaging this output over the last 83106s � 93d. This integration was itself initialized from a
previous RCE run made under the same conditions, so the integration started out very close to RCE. These
measures were needed to produce a very accurate initial RCE profile, as small errors can produce deleteri-
ous effects on subsequent SWTG runs.

Reference profiles for the SWTG calculations were obtained by perturbing the initial RCE temperature,
humidity, and vy wind profiles as well as imposing a range of SSTs. (The x component of the reference wind
is set to zero.) Values of vy50; 3; 5; 7; 10; 15; 20 ms21 (independent of height) and SST 5299; 300; 301 K
were used. Note that since the model is two-dimensional in the x–z plane and the Coriolis force is set to
zero, The vy wind component has no effect on the model results except in the calculation of the reference
surface entropy fluxes.

The potential temperature and relative humidity reference profiles were varied by imposing perturbations
composed from basis functions consisting of the positive halves of the n 5 0, 2, 4 wave functions of the
quantum mechanical harmonic oscillator [Schiff, 1955]. These functions are mutually orthogonal and are
shown in Figure 1.

Potential temperature and relative humidity perturbations were treated slightly differently. The potential
temperature reference profiles hRðzÞ were obtained from

hRðzÞ5h0ðzÞ1T0M01T2M21T4M4 (8)

whereas the relative humidity reference profiles HRðzÞ were created using

HRðzÞ5H0ðzÞ½11R0M01R2M21R4M4�: (9)

The quantities h0ðzÞ and H0ðzÞ are the initial RCE profiles of potential temperature and relative humidity,
the MiðzÞ are the basis functions shown in Figure 1, and the Ti and Ri are coefficients determining the contri-
butions of each mode to the respective reference profiles. The relative humidity perturbations are multipli-
cative to reduce the possibility of generating relative humidities less than 0 or greater than 1.

The three basis functions used can represent only the coarse vertical structure of the potential temperature and rel-
ative humidity perturbations. However, experiments with fine-scale perturbations of these quantities suggest that
they tend to be less important than the gross features of the profiles, at least if the perturbation amplitudes are rel-
atively small. In the tropics, one expects relatively weak perturbations to the potential temperature profile to exist
due to the tendency of buoyancy anomalies to be smoothed out by gravity wave action. The same may be true of

Table 1. Important Cloud Model Parameters

Parameter Value Comment

eddy 1.0 coefficient for eddy mixing
filter 0.003 strength of horizontal 2*dx filter
lambda 0.001 strength of vertical hypersmoothing
crain 0:01 s21 rain production constant
csnow 0:01 s21 ice production constant
cevap 1:0 s21 precipitation evaporation constant
wtermw 5:0 ms21 rain terminal velocity
wtermi 5:0 ms21 ice terminal velocity
radcool 1:5 Kd21 radiative cooling rate
cdrag 0.001 surface drag coefficient
ueffmin 3:0 ms21 surface gustiness parameter
hscale (L) 1:53105m SWTG horizontal scale
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moisture profiles in the vicinity of
deep convection due to a process
of moisture quasi-equilibrium
[Raymond et al., 2014], though not
in convection-free regions.

The strategy used to minimize
the parameter phase space
needing coverage is to assume
that the rainfall rate is a linear
function of the reference sur-
face wind speed vy, the SST, and
the thermodynamic profile co-
efficients Ti and Ri. Note that the
surface evaporation rate and
moist entropy flux are implied by
these variables.

The linearity assumption is likely
to be true as long as the devia-
tions from RCE are in some
sense ‘‘small,’’ with the excep-
tion of cases in which the rain-
fall rate goes to zero. Other
than that special case, what

constitutes ‘‘small enough’’ is not known a priori and must be tested a posteriori. The linearity assumption
allows parameters to be perturbed one at a time. However, since the assumed surface wind speeds cover a
large range, we varied all of the other parameters for each value of wind speed. Figure 2 shows the values
assumed for Ti and Ri as a function of wind speed for the SST equal to 300 K. For 299 K and 301 K we ran
only the cases with Ti; Ri50.

SWTG calculations were run for 53106s, averaging over the last 33106s for all members of the above-
defined parameter space. This long (� 35d) averaging period results in accurate estimates of the average
rainfall rate produced for each simulation.

