
Chapter 6

Circulation Theorem and Potential
Vorticity

Many phenomena in geophysical fluid dynamics have characteristic time scales that are sig-
nificantly greater than the inverse of the Coriolis parameter 1/f . On such time scales the
horizontal velocities are close their geostrophically balanced values. In this case approx-
imations can be made which completely eliminate free gravity waves from the equations
governing geophysical fluid dynamics. The most compact and logical way to present these
approximations is in the context of a quantity called the potential vorticity. The potential
vorticity in turn is related to the Kelvin circulation theorem expressed in a rotating environ-
ment. Potential vorticity is a quantity related to the vorticity and stratification of the fluid
under consideration. In the absence of friction, heating, and external forces, the potential
vorticity is conserved by parcels. The derivation of this conservation condition suggests the
use of the potential temperature as an alternate vertical coordinate, which leads to concept
of the isentropic coordinate system.

6.1 Kelvin circulation theorem
We start by recalling the definition of vorticity ζ = ∇ × v. The vorticity is related to
a quantity called the circulation, defined as the closed line integral of the fluid velocity
component parallel to the path:

Γ =

˛
v · dl =

ˆ
∇× v · ndA =

ˆ
ζ · ndA. (6.1)

The second form of the circulation involving the vorticity is obtained using Stokes’ theorem,
with n being the unit normal to the area element dA. The area integral is over the region
bounded by the circulation path. Figure 6.1 illustrates the circulation loop.

Of particular interest is the circulation loop which moves and deforms with the fluid flow.
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Figure 6.1: Sketch of a circulation loop which advects with the fluid flow, symbolized by the
arrows on the left. Stokes’ theorem relates the circulation to the integral of the component
of vorticity normal to the area bounded by the loop, as shown on the right.

The area, shape, and orientation of this loop evolve with time. However, the time rate of
change of the circulation around such a loop obeys a surprisingly simple law, as we now show.

We wish to take the time derivative of Γ. However, the fact that the circulation loop
evolves with time complicates this calculation. It is simplest to write the circulation integral
in finite sum form in which dl→ ∆li = li+1 − li as illustrated in the left panel of figure 6.1:

dΓ

dt
=

d

dt

∑
vi · (li+1 − li) =

∑ dvi
dt
·∆li +

∑
vi ·∆vi, (6.2)

where vi = dli/dt. We then revert to integral forms and note further that v · dv = d(v2/2),
which results in

dΓ

dt
=

˛
dv

dt
· dl +

˛
d(v2/2). (6.3)

The second term on the right is the line integral of a perfect differential over a closed path
and is therefore zero.

The total time derivative of velocity can be eliminated using the momentum equation:

dv

dt
+ θ∇Π + ∇Φ + 2Ω× v = 0. (6.4)

We work for now in an inertial reference frame in which Ω = 0 and introduce a rotating
frame at a later stage. In this case equation (6.3) becomes

dΓ

dt
= −
˛

(θ∇Π + ∇Φ) · dl = −
˛

(θ∇Π · dl + dΦ) . (6.5)

The integral of a perfect differential around a closed loop is zero, so we arrive at the Kelvin
circulation theorem:

dΓ

dt
= −
˛
θ∇Π · dl. (6.6)
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There are two cases for which the right side of equation (6.6) is zero. If the circulation
loop is contained within a surface of constant Exner function (or constant pressure if the
ρ−1∇p form is used), then ∇Π · dl = 0. This case is not particularly useful, as there is no
guarantee that the circulation loop will remain in this surface. The alternative case occurs
when the loop is contained in a surface of constant potential temperature. In this case
θ∇Π ·dl = ∇(θΠ) ·dl = d(θΠ) and the integrand on the right side of equation (6.6) becomes
a perfect differental, and the integral is zero. If no heating occurs, then potential temperature
is conserved by parcels, and the circulation loop, which we recall moves and deforms with
the flow, will remain in this surface. Therefore in this case Γ is constant with time.

In geophysical fluid dynamics we always use the circulation as computed in an inertial
reference frame. However, we often have to compute the circulation from the fluid velocity
in the rotating frame of the earth. The velocity in the inertial frame vI is related to the
velocity in the rotating frame v by

vI = v + Ω× r, (6.7)

where Ω is the rotation vector of the earth and r is the position vector relative to the center
of the earth. The circulation thus becomes

Γ =

˛
vI · dl =

˛
v · dl +

ˆ
[∇× (Ω× r)] · ndA, (6.8)

where we have used Stokes’ theorem to convert the second line integral into an area integral
bounded by the circulation loop. A vector identity can be used to reduce the last term:
∇ × (Ω × r) = Ω(∇ · r) − Ω ·∇r = 3Ω − Ω = 2Ω. Substituting this into equation (6.8)
results in

Γ =

˛
v · dl +

ˆ
2Ω · ndA =

ˆ
(∇× v + 2Ω) · ndA =

ˆ
ζa · ndA (6.9)

where we recognize
ζa = ∇× vI = ∇× v + 2Ω (6.10)

as the absolute vorticity.

