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Summary

Extension of the nonlinear balance model to include the equator is ex-
amined here from a theoretical perspective. It is found that this model
is ill-posed, in that zonally symmetric equatorial Kelvin waves of arbitrary
amplitude can occur. Two possible solutions are outlined. The zonally aver-
aged zonal momentum equation provides auxiliary information that can be
imposed on the flow. This equation can be solved simultaneously with the
other parts of the problem. Alternatively, when small, isolated disturbances
can be assumed to have negligible effect on the mean flow, one can simply
assume that zonal means remain unchanged.

1 Introduction

Since the Coriolis parameter goes to zero at the equator, it is usually supposed
that balanced theories such as quasigeostrophy (Charney and Stern, 1962)
and semigeostrophy (Hoskins, 1975) are of little or no use there. However,
the nonlinear balance model (Lorenz, 1960; McWilliams, 1985; Raymond,
1992, hereafter R) is valid for all Rossby number, subject to certain other
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conditions being satisfied. Nonlinear balance should therefore be a useful
approximation for certain phenomena at the equator.

R computed solutions to the nonlinear balance equation for the case in
which the Coriolis force is identically zero, i. e., for infinite Rossby number,
as well as for constant, non-zero Coriolis parameter. One would therefore
suppose that extension of the theory to an equatorial beta plane would be
trivial. Unfortunately this appears not to be true. Further evidence for this
comes from Gent and McWilliams (1983a), who show that nonlinear balance
models satisfactorily reproduce all the equatorial modes of Matsuno (1966)
except Kelvin and gravity waves, but also state that these models are singular
for the zonally symmetric mode. The purpose of this paper is to propose a
method of dealing with this problem.

2 Extended model

R developed a potential vorticity form of the nonlinear balance equations in
an east-west channel on an f plane. The modifications required to extend
R’s model to an equatorial beta plane are limited to the potential vorticity
definition,

ρ0q = fΓ + f
∂θ′

∂z
+ Γ∇h

2ψ +X, (1)

which now has a variable Coriolis parameter, f = βy, where β is assumed
constant, and the balance equation,

∇h
2Σ + β

∂ψ

∂y
+ Z = 0, (2)

which has the additional term proportional to β 1.
In these equations

X = ζ · ∇θ
′

= ∇ · (ζθ
′

), (3)

where ζ is the approximate relative vorticity vector computed solely from
the solenoidal part of the flow, and

Z = 2





(

∂2ψ

∂x∂y

)

2

−
∂2ψ

∂x2

∂2ψ

∂y2



 . (4)

1R included the divergence of an applied force on the right side of (2), but this term is
often ignored. Inclusion in the present analysis would be straightforward.
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(See table 1 for notation.)
Note that this model is closer to the BE model of Gent and McWilliams

(1983b) with f set to βy than to their βBE model, the difference being that
f is not set to a constant reference value where it is not differentiated.

As mentioned in the introduction, the problem lies in the zonally symmet-
ric mode. Let us therefore isolate this mode by taking an x or zonal average,
indicated here by an overbar. A deviation from this average is indicated by
a superscripted asterisk. Averaging (1) yields

ρ0q = fΓ + f
∂θ′

∂z
+ Γ

∂2ψ

∂y2
+X, (5)

where
X = ∇ · (ζ θ′ + ζ∗θ∗). (6)

Since zonally averaging the x derivative of anything yields zero because
of the assumed periodic boundary conditions in x,

Z =
∂2

∂y2

(

∂ψ

∂x

)

2

≡
∂2Q

∂y2
. (7)

Zonally averaging (2) and integrating in y thus yields

θ0
∂σ

∂y
− f

∂ψ

∂y
= 0, (8)

where σ = π′ + Q/θ0, and where the constant of integration has been elim-
inated by assuming that geostrophic balance holds on the north and south
boundaries of the domain, taken to be rigid walls.