3. Results

The main purpose of this paper is to determine how environmental factors control space and time averaged
precipitation. The word control implies determination of causality. The reference profiles of temperature,
humidity, and wind, SST, and in the present case radiation, are externally imposed, and therefore ought to
control the behavior of the model. However, there are limits to this control.

The small space and time scale details of convection, and hence rainfall, are turbulent and hence unpredict-
able. However, in most cases the long-term time and space averages of convective behavior are uniquely
determined by the reference conditions, which can therefore be thought of as controlling average convec-
tive behavior.

An exception occurs where multiple equilibria exist in simulated convection, generally with two different
equilibrium states, a moist, rainy equilibrium and a state of low humidity and no rain [Sobel et al., 2007; Ray-
mond et al., 2009; Sessions et al., 2010]. Using the traditional WTG model, Sessions et al. [2015] showed that
fixed radiation produces multiple equilibria over a smaller range of input parameters than interactive radia-
tion. In addition, our experience is that SWTG is even less susceptible to multiple equilibria than traditional
WTG for fixed radiation, so multiple equilibria are likely to be of little or no importance in the present
results.

Based on previous work on tropical cyclone formation, e.g., Gjorgjievska and Raymond [2014], the dimen-
sionality of the causal parameter space is vastly reduced by assuming that the saturation fraction and insta-
bility index (both defined in section 2) characterize the temperature and humidity profiles.
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Figure 1. Orthogonal basis functions for potential temperature and relative humidity reference
profile perturbations.
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Other likely causal parameters are the surface evaporation rate and moist entropy flux as well as the SST.
Variations of 61 K in the SST account for a very small fraction of the variance in the rainfall rate independ-
ent of their contribution to variations in surface thermodynamic fluxes in the present set of simulations. Fur-
thermore, the surface moist entropy flux and the surface evaporation rate are correlated at the 99% level,
and are therefore not independent. These two factors allow us to further collapse the parameter space by
replacing the SST and the surface wind speed by a single parameter, which we choose to be the surface
moist entropy flux. Thus, we hypothesize that the reference values of surface moist entropy flux (eflux),
instability index (II), and saturation fraction (SF) are sufficient to characterize the time and space averaged
rainfall rate in the model.

Figure 3 shows a scatter plot of the predicted versus the actual rainfall rate in the ensemble of runs with
rainfall exceeding 1 mm d21. The predicted rainfall is based on a linear regression with the above reference
variables. Nonprecipitating cases are excluded from the regression but included in the plot. The prediction
equation for rainfall based on this regression is

RP52251 1 45:8; eflux21:02; II1362; SF (10)

where the predicted rainfall RP is in millimeters per day and the other quantities are in standard SI units.
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Figure 2. Potential temperature and relative humidity coefficients used in calculations with SST 5300K.
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The surface entropy flux by itself
explains 69% of the variance, while
adding in the instability index results
in 84% explained. The saturation frac-
tion raises the total to 96%. Thus, these
three reference variables account for a
rather large fraction of average rain
production in the model.

Averages of these three parameters
over the convective domain are not
necessarily equal to the corresponding
reference profile values. We now
explore how reference and convective
domain values compare with each
other.

Figure 4 shows a scatter plot of refer-
ence versus convective domain surface
moist entropy flux over the ensemble
of model runs. The convective domain
values are generally larger than the ref-
erence profile values by approximately
15%, especially when precipitation is
occurring. This is presumably due to
the fact that gustiness produced by
the convection can increase the fluxes
over those present in the undisturbed

convective environment. Jabouille et al. [1996] found that convective gustiness produced the strongest
anomalies in surface latent heat fluxes in light wind situations, with values up to 50ms21

(� 0:17JK21m22s21 in terms of the moist entropy flux). Given other possible factors in our analysis, this is a
relatively minor effect. The nonprecipi-
tating cases tended to have small val-
ues of the surface entropy flux and
large values of the instability index.

Figure 5 shows the convective domain
versus the reference profile instability
indices. There is some random scatter
between the two, though the main
effect is a compression in the range of
convective domain values relative to
reference values.

