
Chapter 2

Tools and Tricks of Fluid Dynamics

Now that we have the governing equations of geophysical fluid dynamics, we need to “make
friends” with these equations. We do this by examining a number of tools and tricks which
are commonly used in the field.

2.1 Exterior boundary conditions
Estimates of the typical magnitudes of the acceleration and frictional terms in the momentum
equation yield V/T = V 2/L for the former and νV/L2 for the latter, where V , T , and L are
typical velocity, time, and length scales. For the acceleration term we assume that T is the
time required for a parcel to move a distance L at velocity V , so that T = L/V . For the
viscous term we assume that ∇2 ≈ 1/L2. The ratio of the acceleration term to the friction
term is called the Reynolds number

Re =
V L

ν
. (2.1)

The kinematic viscosities of water and air under typical geophysical conditions are respec-
tively of order 10−6 m2 s−1 and 2 × 10−2 m2 s−1. Both vary significantly with temperature
and the kinematic viscosity of air is inversely proportional to density.

Typically, the Reynolds number is very much greater than unity in atmospheric flows,
suggesting that the friction term can be ignored in the momentum equation. This assumption
is valid in the free atmosphere, but is most definitely invalid near boundaries. This is because
friction at a boundary almost always gives rise to turbulent motion near the boundary. This
turbulence transfers the effects of friction into the interior of the fluid to a degree far in
excess of that produced by molecular transfer. This subject is discussed later in the chapter
on boundary layers.

Mathematically, the inclusion or exclusion of the frictional and heat transfer terms changes
the boundary conditions to which the governing equations are subject. If these molecular
transfer terms are omitted, the boundary condition on the momentum equation is free-slip,
i.e., the only restriction on the flow field is that the component of the fluid velocity normal to
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the (stationary) surface is zero. For the buoyancy (or heat) equation, the temperature of the
fluid is unaffected by the temperature of the adjacent surface if molecular transfer is excluded.
If molecular transfer terms are included, the fluid velocity adjacent to the surface must be
zero and the temperature of the fluid adjacent to the surface must equal the temperature of
the surface.

More generally, if the bounding surface is moving, then the fluid adjacent to the boundary
must move at the same velocity as the boundary surface if molecular transfer is included.
If not, the free slip condition demands only that the velocity components of the fluid and
surface normal to the surface be the same.

2.2 Interior boundary conditions
Often we divide fluid flows into different domains with different fluid properties. The most
obvious example of this is the division of the global geophysical fluid into the ocean and
the atmosphere. The interface between these fluids is generally moving, so the free-slip or
no-slip condition (depending on whether molecular transfer is included) must be applied to
each fluid in a mutually consistent manner. In addition, the traction must be continuous
across the boundary. If a discontinuity in the traction existed, this would be tantamount
to a violation of Newton’s third law, since the force per unit area of fluid region A on fluid
region B would not be the negative of the force per unit area of fluid region B on fluid region
A. In addition, the component of the heat or buoyancy flux normal to the interface must be
continuous, or there will be a delta function heat or buoyancy source at the interface.

If viscosity and heat conduction are not included, then the only component of the traction
is the pressure force. As with fluid adjacent to an external boundary, the buoyancy or
temperature is unaffected by an adjacent interface.

2.3 Energy equation
We now develop an equation for the energy of a geophysical fluid, starting with the momentum
equation

dv

dt
+

1

ρ
∇p+ gk + 2Ω× v = ν∇2v (2.2)

Dotting both sides of this equation by v and solving for the time derivative term results in

dv2/2

dt
= −1

ρ
∇ · (pv) + p

dα

dt
− dΦ

dt
+ νv · ∇2v (2.3)

which may be interpreted as the time rate of change of kinetic energy per unit mass of a
parcel of fluid. The right side of the equation consists of the specific work done by the various
forces acting on the parcel. Note that since the Coriolis force acts in a direction normal to
the velocity, it does not contribute to this work.
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The pressure contribution to the work deserves particular comment. We have invoked the
product rule to write

−1

ρ
v ·∇p = −1

ρ
∇ · (pv) +

p

ρ
∇ · v = −1

ρ
∇ · (pv)− p

ρ2
dρ

dt
= −1

ρ
∇ · (pv) + p

dα

dt
(2.4)

where we have used the mass continuity equation dρ/dt = −ρ∇ · v and have defined the
specific volume α = 1/ρ. Using the differential form of the specific internal energy equation
de = Tds− pdα, the pressure term may finally be written

