
Chapter 7

Quasi-Geostrophic Theory

In the last chapter we defined the potential vorticity in a number of contexts and showed
that in the absence of heating and friction it is a quantity conserved by fluid parcels. In
this chapter we show that the potential vorticity also carries complete information about
the balanced part of the flow as well as additional useful information about the unbalanced
component. By “balance”, we refer to geostrophic balance, though many of the arguments
carry over to more sophisticated forms such as gradient and nonlinear balance. We confine
our discussion here to geostrophic balance. In the geostrophic case the balanced part of
the flow is simply the geostrophic wind. The unbalanced part is the total wind minus the
geostrophic wind and is called the ageostrophic wind.

The process by which we extract information from the potential vorticity is called potential
vorticity inversion, first popularized by Hoskins, McIntyre, and Robertson (1985). It is
simplest to understand inversion in the context of the shallow water and isentropic coordinate
systems. We discuss these cases in turn. In both cases inversion works best when the
ageostrophic wind is small. Since the ageostrophic wind is associated with the acceleration
term in the horizontal momentum equation, we can evaluate the relative magnitude of the
ageostrophic component via a scale analysis on the momentum equation. Taking the shallow
water momentum equation

dv

dt
+ g∇(h+ d) + fk × v = 0 (7.1)

as an example, we note that the acceleration term scales as V/T where V is a characteristic
velocity and T is a characteristic time scale of the disturbance in question. If the acceleration
term is small compared to the other terms in equation (7.1), then the height gradient and
the Coriolis terms are roughly the same order of magnitude, and we can perform a scale
analysis on either one for purposes of comparison with the acceleration term. The Coriolis
term scales as fV . The ratio of the estimated acceleration and Coriolis terms is called the
Rossby number :

Ro =
1

fT
. (7.2)
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The acceleration is therefore small compared to the Coriolis force when Ro � 1, or when
T � 1/f . Potential vorticity inversion using geostrophic balance is therefore confined to
disturbances with time scales greater than the rotation period of the earth. This encompasses
most large-scale meteorological disturbances.

Charney (1948) was responsible for the systematic development of the above ideas in the
so-called quasi-geostrophic theory, using the method of scale analysis on the full governing
equations. The name comes from the fact that it works when fluid motions are close to, but
not exactly in geostrophic balance.

We take an alternate approach to Charney’s theory by applying what we have learned
about potential vorticity. The basic idea of quasi-geostrophic theory (and other quasi-
balanced theories) is that the potential vorticity is inverted to obtain the geostrophic velocity
and the associated mass field. The mass continuity equation is then used to infer the “slaved”
part of the ageostrophic flow. Given this information, the parcel conservation of potential
vorticity allows the potential vorticity field to be stepped forward in time and the process is
repeated. In this way the time evolution of the flow can be computed.

We first examine quasi-geostrophic theory in the context of the shallow water equations
and then extend our analysis to the three-dimensional case using the isentropic coordinate
equations. Common to both cases, quasi-geostrophic theory assumes the perturbations to the
layer thickness (shallow water case) or the isentropic density (isentropic case) are assumed to
be small compared to the base state values. However, velocities cannot in general assumed to
be small enough to neglect advection terms in material derivatives, though we shall continue
to impose this condition in further linearizations.

Quasi-geostrophy advects potential vorticity and other quantities with the geostrophic
rather than the total wind. This eliminates the physics of fronts from the theory. The more
sophisticated semi-geostrophic theory includes the ageostrophic part of the wind in advection.
See Hoskins (1975) for an exposition of this theory.

7.1 Shallow water case
The shallow water potential vorticity is

q =
ζa
h

(7.3)

where the absolute vorticity is

ζa =
∂v

∂x
− ∂u

∂y
+ f (7.4)

and h is the thickness of the fluid layer. The geostrophic absolute vorticity ζag is obtained
by substituting the geostrophic wind

ug = − g
f

∂(h+ d)

∂y
vg =

g

f

∂(h+ d)

∂x
(7.5)
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for the real wind, resulting in

ζag = hqg =
∂

∂x

(
g

f

∂(h+ d)

∂x

)
+

∂

∂y

(
g

f

∂(h+ d)

∂y

)
+ f. (7.6)

The terrain elevation is d(x, y). This is a linear partial differential equation for the layer
thickness in terms of the geostrophic potential vorticity qg which is elliptic as long as f
and qg are either uniformly positive or negative. It thus has a unique solution as long as
appropriate boundary conditions are satisfied.