The situation for saturation fraction is
somewhat more complicated. Figure 6
shows a scatter plot of reference ver-
sus convective domain saturation frac-
tion. Though there is weak correlation
between the two quantities for precipi-
tating cases, in the absence of precipi-
tation there is basically no correlation
at all. Furthermore, the spread in con-
vective domain values is large com-
pared to the spread in reference
values. This suggests that convective
and radiative processes have large
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Figure 3. Predicted versus actual model rainfall based on a linear regression for
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ity index, and saturation fraction as the predictor variables. 96% of the variance is
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effects on the convective domain satu-
ration fraction irrespective of the refer-
ence values.

Figure 7 shows plots of rainfall rate ver-
sus reference and convective domain
saturation fraction. The latter exhibits a
‘‘hockey stick’’ curve with rapidly in-
creasing rainfall above a saturation
fraction of about 0.7, as found in obser-
vations by Bretherton et al. [2004] and
many others. In contrast, the reference
profile saturation fraction values are
limited to the range 0.65–0.75 with only
a slight correlation with rainfall rate.

Figure 8 shows that convective domain
saturation fraction and instability index
are strongly anti-correlated for large
values of the rainfall rate. This is in
agreement with observations of con-
vection in potential precursor disturban-
ces for tropical cyclones [Gjorgjievska
and Raymond, 2014]. We ascribe these
results to a ‘‘moisture quasi-equilibrium’’
process as outlined by Singh and O’Gor-

man [2013]. If the environment is dry, then convection requires larger values of parcel buoyancy to withstand
environmental entrainment and evaporation of condensate than when the environment is more moist. Larger
parcel buoyancy corresponds to larger instability index. If the environment is too dry to sustain convection for a
given value of instability index, then clouds detrain their moisture and decay, thus moistening the environment.
On the other hand, if the environment is too moist, then convection is more vigorous and the resulting precipi-

tation dries out the atmospheric col-
umn. The net effect is the relaxation of
the humidity profile to some optimum
value between these two extremes. The
optimum humidity becomes drier as the
instability becomes greater.

Modeling of convection by Singh and
O’Gorman [2013] shows that convec-
tion adjusts the model environment to
produce very close to zero buoyancy
for subsequent convection. In a model
this could result from the convection
altering either the environmental
humidity or the moist convective insta-
bility. However, in the real world the
environment is continually adjusting
to produce a balanced temperature
profile and associated value of the
instability index. Thus, on time scales
longer than the dynamical adjustment
time scale, the convection controls
only the humidity since larger-scale
dynamics regulates the convective
instability. Greater instability therefore
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yields a drier atmosphere
whereas less instability results
in higher humidities. This exp-
lains the inverse relationship
between instability index and
saturation fraction seen for
large rainfall rates in Figure 8
and in observational results.

Raymond [2000] developed a
simple model of what is
now called moisture quasi-
equilibrium. The moisture relax-
ation time in the case of weak
convection characteristic of the
radiative-convective equilibrium
state is a few weeks. However,
this relaxation time scales as the
inverse square of the convective
strength, as measured by the
average precipitation rate. For
very strong convection it dec-
reases to less than 1 day. This

explains why moisture quasi-equilibrium only holds for large rainfall rates in Figure 8.

If the convection is weak, then the above analysis suggests that the saturation fraction is an independent
predictor variable for precipitation. As the convection becomes stronger, then the saturation fraction
becomes more closely tied with the instability index. In this case, the saturation fraction becomes redun-
dant as a predictor.

We now test this hypothesis with respect to our ensemble of model runs. Figure 9 shows that 91% of the
variance in the rainfall is predicted by
the surface moist entropy flux and the
instability index. This almost as high as
the regression results for reference val-
ues of surface entropy flux, instability
index, and saturation fraction shown in
Figure 3. However, there is a tendency
for a few nonprecipitating cases to
exhibit large predicted values of pre-
cipitation. (As with reference value
test, nonprecipitating cases are omit-
ted from the regression, though they
are still displayed.) The predicted rain
in terms of the surface moist entropy
flux and instability index is

RP546 1 38:8; eflux-3:49; II: (11)