6.2 Potential vorticity
The Kelvin circulation theorem encompasses the same physics as does the vorticity equation,
but in a form which is perhaps somewhat easier to understand. Considering a circulation
loop of small size embedded in an isentropic surface, or a horizontally oriented circulation
loop in the shallow water case, we note that Γ ≈ ζaA where ζa is the component of absolute
vorticity normal to the loop and A is the area of the loop. Since Γ is constant, increases
in the area A as a result of deformation of the flow are accompanied by decreases in ζa
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Figure 6.2: Segment of shallow water flow to which we apply the circulation theorem. The
two surfaces of area A indicate the upper and lower bounds of the flow. The region between
them has volume Ah. The vertical component of the absolute vorticity is ζa.

and vice versa. Since the loop moves with the parcel in which it is embedded, we see that
the circulation around a parcel is a quantity that is conserved by the parcel. Aside from a
multiplicative constant, this quantity is called the potential vorticity. It can be thought of
as the component of the absolute vorticity normal to the circulation loop which occurs when
the loop is deformed so as to have unit area.

We now determine the form of the potential vorticity in the shallow water, incompressible
fluid, and ideal gas cases.

6.2.1 Shallow water case

In the shallow water case we consider a vertical cylinder extending through the full depth
of the fluid. In the shallow water approximation the flow doesn’t vary with depth, so the
circulation around this parcel of fluid is independent of depth. Applying the circulation
theorem to a (nearly) horizontal loop bounding this fluid parcel as shown in figure 6.2, we
conclude from the Kelvin theorem that the circulation around the segment is conserved. We
can write the circulation as

Γ = ζaA =
ζa
h

(Ah). (6.11)

The quantity Ah is the volume of the fluid parcel. As the fluid is incompressible, the volume
of this parcel does not change with time. Since the circulation around the parcel is conserved,
the variable

q ≡ ζa
h

=
1

h

(
∂v

∂x
− ∂u

∂y
+ f

)
(6.12)

which is known as the potential vorticity, is also conserved by parcels, i.e.,

dq

dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0. (6.13)

The vertical component of absolute vorticity increases as the area of the loop decreases.
However, a decrease in the loop area implies an increase in the thickness h of the fluid layer.
This increase is in proportion to the increase in absolute vorticity, which is why the ratio of
the two quantities in a parcel stays the same.
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6.2.2 Incompressible ocean

We approximate the ocean as incompressible, but with spatially variable density. We there-
fore consider a small parcel in a stratified ocean of horizontal area A and vertical thickness
h, bounded above and below by constant density surfaces ρ2 and ρ1 with ρ2 < ρ1. The
circulation in a loop contained in a constant density surface and bounded by this parcel is

Γ = ζaA = ζa

(
ρ2 − ρ1
hρ

)(
hAρ

ρ2 − ρ1

)
=
ζa ·∇ρ

ρ

(
hAρ

ρ2 − ρ1

)
, (6.14)

where ρ = (ρ1 +ρ2)/2 is the mean parcel density. The quantity hAρ is the mass of the parcel,
which is constant in time. Since the circulation loop is confined to a constant density surface,
it is also constant, which means that the potential vorticity

q =
ζa ·∇ρ

ρ
(6.15)

is conserved by parcels:
dq

dt
=
∂q

∂t
+ v ·∇q = 0. (6.16)

6.2.3 Atmospheric potential vorticity

Similar arguments can be made for the atmosphere, except the upper and lower bounding
surfaces are surfaces of constant potential temperature. The Ertel potential vorticity in the
atmosphere is thus

q =
ζa ·∇θ

ρ
. (6.17)

In the Boussinesq approximation the density is omitted as it is a constant factor and the
potential temperature is replaced by the buoyancy, resulting in the Boussinesq potential
vorticity:

q = ζa ·∇b (Boussinesq approximation). (6.18)

In pressure coordinates the density is −g−1, the vorticity is

ζa =

(
−∂v
∂p
,
∂u

∂p
,
∂v

∂x
− ∂u

∂y
+ f

)
, (6.19)

and the gradient operator is

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂p

)
, (6.20)

so the Ertel potential vorticity becomes

q = −gζa ·∇θ (pressure coordinates). (6.21)
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The terms involving the pressure vertical velocity ω are neglected in equation (6.19) because
they are small compared to competing terms when the horizontal scale is much greater than
the vertical scale.