The special case of small amplitude disturbances on a beta-plane helps illustrate what is
going on here. In this case we make the usual assumption that h = h0(1 + η) where |η| � 1.
On a beta-plane we let f = f0 +βy where |βy| � f0. In addition we assume that the relative
vorticity is much smaller than f0 Linearizing the potential vorticity in this case, we find

qg ≈
f0
h0

[
1 +

βy

f0
+

1

f0

(
∂vg
∂x
− ∂ug

∂y

)
− η

]
= qA + q0

(
L2
R∇2η∗ − η∗

)
(7.7)

where
qA = q0 [1 + βy/f0 + (d/h0)] (7.8)

is the base state potential vorticity associated with the Coriolis parameter and variations
of terrain elevation. The quantity η∗ = η + d/h0 is the part of the fractional thickness
perturbation associated with motion, since as equation (7.5) shows, constant η∗ corresponds
to zero geostrophic wind. The quantity L2

R = gh0/f
2
0 is the square of the Rossby radius, a

characteristic length scale for nearly geostrophic, shallow water disturbances away from the
equator and q0 = f0/h0 is the planetary potential vorticity. This equation may be rewritten
in a more convenient form

L2
R∇2η∗ − η∗ = q∗/q0 (7.9)

where q∗ = qg − qA is the part of the potential vorticity associated with motion. The
geostrophic wind components written in terms of η∗ are

ug = −f0L2
R

∂η∗

∂y
vg = f0L

2
R

∂η∗

∂x
. (7.10)

The mass continuity equation has not yet been invoked in this analysis, and it contains
useful information about the ageostrophic flow. We write this as

∂η

∂t
+ vg ·∇η + ∇ · va = 0, (7.11)

noting that ∇ · vg = 0, which means that ∇ · v = ∇ · va where va = v − vg is the
ageostrophic wind. The total wind is replaced by the geostrophic wind in the advection
term since |vg| � |va| for low Rossby number flow. Equation (7.11) imposes a constraint on
the slaved ageostrophic wind associated with balanced motions. It does not reveal anything
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about unbalanced phenomena such as inertia-gravity waves. Furthermore, the constraint acts
only on the irrotational part of the ageostrophic flow. Since equation (7.9) diagnoses η in
the past as well as in the present time, the time derivative of η can be taken as known. The
irrotational part of the ageostrophic flow (assumed here to be the only part of interest) can
be represented by a velocity potential χ:

va = −∇χ. (7.12)

Substituting this into equation (7.11) yields a Poisson equation for the velocity potential in
terms of η and the geostrophic wind:

∇2χ =
∂η

∂t
+ vg ·∇η. (7.13)

In summary, once the distribution of potential vorticity is known in a domain confined
to one side of the equator (so that the Coriolis parameter does not change sign within the
domain), the fluid layer thickness, the geostrophic velocity field, and a slaved ageostrophic
velocity can be derived. Though this is hard to prove rigorously, experience shows that a flow
which is initially far from balance tends to evolve toward a quasi-balanced state, potentially
with unbalanced inertia-gravity waves generating oscillations about this state.

Once the velocity is known, we evolve the potential vorticity. This is done with the
potential vorticity conservation equation

∂qg
∂t

+ vg ·∇qg = 0. (7.14)

Note that the total potential vorticity qg enters into this equation. The part associated with
motion can be extracted from the total: q∗ = qg − qA. Once q∗ is known at the new time,
the inversion process can be repeated.

7.2 Anelastic isentropic case
We now extend the analysis of potential vorticity inversion to the full three-dimensional case,
making the isentropic anelastic approximation to avoid non-essential mathematical complex-
ity. The advantage over analyzing potential vorticity inversion in geometric or pressure
coordinates is that the horizontal components of vorticity vanish from the definition of po-
tential vorticity. In fact, the potential vorticity in isentropic coordinates looks a great deal
like the shallow water version:

q =
ζa
σ

=
1

σ

(
∂v

∂x
− ∂u

∂y
+ f

)
(7.15)

where the fractional thickness perturbation is replaced by σ, the density in isentropic coor-
dinates. The quantity ζa in this case is not the vertical component of absolute vorticity in
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geometric coordinates, but the component normal to isentropic (constant potential temper-
ature) surfaces. Of course, ζa is the vertical component of vorticity in isentropic coordinate
space.