A regression with just surface moist
entropy flux results in 79% of the var-
iance explained, which means that
instability index adds significant infor-
mation. On the other hand, adding the
model domain saturation fraction to
the list of predictor variables results in
little new information (92% of variance
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explained) in comparison to just the
surface flux and instability index (see
Figure 10). The main effect of the satu-
ration fraction is in tidying up the
results for low rainfall rates. The cases
with actual zero rain now take on neg-
ative predicted rainfall. These results
are in accord with the hypothesis that
saturation fraction is only an inde-
pendent predictor at low rainfall rates
where the moisture relaxation time
constant is large. The rain predicted by
the regression is given by

RP5228 1 36:4; eflux-2:67; II183:3; SF:

(12)

4. Comparison With
Observations

Comparing SWTG results with observa-
tions is tricky, as one must decide
whether reference values of entropy
flux, instability index, and saturation
fraction or the corresponding convec-
tive domain values should be used in

the comparison. In principle, the former should be used if the observations are of the clear regions sur-
rounding the convection, while the latter would be more appropriate if detailed observations in the imme-
diate vicinity of the convection were available.

If one is concerned about understand-
ing the causes of convection, then the
focus should be on reference values,
since these are unambiguously causal
in the SWTG model; the convective
domain values are significantly aff-
ected by the convection itself, espe-
cially the saturation fraction. The
control of convection over the instabil-
ity index and the surface entropy flux
is weaker but still significant.

Two comparisons are made below,
one with the analysis of mesoscale
dropsonde observations of tropical
convective disturbances, the other
with the results of global analyses.

4.1. TCS08 and PREDICT
In this section, we compare the predic-
tions derived from the model to obser-
vations of convection in 37 cases of
tropical disturbances in the western
Pacific (Tropical Cyclone Structure
experiment (TCS08)) [Elsberry and Harr,
2008] and the western Atlantic and
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Caribbean (Pre-Depression Investiga-
tion of Cloud-Systems in the Tropics
(PREDICT)) [Montgomery et al., 2012].
These observations are taken from
dropsonde grids over domains a few
degrees in diameter with resolution of
order one degree and are described by
Gjorgjievska and Raymond [2014]. In
these cases rainfall was not actually
measured. We therefore use observed
moisture convergence plus surface
evaporation rate, averaged over a box
typically a few degrees in diameter, as
a proxy for rainfall, which for conven-
ience we simply call ‘‘rainfall.’’ This
proxy omits the effect of the time
tendency of precipitable water in the
moisture budget, thus introducing
noise. Additional noise comes from the
fact that the instantaneous rainfall rate
itself is noisy relative to the long-term
average rainfall extracted from the

model. For this reason, the very high values of explained variance in the model results cannot be expected
in the application of the model predictions of rainfall to the observational results.

Examination of fields of instability index and saturation fraction in the observational results shows extreme
variability in these quantities over scales of 10–100 km. In many cases the averages of these quantities over
the observed domain are dominated by the environment surrounding the convection of interest. This sup-
ports the use of the precipitation model based on reference rather than convective domain values, though
it is admittedly difficult to make a clean separation between near and far convective environment in the
observations.

In order to evaluate the results of our precipitation predictions against these observations, we compute
a further regression between observed rainfall and rainfall predicted from the observationally derived
parameters using the reference profile model given by (10). Figure 11 shows actual rainfall as a function
of model-predicted rainfall in this case. 23% of the variance in observed rainfall is explained by this
model. The value of the F statistic is 10.2, which means that the correlation is significant at greater than
the 99% level.

The rainfall prediction model therefore shows skill in predicting rainfall for the TCS08-PREDICT cases. How-
ever, the prediction has offset and scaling errors. The offset error can be easily ascribed to differences in the
thermodynamics of the model compared to the real world. However the scaling error results in an over-
prediction of precipitation by a factor of 3 once the offset error is accounted for. The error may be a result
of simplifications in the model such as two-dimensionality and fixed radiation. This bears further
investigation.

The rainfall prediction using convective domain values of entropy flux, instability index, and saturation frac-
tion was also tested against this data set (not shown). The results are similar to the reference profile case,
though the skill is less, with 17% of the rainfall variance accounted for. The offset and scaling errors are
greater, with a scaling overprediction by a factor of 4. These results support the use of the rainfall prediction
model based on reference parameters, though extra skill exhibited in that case is small.

