
Chapter 11

Heating, Friction, and Ageostrophic
Wind

Surface heat fluxes, convection, and radiation act to heat and cool the atmosphere while sur-
face friction extracts momentum from the atmosphere. For time scales exceeding a few hours
to a few days, these effects become important for atmospheric motion. Detailed elucidation
of these mechanisms demands a complete course of its own, so there is not space here to do
this. Instead, we present some of the approximations used to generate highly simplified rep-
resentations of these processes. We then see how heating and friction play out in geophysical
fluid dynamics, especially in their effect on the potential vorticity. The ageostrophic wind
plays an important role when heating and friction are added.

11.1 Effects of heating and friction
We first examine the effect of heating and external forces on the potential vorticity. As the
analysis is most easily done in isentropic coordinates, we use this coordinate system. We
start from the momentum equation with an imposed horizontal specific force F added

dvh
dt

+ ∇hM + fk × vh = F (11.1)

and the mass continuity equation in advective form

dσ

dt
+ σ∇ · v = 0. (11.2)

Note that
v = (u, v, S) = (vh, S) (11.3)

where
S =

dθ

dt
(11.4)
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and
∇ =

(
∇h,

∂

∂θ

)
. (11.5)

The total time derivative here is
d

dt
=

∂

∂t
+ v ·∇ =

∂

∂t
+ vh ·∇h + S

∂

∂θ
. (11.6)

The heating S in isentropic coordinates enters not as a source term, but as the vertical
component of velocity.

The absolute vorticity vector in isentropic coordinates is

ζ = (ζh, ζa) =

(
−∂v
∂θ
,
∂u

∂θ
,
∂v

∂x
− ∂u

∂y
+ f

)
. (11.7)

Using previously employed methods, the governing equation for the vertical component of
absolute vorticity in isentropic coordinates in flux form is

∂ζa
∂t

+ ∇ · (vζa − ζS + k × F ) = 0. (11.8)

The vertical baroclinic generation term vanishes since ζa is the component of absolute vortic-
ity normal to isentropic surfaces. The vertical component of the term under the divergence in
equation (11.8) is zero, which allows further simplification, but we prefer to keep the equation
as it stands, as this facilitates the conversion to advective form:

dζa
dt

+ ζa∇ · v −∇ · (ζS − k × F ) = 0 (11.9)

As noted previously, the potential vorticity in isentropic coordinates is q = ζa/σ, which
means that

dq

dt
=

1

σ

dζa
dt
− ζa
σ2

dσ

dt
. (11.10)

Eliminating the time derivatives using equations (11.2) and (11.9) yields the advective form
of the potential vorticity evolution equation, including the effects of heating and an external
force:

dq

dt
=

1

σ

[
∇h · (ζhS − k × F ) +

∂ζaS

∂θ

]
. (11.11)

Writing out the total time derivative and eliminating ζa in favor of q yields

∂q

∂t
+ vh ·∇hq + S

∂q

∂θ
=

1

σ
∇h · (ζhS − k × F ) +

1

σ

∂σSq

∂θ
. (11.12)

Product rule expansion of the last term on the right results in a cancellation with the vertical
advection term on the left, producing

∂q

∂t
+ vh ·∇hq =

1

σ
∇h · (ζhS − k × F ) +

q

σ

∂σS

∂θ
. (11.13)
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Finally, we replace q by qg and approximate σ by a constant σ0 and qg by a constant q0 on
the right side. We also drop the term ζhS since it is nonlinear in deviations from the base
state to produce the Boussinesq, quasi-geostrophic form of this equation:

∂qg
∂t

+ vg ·∇hqg = − 1

σ0
∇h · (k × F ) + q0

∂S

∂θ
. (11.14)

We retain the ageostrophic wind for reasons discussed above. The first term on the right in
equation (11.14) represents the effect of surface or other forms of friction. The second term
enhances the potential vorticity when ∂S/∂θ > 0 and attenuates it when ∂S/∂θ < 0.

The mass continuity equation is extended slightly in the presence of a heat source, taking
the form

∂σ

∂t
+ ∇h · (σvh) +

∂σS

∂θ
= 0. (11.15)

The last term on the left is associated with the vertical transfer of mass across isentropic
surfaces due to the effect of heating. The Boussinesq, quasi-geostrophic form, solved for the
Laplacian of the velocity potential is

∇2
hχ = −∇h · va =

1

σ0

(
∂σ

∂t
+ vg ·∇hσ

)
+
∂S

∂θ
. (11.16)

The only change from the adiabatic version is the addition of the last term.
The rest of the apparatus of quasi-geostrophic theory in Boussinesq, isentropic form carries

over without change.

11.2 Heating
Solar heat fluxes drive the ocean-atmosphere system. Most of the incoming solar energy is
either reflected back to space by clouds or is absorbed by the surface; a small fraction is
absorbed by moisture near the surface and ozone in the stratosphere. Generally speaking,
the land has low heat capacity and incoming solar energy is returned to the atmosphere on
a short time scale, either in terms of sensible or latent (evaporated water substance) heat.
In contrast, the oceans have great heat capacity and move absorbed energy around about as
efficiently as the atmosphere. Therefore, no global heat budget can be contemplated without
detailed consideration of the oceans.