−1

ρ
v ·∇p = −1

ρ
∇ · (pv)− de

dt
+ T

ds

dt
(2.5)

where T is the temperature and ds is the differential of specific entropy. The viscous term is
treated as follows,

v · ∇2v = vi
∂2vi
∂xj∂xj

=
∂

∂xj

(
vi
∂vi
∂xj

)
− ∂vi
∂xj

∂vi
∂xj

= ∇2(v2/2)− |∇v|2 (2.6)

and the geopotential term comes from setting gv · k = gw = g(dz/dt) = dΦ/dt.
Putting all this together results in

d

dt

(
v2/2 + e+ Φ

)
+

1

ρ
∇ ·

[
pv − µ∇

(
v2/2

)]
= T

ds

dt
− ν |∇v|2 = T

dsX
dt

(2.7)

where we recall that the kinematic viscosity ν = µ/ρ and that µ can be treated as constant.
The first term on the left is the time derivative of the total (kinetic + internal + potential)
energy per unit mass in a parcel. The second is the divergence of the energy flux due to
pressure and viscous forces. On the right side we have the addition of energy via heating
(recall that Tds is the heat added per unit mass) and the dissipation of mechanical energy
by friction. There is some cancellation between these two terms, as dissipated mechanical
energy is a heat source which is just balanced by the part of the entropy increase due to this
heat source. We account for this cancellation by replacing the two terms on the right with a
single term representing the addition of heat due only to external sources, T (dsX/dt).

We can use the mass continuity equation to convert the advective form of the energy
equation into its flux form in the usual manner,

∂

∂t

[
ρ
(
v2/2 + e+ Φ

)]
+ ∇ ·

[
ρ
(
v2/2 + h+ Φ

)
v − µ∇

(
v2/2

)]
= ρT

dsX
dt

, (2.8)

where we have used the definition of specific enthalpy h = e + p/ρ. This equation is in a
form useful for demonstrating the energy budget in a control volume. Integrating over this
volume and using the divergence theorem results in

d

dt

ˆ
ρ
(
v2/2 + e+ Φ

)
dV +

˛ [
ρ
(
v2/2 + h+ Φ

)
v − µ∇

(
v2/2

)]
· ndV =

ˆ
ρT

dsX
dt

dV,

(2.9)
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which states that the time rate of change of energy in the volume is minus the flux out of the
volume [ρ (v2/2 + h+ Φ)v − µ∇ (v2/2)] · n integrated over the volume surface plus a term
equal to the volume integral of the externally imposed heating. The energy flux includes
contributions from the stress tensor (pv − µ∇ (v2/2)) which are actually equal to the work
done per unit time on the fluid in the control volume by stress forces on the control volume
boundary.

Note that nothing in this analysis is specific to the type of fluid as long as it is Newtonian
and effectively incompressible with respect to the viscosity terms. It applies equally to the
ocean and the atmosphere.

2.4 Bernoulli equation
The Bernoulli equation is related to but distinct from the energy equation. It is usually
derived for the case of an incompressible fluid only. We extend the analysis to the case of an
arbitrary Newtonian fluid subject to conservative forces in which viscosity and external heat
sources are neglected. As in the derivation of equation (2.3), we dot the momentum equation
(with viscosity excluded) with v. However, the pressure term is treated differently; using the
definition of specific enthalpy dh = Tds+ dp/ρ, the result is

∂v2/2

∂t
+ v ·∇(v2/2) + v ·∇h− Tv ·∇s+

∂Φ

∂t
+ v ·∇Φ = 0, (2.10)

where we have expanded the material derivative of both v2/2 and Φ. Combining terms and
dropping the time derivatives results in

v ·∇
(
v2/2 + h+ Φ

)
= Tv ·∇s. (2.11)

The entropy equation with no heat source or heat conduction is

∂s

∂t
+ v ·∇s = 0, (2.12)

which in the steady state case tells us that the right side of equation (2.11) is zero.
The quantity inside the parentheses on the left side of equation (2.11) is called the

Bernoulli constant :
B = v2/2 + h+ Φ. (2.13)

The equation v ·∇B = 0 tells us that B is constant along parcel trajectories.
In the case of an ideal gas, h = CpT , whereas for an incompressible fluid, h = CT +

p/ρ where C is the specific heat of the fluid material. Since the temperature T does not
change with pressure for an incompressible material, it is constant along parcel trajectories
in the steady state with no heat sources. Thus, it may be dropped from the definition of
the Bernoulli constant for an incompressible fluid, resulting in h = p/ρ, which yields the
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conventional form of the Bernoulli equation. For an ideal gas, CpT = θΠ, which leads to the
most useful form of the Bernoulli constant for the atmosphere:

B = v2/2 + θΠ + Φ. (2.14)

Given the steady state assumption, the potential temperature θ is constant along parcel
trajectories and the Exner function Π depends only on pressure.