4.2. Global Analyses
We now test our precipitation prediction algorithm against the National Centers for Environmental Predic-
tion’s Final Operational Global Analysis data set (FNL; http://rda.ucar.edu/datasets/ds083.2/). Since the FNL
does not provide precipitation, we use the same precipitation proxy as in the TCS08-PREDICT data set
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(‘‘actual rainfall’’), namely the
vertically integrated moisture
convergence plus the surface
evaporation rate. The reference
parameter precipitation predic-
tion equation (10) is also used
here.

Figure 12 shows the number
density distribution of values of
the actual versus predicted rain-
fall derived from the FNL for the
summertime tropical east
Pacific at and north of the inter-
tropical convergence zone. The
blue line shows the distribution-
weighted average of the actual
rainfall as a function of pre-
dicted rainfall. A similar plot for
the northern summer northwest
Pacific is shown in Figure 13.

The two cases are very similar,
though the smaller data sample
in the east Pacific case makes
the number distribution noisier.

In both cases the average actual rain is larger than the peak in the distribution because the distributions are
skewed toward larger values of actual rainfall. The average lines in both cases are nearly linear, but with off-
set and scaling errors. The offsets are small and the scaling errors imply predicted values of order 3 times
actual values in both cases as in the TCS08-PREDICT results. Similar results are obtained from the ERA-
Interim reanalysis [Dee et al., 2011] (not shown).

5. Discussion and
Conclusions

The spectral version of our
cloud resolving model with a
weak temperature gradient
parameterization of the large-
scale flow is used to evaluate
the environmental conditions
that control time and space-
averaged convective precipita-
tion rates over tropical oceans.
Over 100 two-dimensional sim-
ulations with fixed radiative
cooling are used to span the
range of variations in environ-
mental conditions that is likely
to be found over warm tropical
oceans. The first step is to calcu-
late closed domain radiative-
convective equilibrium profiles
of temperature and humidity at
fixed values of SST and imposed
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surface wind speed. The second step is to use these thermodynamic profiles and this SST as reference con-
ditions in weak temperature gradient calculations over the range of imposed imposed winds of 0–20 ms21.
For each of these wind values, further calculations are then made in which the thermodynamic profiles and
SST are varied systematically.

Even with this large number of simulations, filling the parameter space is only possible if certain assump-
tions are made. The first is that temperature and humidity perturbations about the previously calculated
radiative-convective equilibrium state are assumed to have a coarse vertical structure, i.e., with only 3
degrees of freedom each. A posteriori tests suggest that perturbations with fine vertical structure are not
important as long as their amplitude is not too large. An additional critical assumption is that the imposed
deviations are small enough that resulting changes in the rainfall are linear functions of the deviations. This
allows us to explore the effect of changing parameters one at a time, which results in a further large reduc-
tion in the size of the parameter space. Tests indicate that this assumption is largely justified, given the size
of perturbations employed.

Observational results suggest that an additional reduction in the parameter space is possible. The saturation
fraction, which is essentially a column-averaged relative humidity, has a close relationship to precipitation
over warm tropical oceans. The instability index, which measures lower tropospheric moist convective insta-
bility, is closely related to first baroclinic mode temperature perturbations. Variations in SST and imposed
surface wind speed collapse into variations in the surface evaporation rate and surface moist entropy flux.
Furthermore, over tropical oceans, these two surface fluxes covary to a high degree of accuracy. This leaves
us with three important parameters that potentially control precipitation, one of the two surface fluxes,
which we choose to be the moist entropy flux, the instability index, and the saturation fraction.

We next address causality. Within the confines of the model, the values of entropy flux, instability index, and
saturation fraction derived from reference thermodynamic and wind profiles are unambiguously causal; varia-
tions in these externally imposed parameters explain 96% of the variance in the precipitation over the range
of model simulations used in the analysis. Convective domain values of the above parameters are affected by
the convection itself and to varying degrees covary with the precipitation and are therefore not causal.

Comparison of our results with observations from two field programs and with the FNL analysis and ERA-
Interim reanalysis suggests that a linear precipitation model based on the reference values of surface moist
entropy flux, instability index, and saturation fraction exhibits significant skill in predicting actual mean rain-
fall. However, the prediction has offset and scaling errors, the most significant of which being the over-
prediction of average rain by roughly a factor of 3. This factor is consistent across the different observational
cases. Simplifying assumptions made in the model simulations, e.g., two-dimensionality and fixed radiation,
could be responsible for this discrepancy. Further work is needed here.