Subtracting zonal means from (1) and (2) yields equations for perturba-
tions from the mean:

ρ0q
∗ = f

∂θ∗

∂z
+ Γ∇h

2ψ∗ +X∗, (9)

∇h
2Σ∗ + β

∂ψ∗

∂y
+ Z∗ = 0. (10)

Equations (9) and (10) can be inverted to obtain perturbation fields, assum-
ing that the nonlinear terms, X∗ and Z∗, which contain references to the
zonally averaged fields, can somehow be evaluated. It is via these terms that
zonal means affect the perturbation flow. The evolution of the zonal means
may in principle be derived from jointly solving (5) and (8).
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Symbol Meaning
x, y, z, t space and time variables
k unit vector in z direction
∇ gradient
∇h horizontal gradient
g acceleration of gravity
f(y) Coriolis parameter
β df/dy (constant)
ξ βy2/2
ρ0(z) ambient density profile
θ0(z) ambient potential temperature profile
Γ(z) dθ0/dz
N2 gΓ/θ0
q potential vorticity
θ
′

potential temperature perturbation
ψ horizontal streamfunction
π

′

Exner function perturbation
Σ θ0π

′

− fψ
uψ solenoidal part of horizontal velocity field
uχ irrotational part of horizontal velocity field
u, v, w x, y, and z velocity components
ζ relative vorticity
Q see equation (7)
X see equation (3)
Z see equation (4)

σ π′ +Q/θ0
F external body force
γ see equation (14)
m vertical wavenumber

Table 1: Definitions of symbols.
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3 Zonally symmetric problem

Equations (5) and (8) are nonlinear and inhomogeneous in barred quantities.
It is instructive to examine solutions to the linearized, homogeneous versions
of these equations. Insight into this simplified problem will carry over to the
full problem.

Dropping X and Q, setting q to its planetary value of fΓ/ρ0, and com-
bining (5), (8), and the hydrostatic equation, θ0∂π

′

/∂z = gθ
′

/θ0, one finds
that

Γ

f

∂

∂y

(

θ0
f

∂π′

∂y

)

+
∂

∂z

(

θ2

0

g

∂π′

∂z

)

= 0. (11)

If f , θ0, and Γ ≡ dθ0/dz are all approximately constant, then π′ , after
scaling, obeys Laplace’s equation in two dimensions, which means that the
maximum value of |π′| occurs on the boundary of the solution domain, and
a unique solution (up to an additive constant) can be obtained by specifying
the normal derivative of π′ on the boundary. In the limit as f → 0, (11)
reduces to ∂2π′/∂y2 = 0, and the above conclusion still holds.

On an equatorial beta plane, (11) can be approximately written

N2
∂2π′

∂ξ2
+
∂2π′

∂z2
= 0, (12)

where ξ = βy2/2, and where N = (gΓ/θ0)
1/2 is the Brunt frequency. This

is also in the form of Laplace’s equation, but with a different north-south
variable, ξ. If the equator is included in the computational domain, then π′

is double-valued, since a single value of ξ represents two points, one north
and one south of the equator. The physical problem therefore breaks down
into two mathematical problems, namely solving Laplace’s equation in two
domains, one north and one south of the equator. Two conditions therefore
need to be applied to π′ at the equator. Physically sensible choices are
equality of π′ and ∂π′/∂ξ at the interface between the two domains. Since
dξ = fdy, (8) shows that the second condition is equivalent to continuity
in the zonal wind across the equator. The first condition simply expresses
continuity of pressure there.

Since the equator is on the boundary of the mathematical domain (i.
e., at ξ = 0), a minimum or maximum in π′ can reside there, even though
the equator is actually inside the physical domain. Solutions may therefore
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exist in which the pressure perturbation is everywhere zero on the external
physical boundaries (i. e., the north and south walls of the channel) but
is non-zero in the (physical) interior, a situation that is impossible on an f
plane. As an example, solutions of (12) (with N constant) of the form

π′ = m exp(−mξ/N + imz) = m exp[−mβy2/(2N) + imz] (13)

demonstrate this possibility, and represent zonally symmetric Kelvin waves.
By making the vertical wavenumber m arbitrarily large, π′ can be made
arbitrarily large on the equator, but arbitrarily small on the north and south
boundaries. The boundary conditions on the north and south walls thus exert
negligible control over the interior solution, and the mathematical problem
is ill-posed.