The geostrophic velocity components in isentropic coordinates are

ug = − 1

f

∂M

∂y
vg =

1

f

∂M

∂x
(7.16)

where we recall that M is the Montgomery potential. The Montgomery potential is related
to the isentropic density in the anelastic case by

∂2M

∂θ2
= − N2

σ0Γ2
σ (7.17)

where N(θ) is the base state profile of Brunt-Väisälä frequency, Γ(θ) = (dz0/dθ)
−1, and where

we have anticipated the need for a base state density profile σ0(θ). Combining equations
(7.15)-(7.17), the geostrophic approximation to the potential vorticity equation in this case
is

f +
∂

∂x

(
1

f

∂M

∂x

)
+

∂

∂y

(
1

f

∂M

∂y

)
+
σ0Γ

2qg
N2

∂2M

∂θ2
= 0, (7.18)

where qg is the quasi-geostrophic potential vorticity. This is a linear, second order partial
differential equation in M which is elliptic under conditions similar to those which pertain
in the shallow water case.

Assuming that f = f0 + βy, σ = σ0(θ) + σ∗, and M = M0(θ) + M∗, with |βy| � f0,
|σ∗| � σ0, and |M∗| � M0, we linearize equation (7.18). We also assume that σ0 and M0

satisfy equation (7.17) so that the base state terms cancel in equation (7.18). Under these
conditions, equation (7.18) becomes

1

f 2
0

∇2
hM

∗ +
Γ2

N2

∂2M∗

∂θ2
=
q∗

q0
(7.19)

where ∇2
h is the two-dimensional, horizontal (in isentropic coordinate space) Laplacian. As

in the shallow water case, the geostrophic potential vorticity is split into a base state part
and a part having to do with motion, qg = qA + q∗. In the present case the base state part is

qA = q0(1 + βy/f0) (7.20)

where the planetary potential vorticity is q0 = f0/σ0.
The three-dimensional treatment of potential vorticity inversion exhibits one complication

which does not exist in the shallow water case. Equations (7.18) and (7.19) require a lower
boundary condition for their solution. A physically sensible mixed boundary condition arises
from the geopotential diagnostic equation:

Φ = M − θ∂M
∂θ

. (7.21)
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Evaluating this at the lower boundary θB results in

ΦB = MB − θB
(
∂M

∂θ

)
B

(7.22)

where the subscripted B indicates evaluation at the bottom boundary θB. The geopotential
at the lower boundary is just ΦB = gd(x, y) where d is the terrain elevation.

Evaluation of the lower boundary condition using equation (7.22) directly is awkward,
since the potential temperature of the lower boundary varies with position and time. However,
we can define a fixed reference level θB0 such that θB = θB0+θ∗B and make a first-order Taylor
series expansion in θ to relate ΦB to quantities at this level:

ΦB ≈ ΦB0 +

(
∂Φ0

∂θ

)
B0

θ∗B ≈MB0 − θB0

(
∂M

∂θ

)
B0

+

(
dΦ0

dθ

)
B0

θ∗B. (7.23)

We have split the geopotential into a base state profile and a perturbation Φ = Φ0 + Φ∗ and
have dropped Φ∗ in the term containing θ∗B, consistent with linearization. Equation (7.23)
must be satisfied by the base state, resulting in

Φ0B = M0B0 − θB0

(
dM0

dθ

)
B0

. (7.24)

Subtracting equation (7.24) from equation (7.23) produces our linearized lower boundary
condition:

Φ∗B = M∗
B0 − θB0

(
∂M∗

∂θ

)
B0

+

(
dΦA

dθ

)
B0

θ∗B. (7.25)

This boundary condition appears to be rather complicated. However, note that it solves
the formidable problem of the variable and dynamic lower boundary characteristic of isen-
tropic coordinates by approximating the actual boundary condition with a condition which
is applied, not at the actual lower boundary, but at a constant reference level θ = θB0. This
works as long as terrain elevation and surface potential temperature variations are small
enough to justify the linearization.

The slaved ageostrophic wind va = −∇hχ is obtained from a velocity potential χ, which
is governed by the mass continuity equation. The mass continuity equation linearized in σ
becomes

∇2
hχ =

1

σ0

(
∂σ∗

∂t
+ vg ·∇hσ

∗
)

(7.26)

where σ∗ is derived from the Montgomery potential using equation (7.17):

σ∗ = −σ0Γ
2

N2

∂2M∗

∂θ2
. (7.27)

We set the heat source term S to zero and treat heating effects later.
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As in the quasi-geostrophic shallow water case, the potential vorticity is advected only
by the geostrophic wind

∂qg
∂t

+ vg ·∇hqg = 0 (7.28)

and the result is used to derive q∗ = qg − qA. The surface temperature perturbation obeys

∂θ∗B
∂t

+ vgB0 ·∇hθ
∗
B = 0 (7.29)

where vgB0 is the geostrophic wind there. We approximate both of these by their values at
the reference surface θB0.