Just to see what the Ertel potential vorticity looks like in its full glory, we expand the
vorticity and the dot product in equation (6.17), ignoring the horizontal components of the
planetary vorticity and the contributions of the vertical velocity to the horizontal vorticity
for the same reasons as in pressure coordinates:

q =
1

ρ

[
−∂v
∂z

∂θ

∂x
+
∂u

∂z

∂θ

∂y
+

(
∂v

∂x
− ∂u

∂y
+ f

)
∂θ

∂z

]
. (6.22)

6.3 Isentropic coordinates
We now consider the atmospheric coordinate system in which the vertical coordinate is po-
tential temperature θ. The main advantage of this coordinate system is that all motions in
which there is no heating (dθ/dt = S = 0) are “horizontal”, i.e., they take place on constant θ
surfaces. As with pressure coordinates, the slope of constant potential temperature surfaces
is shallow under most circumstances, allowing a quasi-Cartesian treatment. Above the at-
mospheric boundary layer, the potential temperature generally increases monotonically with
height. Within the daytime convective boundary layer the potential temperature is essen-
tially constant with height (except at very low levels), so in order for isentropic coordinates
to be non-singular in the boundary layer, it is necessary to impose an artificial weak increase
in potential temperature with height there. The main disadvantage of isentropic coordinates
is that the lower boundary is in general not flat, and it changes in response to the fluid flow.
It shares this property with pressure coordinates.

The flow velocity on the x-y-θ grid is defined to be

v =

(
dx

dt
,
dy

dt
,
dθ

dt

)
= (u, v, S) = (vh, S) (6.23)

where vh = (u, v) is the horizontal velocity, i.e., along constant θ surfaces. The density in
isentropic coordinates σ is the mass per unit volume in x-y-θ space and is related to the
density in geometric coordinates ρ by

σdθ = ρdz. (6.24)

We infer the mass continuity equation in isentropic coordinates by methods we have used
previously to be

∂σ

∂t
+ ∇h · (σvh) +

∂

∂θ
(σS) = 0 (6.25)

where ∇h is the gradient along isentropic surfaces. If no heating occurs, the last term on the
left side of this equation vanishes.
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The “horizontal” momentum equation contains the component of gravity along tilted
isentropic surfaces, −∇hΦ, where Φ is the geopotential, as well as the pressure gradient and
Coriolis forces. Since the pressure (or Exner function) gradient is along isentropic surfaces,
we have θ∇hΠ = ∇h(θΠ). The horizontal momentum equation thus becomes

dvh
dt

+ ∇hM + fk × vh = 0 (6.26)

where
M = θΠ + Φ (6.27)

is the Montgomery potential. The total time derivative has its usual meaning translated to
isentropic coordinates:

d

dt
=

∂

∂t
+ vh ·∇h + S

∂

∂θ
. (6.28)

Using equation (6.24), the hydrostatic equation becomes

∂p

∂θ
= −gσ. (6.29)

In the atmosphere the hydrostatic equation may be written in the alternative form θdΠ =
−gdz = −dΦ. Combining this with the differential of the Montgomery potential dM =
Πdθ + θdΠ + dΦ results in the condition

∂M

∂θ
= Π. (6.30)

Using this in conjunction with equation (6.27) results in a diagnostic equation for the geopo-
tential:

Φ = M − θ∂M
∂θ

. (6.31)

Finally, combining equations (6.29) and (6.30) yields a direct relationship between M and σ:

∂2M

∂θ2
= − g

ρθ
σ. (6.32)

We have used Π = Cp(p/pR)κ = CpT/θ, R = κCp, and the ideal gas law in deriving this
expression.

One additional equation and an upper boundary condition are needed to complete the
set of isentropic equations. The surface potential temperature θB evolves according to the
equation

∂θB
∂t

+ vB ·∇θB = SB (6.33)

where a subscripted B indicates a value on the lower boundary. If the upper boundary is high
in the atmosphere, it is generally sufficient to specify a constant pressure value pT there. Given
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this, equation (6.29) can be integrated down to the surface, thus obtaining a vertical profile
of pressure at each point in the x-y plane. Equation (6.30) can then be integrated upward
from the surface to obtain a profile of Montgomery potential. The momentum (6.26), mass
continuity (6.25), and surface potential temperature (6.33) equations can then be stepped
forward in time. The cycle is then repeated.

A similar treatment exists for the ocean in which the density is used as the vertical coordi-
nate. These are called isopycnal coordinates. Both isentropic and isopycnal coordinates bear
a strong resemblance to the shallow water equations extended to multiple layers of decreasing
density with height.

The Ertel potential vorticity takes a particularly simple form in isentropic coordinates:

q =
ζa ·∇θ

ρ
=
ζa
σ

(
∂θ

∂θ

)
=
ζa
σ

=
1

σ

(
∂v

∂x
− ∂u

∂y
+ f

)
, (6.34)

where ζa is the component of absolute vorticity normal to isentropic surfaces. This is another
major advantage of isentropic coordinates.