4 Proposed solutions

One possible way to resolve the problem of uncontrolled zonally symmetric
Kelvin waves is to impose on the solution an independent estimate of the zon-
ally averaged zonal wind at the equator. This information may be obtained
from the zonally averaged zonal momentum equation, which can be solved si-
multaneously with the other parts of the calculation. Since u = −∂ψ/∂y, this
then provides a condition on ∂ψ/∂y, and hence on ∂π′/∂ξ, at the equator.

Unfortunately, the approximations made in nonlinear balance models
keep them from being precisely consistent with the standard momentum
equation of fluid dynamics. However, Gent and McWilliams (1983b) showed
that the Lorenz (1960) model is consistent with a modified horizontal mo-
mentum equation, which may be written

duψ
dt

+ uψ · ∇uχ+ θ0∇π
′

+ fk × u = F + ∇γ, (14)

in the notation of R, with uψ and uχ being the solenoidal and irrotational
parts of the horizontal wind. The scalar function γ obeys a complex di-
agnostic equation in terms of the velocity components, which comes from
demanding that the divergence of the above equation be consistent with the
usual nonlinear balance condition. Fortunately, taking the x average of the
x component of this equation eliminates γ, so this diagnostic equation does
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not have to be solved here. The result of the averaging process yields

−
∂2ψ

∂t∂y
−

∂

∂y

(

v
∂ψ

∂y
+
∂ψ

∂x

∂φ

∂x

)

−
1

ρ0

∂

∂z

(

ρ0w
∂ψ

∂y

)

− fv = F x. (15)

This prognostic equation can be solved simultaneously with the rest of the
calculation.

As R noted, the Lorenz model differs from the semibalanced model of
R in that the vertical component of the absolute vorticity is used rather
than the component normal to isentropic surfaces. Thus, (15) is slightly in
error for the semibalanced model. However, the error should be considerably
less than that resulting from the use of the exact x momentum equation.
Unfortunately, no equation equivalent to (14) for the semibalanced model is
known to the author.

An alternative simpler than solving the zonally averaged zonal momentum
equation is available when the problem consists of computing the approxi-
mate behavior of a small disturbance to an otherwise unperturbed large-scale
zonal flow. In this case zonal averages of products of perturbed quantities,
e. g., ζ∗θ∗, are small and can be ignored, resulting in

X ≈ ∇ · (ζ θ′) = ζy
∂θ′

∂y
+ ζz

∂θ′

∂z
(16)

and

Z ≈
∂2

∂y2

(

∂ψ

∂x

)2

= 0. (17)

In this approximation zonal means remain unchanged with time and the
evolution of the system is confined to the perturbation fields.

5 Discussion

The results of this paper should be applicable not only to the nonlinear
balance model on a beta plane, but to any three dimensional balanced model
that includes the equator in the interior of its domain, since nothing peculiar
to nonlinear balance is essential to the present analysis.

An alternative way to understand the difficulty in inverting a balanced
model across the equator is to realize that Kelvin waves produce no per-
turbation in the potential vorticity field on isentropic surfaces. Thus, it is
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impossible to recover Kelvin waves in a potential vorticity inversion unless
they are implicit in the boundary conditions at the equator. Since finite
wavelength Kelvin modes are excluded from this model, only the zonally
symmetric Kelvin mode can appear. It is interesting that while balanced
models cannot directly predict the amplitude of this mode, the addition of
just the principle of the conservation of angular momentum (or its balanced
model equivalent) is sufficient to rectify this situation.

Though this paper demonstrates how to extend balanced models across
the equator, it makes no statement as to the accuracy of such models rel-
ative to the primitive equations. Since finite wavelength Kelvin waves are
definitely excluded from the model, its applicability will rest in part as to
how important these waves are in the desired solution.

Programs to extend balanced models to the globe (e. g., Shutts, 1989)
should benefit from this analysis.
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