
Chapter 3

Sound, Inertia-Gravity Waves, and Lamb
Waves

We now examine fundamental modes of the geophysical fluid dynamics equations at small
scales and amplitudes, which allows a linearized treatment. We first consider the full modes
of an isothermal, non-rotating atmosphere at rest. This is followed by the modes of a rotating
atmosphere at rest with constant Brunt-Väisälä frequency under the Boussinesq approxima-
tion.

3.1 Resting, non-rotating atmosphere
The full atmospheric governing equations with no rotation, heating, or friction are

∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v = 0 (3.1)

∂v

∂t
+ v ·∇v +

1

ρ
∇p+ gk = 0 (3.2)

∂θ

∂t
+ v ·∇θ = 0. (3.3)

We first define an isothermal base state in hydrostatic balance, with base state profiles
indicated by a subscripted zero. From the ideal gas law, the base state density can be
written

ρ0 =
p0
RT0

(3.4)

where T0 is constant. After minor manipulation, the hydrostatic equation becomes

d ln p0
dz

= − g

RT0
= − 1

zS
(3.5)
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where zS = RT0/g ≈ 8 km is the scale height of the atmosphere. This has the solution

p0 = pR exp(−z/zS) (3.6)

where pR is a reference pressure, typically 1000 hPa. From equation (3.4) we get the base
state density profile

ρ0 =
p0
RT0

=
p0
gzS

=
pR exp(−z/zS)

gzS
. (3.7)

The base state potential temperature profile is

θ0 = T0 (pR/p0)
κ = T0 exp(κz/zS). (3.8)

We now linearize the governing equations, assuming that p = p0(z)+p
′, ρ = ρ0(z)+ρ

′, and
θ = θ0(z) + θ′, where the primed quantities are assumed to be small enough that quadratic
and higher terms in them can be ignored. Since we are linearizing about a state of rest, the
velocity components v = (u, v, w) are also assumed to be small.

Two somewhat complex parts of the linearization are first discussed. The pressure gradient
and gravity terms in the momentum equation become

1

ρ0 + ρ′
∇(p0 + p′) + gk ≈ 1

ρ0
∇p0 −

ρ′

ρ20
∇p0 +

1

ρ0
∇p′ + gk =

1

ρ0
∇p′ +

gρ′

ρ0
k (3.9)

where the hydrostatic equation has been invoked to eliminate ∇p0. The potential tempera-
ture is rewritten in terms of the pressure and density and then linearized:

θ = T

(
pR
p

)κ
=
pκR
R

p1−κ

ρ
≈ θ0

[
1 +

1

γ

(
p′

p0

)
− ρ′

ρ0

]
(3.10)

implies that
θ′

θ0
=

1

γ

(
p′

p0

)
− ρ′

ρ0
, (3.11)

where we recall that 1− κ = 1/γ.
We assume a plane wave form for all perturbation variables exp [i(kx− ωt)] where k is

the wave vector component in the x direction and ω is the angular frequency of the wave.
No generality is lost by assuming wave motion in the x direction due to isotropy in the x− y
plane, and this assumption simplifies matters by rendering the y component of the momentum
equation irrelevant. Simplifying the notation by defining P = p′/p0 and N = ρ′/ρ0, the
linearized governing equations are

−iωN − w

zS
+ iku+

∂w

∂z
= 0 (3.12)

−iωu+ ikgzSP = 0 (3.13)
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−iωw + gzS
∂P

∂z
+ g(N − P ) = 0 (3.14)

−iω [P/γ −N ] +
κw

zS
= 0 (3.15)

where θ′ has been eliminated between equations (3.3) and (3.11).
Eliminating u and N using equations (3.13) and (3.15) results in a system of two, first-

order differential equations for w and P :(
∂

∂z
− 1

γzS

)
w + iω

(
k2gzS
ω2

− 1

γ

)
P = 0 (3.16)

(
∂

∂z
− κ

zS

)
P − iω

gzS

(
1− κg

ω2zS

)
w = 0. (3.17)

By further elimination we arrive at a single second-order differential equation for P :[
∂2

∂z2
− 1

zS

∂

∂z
+
(
κg

zSω2
− 1

)
k2 +

ω2

γgzS

]
P = 0. (3.18)

The second order structure of this equation suggests oscillatory behavior in the vertical with
some modification due to the first derivative in z. No obvious energy sources or dissipation
exist in this system, so we expect the frequency ω to be real. We try a solution of the form
P ∝ exp[(im+ µ)z], with real m and µ, whereupon the first two terms become[

(im+ µ)2 − im+ µ

zS

]
P. (3.19)

Demanding that the imaginary part of the coefficient of P be zero implies that µ = 1/(2zS),
which means that the amplitude of the pressure perturbation and other perturbation quan-
tities increase exponentially with height. The physical reason for this is that the ambient
density of air decreases with height, and for a wave to carry the same amount of energy as it
moves upward, the amplitude has to increase.