6.3.1 Anelastic approximation

An approximation to the full isentropic coordinate equations which is analogous to the anelas-
tic approximation is obtained by setting ρ to some ambient profile ρ0(θ) in equation (6.32),
resulting in

∂2M

∂θ2
= − g

ρ0θ
σ. (6.35)

The advantage of this relatively minor approximation is that the coefficient of σ in the above
equation depends only on θ. The mass continuity (6.25) and momentum (6.26) equations
remain unchanged, as does the definition of potential vorticity (6.34).

Further progress comes from invoking equation (6.24), which tells us that ρ0 = σ0Γ where
Γ(θ) ≡ (dz0/dθ)

−1 is the vertical gradient of ambient potential temperature, z0(θ) is the
ambient profile of height as a function of potential temperature, and where σ0 = ρ0(dz0/dθ)
is the vertical profile of ambient density in isentropic coordinates. Recognizing that (g/θ)Γ =
N2(θ) is the square of the Brunt-Väisälä frequency, equation (6.35) becomes

∂2M

∂θ2
= − N2

σ0Γ2
σ (anelastic). (6.36)

Since N and Γ are familiar meteorological variables, this is a useful form of theM -σ relation.

6.3.2 Boussinesq approximation

An additional approximation analogous to the Boussinesq approximation in geometric coor-
dinates is to replace Γ and N by constant reference values ΓR and NR = (g/θR)ΓR in equation
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(6.36),
∂2M

∂θ2
= − N2

R

σ0Γ2
R

σ (Boussinesq), (6.37)

where θR is a constant reference value of θ. We also assume that σ0 is constant. These
approximations are equivalent to those made in the geometric coordinate Boussinesq case.

One additional approximation is made. The geopotential diagnostic equation (6.31) is
replaced by the simpler equation

Φ = MR − θR
∂M

∂θ
(6.38)

where MR = θRCp is a constant reference value of the Montgomery potential. This comes
from a scale analysis, which assumes that the range ∆θ over which potential temperature
varies in the Boussinesq approximation is much less than θR. Thus, variations in Φ result
much more from variations in θ(∂M/∂θ) ≈ θR(∆M/∆θ) than from individual variations in
Montgomery potential or potential temperature, allowing these variables to be approximated
by constant reference values MR and θR outside of the derivative. From equation (6.30), we
see that a simplified relationship between geopotential and Exner function follows:

Φ = θR(Cp − Π). (6.39)

As in geometric coordinates, the isentropic coordinate Boussinesq approximation is tech-
nically valid for disturbances with a vertical scale much less than the scale height of the
atmosphere. Its use over deeper layers is purely qualitative, with the purpose of facilitating
simple solutions which have similar behavior to the exact equations, but which are compu-
tationally less demanding.
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6.5 Questions and problems
1. Using conservation of circulation for a horizontal circulation loop (shallow water case) or

a loop embedded in an isentropic surface (isentropic coordinates), answer the following
questions. “Relative vorticity” means the component of relative vorticity normal to the
surface bounded by the loop in this case.

(a) If the relative vorticity is initially zero, how does it change of the area of the
circulation loop decreases? The parcel in question is at some fixed positive latitude.

(b) If the circulation is zero around a parcel at the equator, how does the relative
vorticity change as the parcel moves to some positive latitude without changing
area?

(c) In the shallow water case, if a circulation loop starting at a large positive latitude
moves toward the equator while maintaining zero relative vorticity, how does the
loop area change, and hence the layer thickness?

2. Postulate a substance analogous to a chemical substance, such as the mass of oxygen
in a container of air, called the potential vorticity substance. The potential vorticity
substance is given by

Q =

ˆ
ρqdV

where the density ρ and the volume element dV are defined to be consistent with the
coordinate system being used. In this picture, ρq is the density of potential vorticity
substance and q is the associated mixing ratio. Prove that the amount of potential
vorticity substance between two isentropic surfaces never changes. You may wish to
read the papers by Haynes and McIntyre (1987, 1990).

3. Derive governing equations for isopycnal coordinates in the ocean in analogy with the
atmospheric isentropic equations.

4. Basic modes of the Boussinesq isentropic equations:

(a) Linearize the Boussinesq form of the isentropic coordinate equations about a state
of rest with no rotation or heating, assuming thatM = M0(θ)+M ′ and σ = σ0+σ′

where σ0 is constant.
(b) Estimate the value of σ0 in the troposphere given that ps = 105 Pa and θs = 300 K

at the surface while pt = 104 Pa and θt = 350 K at the tropopause. Hint: The
mass per unit area between the surface and the tropopause is (ps − pt)/g.

(c) Assume a plane wave of the form exp [i (kx+mθ − ωt)] in the linearized Boussi-
nesq isentropic equations and obtain the dispersion relation for the fundamental
modes of this system.