7.3 Boussinesq isentropic coordinate case
In the Boussinesq case Γ→ ΓR and N → NR, where ΓR, NR, and σ0 are assumed constant.
Thus, (7.19) becomes

1

f 2
0

∇2
hM

∗ +
Γ2
R

N2
R

∂2M∗

∂θ2
=
q∗

q0
. (7.30)

The relationship between Montgomery potential and isentropic density simplifies to

∂2M

∂θ2
= −N

2
Rσ

Γ2
Rσ0

(7.31)

and the geopotential diagnostic becomes

Φ = MR − θR
∂M

∂θ
(7.32)

where MR and θR are constant reference values of M and θ. Equation (7.32) derives from
the fact that the Boussinesq approximation is technically only valid in atmospheric layers
much thinner than the scale height, which means that variations in M and θ are small, but
the ratio of these variations as expressed in the derivative is large. Since the Exner function
Π = ∂M/∂θ, we can pick a reference value of this variable characteristic of conditions near
the earth’s surface, ΠR = Cp. If we insist that Φ = 0 there, then the reference value of the
Montgomery potential becomes MR = θRΠR = θRCp. Thus, a simple relationship between
geopotential, Montgomery potential, and Exner function exists in the Boussinesq case,

Φ = θR

(
Cp −

∂M

∂θ

)
= θR(Cp − Π). (7.33)

Equation (7.23) for the surface boundary condition becomes

ΦB = ΦB0 +

(
∂Φ0

∂θ

)
B0

θ∗B = θR

[
Cp −

(
∂M

∂θ

)
B0

]
+
θRN

2
R

Γ2
R

θ∗B, (7.34)
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where we have taken advantage of the fact that dΦA/dθ = −θR(d2MA/dθ
2) = θRN

2
R/Γ

2
R in

the Boussinesq case. For the base state this becomes

ΦAB = θR

[
Cp −

(
∂M0

∂θ

)
B0

]
(7.35)

and the condition on perturbation quantities comes from subtracting equation (7.35) from
equation (7.34):

Φ∗B = −θR
(
∂M∗

∂θ

)
B0

+
θRN

2
R

Γ2
R

θ∗B. (7.36)

The Boussinesq case is the same as the anelastic isentropic case in all other respects.
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7.5 Questions and problems
1. Imagine a point vortex in purely two-dimensional, horizontal flow, where the vorticity

field is given by ζz = Cδ(x)δ(y) with C a constant equal to the strength of the vortex.
The quantity δ() is the Dirac delta function. Solve for the horizontal velocity on an
infinite domain. Hint: Use cylindrical symmetry and the Kelvin circulation theorem
applied to a circular loop centered on the vortex to obtain the velocity field. If you
have experience with electromagnetism, think of the problem of the magnetic field
surrounding an infinite wire carrying a current.
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2. Consider a two-dimensional flow which is stationary except for the flows associated
with two point vortices of equal but opposite strength ±C separated by a distance d.
Describe the speed and direction of motion of the two vortices.

3. Repeat the above problem for the case in which the two vortices have strength of the
same sign and magnitude.

4. Given the potential vorticity distribution qg = q0 [1 + ε sin(kx)] in the shallow water
case on an f -plane with no terrain:

(a) Invert to obtain the fractional thickness perturbation η and the geostrophic veloc-
ity vg.

(b) From the geostrophic velocity, obtain the relative vorticity ζ.

(c) Sketch plots of the maximum amplitude of η/ε and ζ/(εf) vs kLR and comment
on the relative importance of thickness perturbations to vorticity in small-scale
(kLR � 1) and large-scale (kLR � 1) disturbances.

5. Consider a distribution of potential vorticity in the shallow water case of the form
qg = q0 [1 + εδ(x)] where ε is a constant. Assume no terrain and constant f .

(a) Invert to obtain η(x) and vg(x). Sketch these variables as functions of x/LR.

(b) Assume now that ε = Ct where C is a constant, i.e., ε increases linearly with time.
The above solution now makes η time-dependent. From η, compute the velocity
potential χ and the slaved ageostrophic wind va.

(c) Comment on the role of va in maintaining mass continuity.

6. In the isentropic Boussinesq case with constant f :

(a) Rescale the θ coordinate so that dθ = (fΓR/NR)dξ in the potential vorticity
inversion equation.

(b) Ignoring boundary conditions, obtain M ′ as a function of r = (x2 + y2 + ξ2)
1/2

assuming that q′g/q0 = Cδ(x)δ(y)δ(ξ). Hint: Think Coulomb’s law.

(c) Compute the geostrophic wind vg. Comment on the dependence of |vg| on r at
the level ξ = 0; compare with that of a vortex in two-dimensional flow.

(d) Compute the geopotential height perturbation. Is the air warmer or colder than
the base state above the potential vorticity anomaly? Take C and f to be positive.