Substituting P ∝ exp [imz + z/(2zS)] into equation (3.18) and rearranging results in a
quadratic equation for ω2

ω4 − γgzSl2ω2 + γκg2k2 = 0 (3.20)

where l2 = k2 +m2 + 1/(4z2S). This equation has the solution

ω2 =
γgzSl

2

2

1± (1− 4κk2

γz2Sl
4

)1/2
 . (3.21)

The branch with the positive root represents sound waves, or at low frequencies, infrasound.
The negative root represents gravity waves, a type of wave which we will study extensively.
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Figure 3.1: Non-dimensionalized dispersion relations for sound, gravity, and Lamb waves in
an isothermal, resting atmosphere. The non-dimensional horizontal wavenumber is zSk, the
non-dimensional frequency is zSω/c, and the non-dimensional vertical wavenumber is zSm.
Curves for gravity modes with vertical wavenumber values of 0, 1, 2, 3, 4, and 5 are shown
while curves for infrasound modes with values 0, 0.2, 0.4, 0.6, 0.8, and 1 are plotted. In both
cases curves with m = 0 are closest to the frequency gap.

3.1.1 Approximations

This solution exhibits interesting limits:

1. If gravity is zero, then zS →∞. However, gzS = RT0, and we find two solutions,

ω2 → γRT0(k
2 +m2), 0. (3.22)

The first solution corresponds to pure sound waves with phase speed squared of c2 =
γRT0. The second is the degenerate case for a gravity wave with no gravity.

2. For vertical wavelengths short compared to the scale height, z4Sl4 � z2Sk
2, and the

second term inside the square root is much smaller than unity, so we can perform a
binomial expansion on the square root, resulting in

ω2 → c2(k2 +m2),
N2k2

(k2 +m2)
. (3.23)

In this case the first solution represents sound as before, while the second is the dis-
persion relation for small-scale gravity waves in the special case of an isothermal envi-
ronment. We have written g/zS in terms of the ambient potential temperature profile
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using equation (3.8) κg/zS = gd(ln θ0)/dz ≡ N2. The quantity N is called the Brunt-
Väisälä frequency. Notice that the dispersion relation for small-scale sound waves in
an isothermal atmosphere is isotropic in the x−z plane even in the presence of gravity,
whereas the dispersion relation for gravity waves is highly anisotropic. This has great
significance for atmospheric dynamics.

3.1.2 Lamb wave

In eliminating w to obtain equation (3.18), we have inadvertently eliminated a solution to
equations (3.16) and (3.17) which the vertical velocity is identically zero. Setting w = 0 in
equation (3.16) yields the dispersion relation for these modes, which are called Lamb waves:

ω2 = γgzSk
2 = γRT0k

2 = c2k2, (3.24)

which is just the dispersion relation for horizontally propagating sound waves. Setting w = 0
in equation (3.17) yields an equation for the vertical structure of Lamb waves:(

∂

∂z
− κ

zS

)
P = 0, (3.25)

which has the solution P ∝ exp(κz/zS). These waves have purely horizontal motion, and are
thus purely longitudinal, and they extend through the full depth of the atmosphere. They
travel at the speed of ordinary sound.

Figure 3.1 summarizes what we have learned, showing plots of non-dimensional frequency
versus wavelength for various values of the non-dimensional vertical wavenumber, zSm. The
maximum non-dimensional frequency for gravity waves is (κ/γ)1/2 while the minimum fre-
quency for infrasound waves is 0.5. Only the Lamb mode has frequencies in the gap between
these two values. Interestingly, the horizontal phase speed of infrasound ω/k exceeds that of
sound, going to infinity as the horizontal wavenumber goes to zero.