2.5 Three-dimensional flow
As with any vector field, the velocity can be decomposed into irrotational and solenoidal
parts,

v = vI + vS. (2.15)

The solenoidal part can be written as the curl of a vector potential Ψ:

vS = ∇×Ψ. (2.16)

The three-dimensional divergence of the velocity field in the anelastic case is just

∇ · v = ∇ · vI = −d ln ρ0
dz

w (2.17)

where w is the vertical velocity and ρ0(z) is the ambient density profile. In the Boussinesq
case, the divergence is zero.

The curl of the velocity field, which is called the vorticity ζ, is

ζ = ∇× v = ∇× vS = ∇× (∇×Ψ) = −∇2Ψ. (2.18)

In the last step of equation (2.18) we have applied the auxiliary condition on the vector
potential that ∇ ·Ψ = 0. This is analogous to the Coulomb gauge condition on the vector
potential of electromagnetism.

The vorticity plays an important role in geophysical fluid dynamics and it obeys a useful
equation of its own, as we now demonstrate. To derive this equation we first rewrite the
momentum equation using the vector identity v ·∇v = ∇(v2/2)− v× ζ. Ignoring viscosity,
writing the pressure gradient in terms of the Exner function, and gravity in terms of the
geopotential, we get

∂v

∂t
+ ∇(v2/2 + Φ) + ζa × v + θ∇Π = 0. (2.19)

The quantity ζa = ζ + 2Ω is called the absolute vorticity, and is the vorticity of the flow
calcuated in an inertial reference frame.

Taking the curl of this equation gives us the vorticity equation,

∂ζa
∂t

+ ∇ · (vζa − ζav) + ∇θ ×∇Π = 0, (2.20)
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where we have invoked the vector identity ∇× (ζa × v) = ∇ · (vζa − ζav), noted that the
curl of a gradient is zero, and used the fact that Ω doesn’t change with time, which means
that ∂ζa/∂t = ∂ζ/∂t. From this we see that the flux of vorticity is the antisymmetric tensor
Fζ = vζa−ζav. The absolute vorticity changes with time as a result of two terms, minus the
divergence of this flux, and minus the cross product of the gradients of potential temperature
and the Exner function. The last term in equation (2.20) is called the baroclinic generation
term.

If the vorticity is everywhere zero in a flow, then the velocity field is purely irrotational.
Such a velocity field can be represented by a velocity potential χ:

v = −∇χ. (2.21)

If in addition we are using the Boussinesq equations with ∇ · v = 0, the velocity potential
satisfies Laplace’s equation,

∇2χ = 0. (2.22)

The flow is then determined uniquely by the boundary conditions on χ; nothing interesting
happens in the interior of the fluid. If the flow satisfies the anelastic conditions, the governing
equation for χ is only slightly more complex. Invoking equation (2.17), we have

∇2χ+
d ln ρ0
dz

∂χ

∂z
= 0. (2.23)

This potential flow as it is called, is a staple of classical fluid dynamics, primarily because
potential flow problems can be solved by well-known analytical techniques. However, it is
not of much interest in geophysical fluid dynamics, because even if the vorticity is initially
zero, it is unlikely to stay that way due to the baroclinic generation term in the vorticity
equation. At that point obtaining a solution becomes much more complex.

2.6 Two-dimensional slab symmetry
Much can be learned from reduced dimensionality calculations in geophysical fluid dynamics.
Here we consider one case of reduced dimensionality, slab symmetry, in which independence
of one horizontal space dimension (typically the y dimension) is assumed.

Assuming ∂/∂y = 0, the flow in the x−z plane can be represented by a single function in
the case of anelastic or Boussinesq flows. In the anelastic case the mass continuity equation
reduces to

∂ρ0vx
∂x

+
∂ρ0vz
∂z

= 0 (2.24)

where ρ0 = ρ0(z) is the mean density profile. This allows a streamfunction ψ to be defined
such that

vx = − 1

ρ0

∂ψ

∂z
vz =

1

ρ0

∂ψ

∂x
; (2.25)
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Figure 2.1: Example of Boussinesq streamfunction, velocity, and vorticity fields in two-
dimensional slab symmetry. The thick line in the vorticity plot indicates the contour of zero
vorticity.

direct substitution into equation (2.24) verifies that this definition is consistent with mass
continuity. Defining a quantity called the vorticity ζ as

ζ =
∂vx
∂z
− ∂vz
∂x

, (2.26)

we note that
∂

∂x

(
1

ρ0

∂ψ

∂x

)
+

∂

∂z

(
1

ρ0

∂ψ

∂z

)
= −ζ, (2.27)

which is a Poisson-like elliptic equation for the streamfunction in terms of the vorticity.
Given appropriate boundary conditions, the streamfunction can be obtained if the vorticity
is known. The velocity components can then be obtained from equation (2.25). Thus, two
dependent variables, vx and vz, are collapsed into one, ψ. Note that in the Boussinesq
approximation the mean density profile is constant and therefore can be set to unity in the
subsequent equations, resulting in even more simplification. In the context of section 2.5,
ψ = Ψy, with Ψx = Ψz = 0.