Differences between reference and convective domain values of our parameters are enlightening. In our
modeling results, the convective domain values of the surface moist entropy flux tend to be modestly larger
than reference values.

Somewhat more variability exists between reference and convective domain values of the instability index;
convective domain values tend to be larger than reference values, especially for small reference values. The
tendency for gravity wave action to homogenize temperature profiles in the tropics also results in a tend-
ency to homogenize the instability index, since it depends solely on the temperature profile. Thus, reference
and convective domain values of this parameter should not differ too much from each other in most cases.

The situation with saturation fraction is altogether different. No large-scale restorative processes exist for
water vapor and there is very little correlation between the reference and convective domain values of the
saturation fraction. There is, however, a strong negative correlation between saturation fraction and instabil-
ity index that reflects a convective process referred to as moisture quasi-equilibrium; moister atmospheres
in convective regions are more stable and vice versa. Therefore, convective domain saturation fraction is
not a predictive variable for precipitation in regions of strong convection; it simply covaries with the precipi-
tation itself and in some ways can be considered a surrogate for precipitation.

Moisture quasi-equilibrium breaks down when convection is weak or nonexistent. In this case saturation
fraction becomes an important predictive parameter; if the environment is too dry, precipitation cannot
occur no matter how favorable the other predictive parameters are.
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Since saturation fraction covaries with instability index in strong convection and becomes an independent
predictive parameter in weak convection, there is no harm in including it as a predictive parameter for pre-
cipitation. As a comparison of Figures 9 and 10 shows, its inclusion does basically nothing in heavy rain and
plays the constructive role of eliminating predictions of heavy rain when the actual rain is light or
nonexistent.

We conclude that the average rainfall in a weak temperature gradient convective model can be predicted
by a combination of externally imposed values of only three parameters, the surface moist entropy flux, the
instability index, and the saturation fraction. Furthermore, the equation thus derived exhibits skill in predict-
ing average convective rainfall over tropical oceans, though scaling and offset errors must be accounted for
to make these predictions quantitative. Further work is needed to track down the source of these errors
and to extend comparisons to a broader range of observational cases.
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and Michael Herman for useful
comments on the paper. The
comments of Ji Nie and two
anonymous reviewers greatly
improved the paper. This work
supported by National Science
Foundation grant 1342001.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000595

RAYMOND AND FLORES PREDICTING CONVECTIVE RAINFALL 15

http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.5194/acp-12-4555-2012
http://dx.doi.org/10.1002/2014MS000359
http://dx.doi.org/10.1029/2002GL016203
http://dx.doi.org/10.1029/2006GL028607
http://dx.doi.org/10.1029/2006GL028607
http://kestrel.nmt.edu/~raymond/tools.html
http://kestrel.nmt.edu/~raymond/tools.html


Raymond, D. J., C. S. Bretherton, and J. Molinari (2006), Dynamics of the intertropical convergence zone of the east Pacific, J. Atmos. Sci., 63,
582–597.

Raymond, D. J., S. Sessions, A. Sobel, and �Z. Fuchs (2009), The mechanics of gross moist stability, J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/
JAMES.2009.1.9.

Raymond, D. J., S. L. Sessions, and C. L�opez Carrillo (2011), Thermodynamics of tropical cyclogenesis in the northwest Pacific, J. Geophys.
Res., 116, D18101, doi:10.1029/2011JD015624.

Raymond, D. J., S. Gjorgjievska, S. Sessions, and �Z. Fuchs (2014), Tropical cyclogenesis and mid-level vorticity, Aust. Meteorol. Oceanogr. J.,
64, 11–25.

Raymond, D. J., �Z. Fuchs, S. Gjorgjievska, and S. L. Sessions (2015), Balanced dynamics and convection in the tropical troposphere, J. Adv.
Model. Earth Syst., 7, 1093–1116, doi:10.1002/2015MS000467.

Schiff, L. I. (1955), Quantum Mechanics, 2nd ed., 417 pp., McGraw-Hill, N. Y.
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