3.2 Boussinesq inertia-gravity waves
We now extend our analysis of gravity waves to the case with rotation, but subject to the
Boussinesq approximation in order to make the equations tractable. These are called inertia-
gravity waves. (It is not necessary to discuss infrasound waves with rotation because the
minimum infrasound frequency is so much greater than the Coriolis parameter.) The Boussi-
nesq equations linearized about a state of rest are

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.26)

∂u

∂t
+
∂π′

∂x
− fv = 0 (3.27)
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∂v

∂t
+
∂π′

∂y
+ fu = 0 (3.28)

∂w

∂t
+
∂π′

∂z
− b′ = 0 (3.29)

∂b′

∂t
+N2w = 0 (3.30)

where we have ignored molecular transfer and the buoyancy source term. The buoyancy
is split into a mean part which increases linearly with height and a perturbation part b =
N2z + b′, where N is the Brunt-Väisälä frequency introduced in section 3.1. The kinematic
pressure is correspondingly split π = π0(z)+π

′, with π0 in hydrostatic balance with b0 = N2z.
We assume a plane wave moving in the x − z plane, with all variables proportional to

exp [i(kx+mz − ωt)]. However, unlike the rotating case, we cannot neglect the y compo-
nent of the momentum equation. This assumption reduces the partial differential governing
equations (3.26)-(3.30) to algebraic equations

iku+ imw = 0 (3.31)

−iωu+ ikπ′ − fv = 0 (3.32)

−iωv + fu = 0 (3.33)

−iωw + imπ′ − b′ = 0 (3.34)

−iωb′ +N2w = 0. (3.35)

This is a set of five linear, homogeneous equations in five dependent variables, and a
consistent solution only exists if the determinant of the coefficients of the dependent variables
equals zero. The resulting secular equation is cubic in ω[

ω2(k2 +m2)− (N2k2 + f 2m2)
]
ω = 0, (3.36)

yielding the dispersion relation for inertia-gravity waves

ω = ±
(
N2k2 + f 2m2

k2 +m2

)1/2

(3.37)

and the (not so) trivial dispersion relation ω = 0.

3.2.1 “Trivial” mode

For the ω = 0 case, the relations between the dependent variables, or polarization relations,
are u = w = 0 as well as hydrostatic balance

b′ = imπ′ (3.38)
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Figure 3.2: Anti-cyclonic (clockwise looking down in the northern hemisphere) rotation of
the horizontal component of the wind perturbation in inertia-gravity waves. The ratio of
A/B = ω/f .

and geostrophic balance of the y component of the flow with the pressure perturbation

v =
ik

f
π′. (3.39)

This case corresponds to steady, geostrophically balanced jets in the y direction. Though
somewhat trivial in the present case, this mode becomes interesting when base states with
wind shear or the curvature of the earth’s surface are added.

3.2.2 Inertia-gravity mode

The inertia-gravity wave polarization relations for ω2 > 0 are

u = −m
k
w (3.40)

v = −if
ω
u =

ifm

ωk
w (3.41)

b′ = −iN
2

ω
w (3.42)

π′ = −m (ω2 − f 2)

k2ω
w. (3.43)

From equation (3.40) we see that ku+mw = 0, which means that the perturbation velocity
in the x − z plane (u,w) is normal to the wave vector (k,m). Gravity waves, at least in
the Boussinesq approximation, are thus pure transverse waves. In the horizontal plane, the
perturbation wind vector rotates anti-cyclonically around an elliptical trajectory in one wave
period, as illustrated in figure 3.2.
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Figure 3.3: Wave front in the x− z plane with phase speed vp and the x and z trace speeds
ut and wt illustrated.

The dispersion relation (3.37) shows that as long as k and m are real, the wave frequency
is bounded by f 2 ≤ ω2 ≤ N2. This dispersion relation agrees with the approximate dispersion
relation (3.23) derived from the exact analysis of section 3.1 in the limit of f = 0. It also
shows that inertia-gravity waves are highly anisotropic in the vertical.