The streamfunction has advantages for visualization of the flow. Figure 2.1 shows a plot
of a sample Boussinesq streamfunction as well as the associated velocity and vorticity fields.
Note that the velocity vectors are everywhere parallel to contours of constant streamfunction
and that the magnitude of the velocity is inversely proportional to the spacing of the contours.
(For the more general anelastic case, the spacing of the contours is inversely proportional to
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|ρ0v|.) The free slip boundary condition for a stationary external boundary is simply that
the streamfunction is constant on the boundary.

Note that assuming ∂/∂y = 0 does not imply that the y component of the velocity v is
zero. In the case of a non-rotating flow, v decouples from the rest of the problem. However,
even this is not true in the rotating case.

2.7 Pressure coordinates
Use of pressure as the vertical coordinate in place of geometric height is frequent in mete-
orology. This is generally done only in the hydrostatic limit, in which case the hydrostatic
equation becomes

dΦ

dp
= −RT

p
. (2.28)

The geopotential Φ = gz becomes a dependent variable while the pressure is an independent
variable. The density in pressure coordinates is the amount of mass ∆M in a volume in
pressure coordinates, ∆V = ∆x∆y∆p, divided by this volume. In hydrostatic equilibrium,
the weight of material in the volume is just ∆V . Dividing this by the acceleration of gravity
g yields the mass, which means that the density in pressure coordinates is just

ρp = −1

g
. (2.29)

The minus sign arises from the fact that pressure decreases upward. The vertical velocity in
pressure coordinates is

ω =
dp

dt
. (2.30)

As pressure decreases upward, this has the peculiar property of being negative for upward
motion. The material derivative in pressure coordinates is

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
. (2.31)

Partial derivatives with respect to x, y, and t hold the pressure constant.
In pressure coordinates, constant pressure surfaces are the “horizontal” surfaces. However,

these surfaces are generally not horizontal in geometric coordinates. This has two implica-
tions: (1) Pressure coordinates are not strictly Cartesian, even on a flat earth. This makes
the exact pressure coordinate equations extremely complex. However, the deviation from the
horizontal of constant pressure surfaces is small enough that this effect is generally ignored.
(2) There is no pressure gradient force along constant pressure surfaces. However, a gravita-
tional force does exist in the “horizontal” equations of motion. The force per unit mass is just
minus the slope of the pressure surface times the acceleration of gravity, or −g∇hz = −∇hΦ,
where ∇h is the two-dimensional gradient along the pressure surface.
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The net result is the following set of governing equations for mass, “horizontal” momen-
tum, geopotential, and potential temperature:

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (2.32)

du

dt
+
∂Φ

∂x
− fv = 0 (2.33)

dv

dt
+
∂Φ

∂y
+ fu = 0 (2.34)

∂Φ

∂p
+
κθΠ

p
= 0 (2.35)

dθ

dt
= 0. (2.36)

The temperature has been eliminated in favor of the potential temperature and the Exner
function in the hydrostatic equation. Recall that the latter is a function only of the pressure.
All source and viscous terms have been neglected, but these can be added as needed.

A disadvantage of pressure coordinates is that the lower boundary is not flat and generally
changes with time. The pressure vertical velocity is not necessarily zero there either.

2.8 References
Vallis, G. K., 2006: Atmospheric and oceanic fluid dynamics. Cambridge University Press,

745 pp. The material here is mostly covered in chapters 1, 2, and 4 of Vallis.

2.9 Questions and problems
1. Develop a total energy equation for the Boussinesq equations, ignoring viscosity and

the buoyancy source term. Hint: The internal energy does not enter!

2. The quantity CpT + Φ is called the dry static energy.

(a) Assuming that the entropy is constant, obtain a relationship between dp and dT
in a parcel of air.

(b) Use the hydrostatic equation to eliminate dp in favor of dz.

(c) Use in addition the ideal gas law to infer that d(CpT + gz) = d(CpT + Φ) = 0 for
a parcel, assuming that the parcel entropy is conserved.

(d) Can you reconcile this result with the Bernoulli equation? Explain.
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3. Derive the vorticity equation as in section 2.5, but for the Boussinesq equations.

4. Show that the flux of the vertical component of absolute vorticity is purely horizontal.
Hint: Fζij = viζaj − vjζai is the flux of the jth component of the vorticity in the i
direction.