3.2.3 Speeds and velocities

The phase speed of a wave in three-dimensional space is the wave frequency divided by the
total wavenumber. In the case of Boussinesq inertia-gravity waves, it is

vp =
ω

(k2 +m2)1/2
=

(k2N2 +m2f 2)1/2

k2 +m2
. (3.44)

The phase speed is not the magnitude of a vector, and in particular it is not the square root
of the sum of the squares of the speeds obtained by dividing the frequency by the components
of the wave vector, k and m. These quantities

ut =
ω

k
wt =

ω

m
(3.45)

are speeds with which the intersection of wave fronts with the respective Cartesian axes move.
(See figure 3.3.) There is a relationship between the phase speed and the trace speeds:

1

v2p
=

1

u2t
+

1

w2
t

. (3.46)

It is easy to show that the phase speed is less than that of any of the trace speeds.
The group velocity is a true velocity with Cartesian components

vg =

(
∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)
(3.47)



CHAPTER 3. SOUND, INERTIA-GRAVITY WAVES, AND LAMB WAVES 29

wave
vector

group
velocity

Figure 3.4: Schematic illustration of an inertia-gravity wave wave packet showing that the
group velocity is oriented (in the vertical plane) at a right angle to the wave vector.

where k = (k, l,m) is the wave vector. In the case discussed here we have set l = 0. For
Boussinesq inertia-gravity waves, the components of the group velocity are easily computed:

ug =
m2 (N2 − f 2)

ut(k2 +m2)2
wg = −

k2 (N2 − f 2)

wt(k2 +m2)2
. (3.48)

Note that the x component of the group velocity has the same sign as the x trace speed,
whereas the z component has the opposite sign from the z trace speed. This is a peculiarity
of inertia-gravity waves which led to an early mis-interpretation of the vertical propagation
of these waves in the ionosphere. Radar observations showed downward-moving wave fronts
(vertical trace speed), which led to questions about the possible origin of these waves high
in the atmosphere. In reality, the wave energy, as represented by the group velocity, was
moving upward, with origins in various types of tropospheric disturbances.

Curiously, the group velocity of the Boussinesq inertia-gravity wave is normal to the wave
vector, with the vertical components of the two being of opposite sign. This is illustrated in
figure 3.4.

3.3 References
Vallis, G. K., 2006: Atmospheric and oceanic fluid dynamics. Cambridge University Press,

745 pp. The current material is discussed in chapter 2 of Vallis. Note that figure 2.9
in Vallis is incorrect (in the first edition).
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3.4 Questions and problems
1. We noted that combining equations (3.16) and (3.17) by eliminating w results in the

omission of a solution with w ≡ 0. By combining these equations while eliminating P ,
is a solution with P ≡ 0 omitted? Explain.

2. Make a qualitative sketch of the horizontal trace speed and the horizontal component
of the group velocity of a typical infrasound wave. (No equations, please!)

3. Show that vg · k = 0 for Boussinesq gravity waves.

4. Standing gravity waves over sinusoidal terrain: Find the steady, non-rotating, flow over
terrain with terrain elevation of the form h = h0 sin(kx). Do this by carrying out the
following steps:

(a) Linearize the inviscid, adiabatic, non-rotating (f = 0) Boussinesq equations about
a state of constant, uniform flow U in the x direction and uniform Brunt-Väisälä
frequency, so that b0(z) = N2z. The base state kinematic pressure π0(z) should
be in hydrostatic equilibrium with the base state buoyancy b0. Assume steady
flow (∂/∂t = 0) and slab symmetry (∂/∂y = 0).

(b) Assume that all dependent variables are proportional to exp [i (kx+mz)] and
substitute this into the linearized equations, resulting in a set of linear, homoge-
neous equations in the dependent variables u′, w, π′, and b′. Find the relationship
between m2 and k2.

(c) Choose the sign of m which makes wave packets move upward. This is called the
upward radiation boundary condition. Hint: View the motion of wave packets
with various orientations of the wave fronts in the reference frame of the moving
flow.

(d) Find u′, π′, and b′ in terms of w(x, z). The real parts of these variables are the
physically interesting parts, so compute these.

(e) Air adjacent to the surface moves up and down as it flows over the undulating
terrain. This vertical velocity equals ws(x) = (U + u′)(dh/dx). The computed
vertical velocity pattern must match this at the surface z = h(x), i.e., w(x, h(x)) =
ws(x). In order to solve this problem, we must also assume that the variations
in terrain height are small, so that we can approximate w(x, h) ≈ w(x, 0). We
also must assume that |u′| � U , so that the actual boundary condition applied is
w(x, 0) = U(dh/dx). Apply this boundary condition and make plots of u′, w, π′,
and b′ as a function of x and z. You may wish to use the computer graphics tool
of your choice to make contour plots showing these variables.