Convection, both dry and moist, act to return solar energy to the atmosphere and to lift
it to the upper atmosphere where it is radiated away to space. This infrared radiation to
space cools the troposphere by of order 1− 2 K day−1. To zeroth order, convection tends to
drive the atmosphere to an adiabatic lapse rate (either dry or moist depending on whether
saturation exists) such that rising convective parcels acquire only small positive buoyancy. If
other processes act to create a lapse rate more stable than adiabatic, then convection shuts
off.
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In addition to the upward movement of energy from the surface, there is meridional trans-
port of energy from low to high latitudes. The atmosphere and ocean contribute roughly
equally to the poleward transport. As might be expected, this transport is much stronger
in the winter hemisphere than in the summer. Combined radiative-convective effects at each
latitude along with the surface heat balance drive the atmosphere toward a local radiative-
convective equilibrium profile. However, the resulting equilibrium temperatures at high lati-
tudes are very low in winter. The atmospheric and oceanic flows which transport heat toward
the poles are largely responsible for moderating this cooling tendency.

Oceanic heat transport occurs to a great extent in basin-scale gyres which carry heat
poleward in so-called western boundary currents along the east shores of continents. These
relatively shallow horizontal gyres are largely driven by the surface stress from atmospheric
winds, though there is an additional contribution from deep oceanic circulations. Atmo-
spheric heat transport results from a combination of zonally symmetric overturning flows
and poleward transport due to atmospheric eddies associated with baroclinic instability.

A simple way to approximate roughly the large-scale effects of heating and cooling in the
atmosphere is via the mechanism of Newtonian relaxation, in which the heating rate is given
by

S =
dθ

dt
=
θT − θ
τ

(11.17)

where θT (x, y, z, t) is a target distribution of potential temperature, θ is the actual potential
temperature, and τ is an appropriately selected time constant. This is of course highly
approximate, but it allows us to make idealized calculations.

11.3 Interfacial fluxes
Transfers of heat, moisture, and momentum into or out of the atmosphere or ocean occur
across the interface between the fluid in question and the other fluid or the adjacent solid
surface. Such transfers are initially confined to a layer of fluid typically thin compared to the
dimensions of the fluid body as a whole. This layer is called the boundary layer. The boundary
layer is generally turbulent, which has the tendency to homogenize the quantities in question
in the boundary layer. The flux of an intensive quantity such as potential temperature, water
vapor mixing ratio, or specific momentum across a boundary is often represented by a bulk
flux formula, which encapsulates the effects of the turbulence. For any intensive quantity χ,
the bulk flux representation of the boundary flux takes the form

Tχ = ρBLCUeff (χI − χBL) (11.18)

where ρBL is the density of the fluid in the boundary layer, C is an exchange coefficient which
is dimensionless and typically 1− 2× 10−3, Ueff is the effective wind in the boundary layer,
to be discussed below, χBL is the characteristic value of χ in the boundary layer, and χI is
the value of χ immediately adjacent to the interface.
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The effective boundary layer wind is given by

Ueff =
(
U2
BL +W 2

)1/2 (11.19)

where UBL is the actual wind in the boundary layer and W is a gustiness correction which
accounts for the fact that the wind is never completely steady. Boundary layer scaling
arguments should tell us how big W should be, but this is beyond our scope. Miller et al.
(1992) suggest that W ≈ 3 m s−1 gives reasonable results in global atmospheric models.

For a conserved variable, the boundary layer eddies redistribute associated substance
through the depth of the boundary layer. Thus, for instance, a potential temperature flux
(really, a heat flux), generates a potential temperature source through a boundary layer depth
h equal to

SBL =
dθBL
dt

=
Tθ
ρBLh

=
CUeff (θI − θBL)

h
, z < h (11.20)

while a surface drag flux would generate a specific force

FBL =
CUeff (U I −UBL)

h
, z < h. (11.21)

For the atmosphere over the ocean, U I would be the surface ocean flow velocity, often
approximated by zero. For the ocean, U I would be the atmospheric boundary layer wind.
Obviously, for an atmosphere over land, we would have U I = 0.

Equations (11.20) and (11.21) are nonlinear, which is problematic in linearized calcula-
tions. A simple linearization which is sometimes used in models in which the boundary layer
is treated explicitly is to make the approximation

µ =
CUeff
h

= constant, (11.22)

where suitable values of Ueff and h are chosen. An even simpler approximation is to ignore the
existence of an explicit boundary layer completely and approximate (for example) equation
(11.20) by

SBL = µ exp(−z/h)(θI − θ). (11.23)

Boundary layers are somewhat problematic with isentropic coordinates, since the potential
temperature is nearly constant with height. Thus, the boundary layer is compressed into an
infinitely thin layer in isentropic coordinates with a finite amount of mass per unit area,
making the isentropic density infinite. A feasible approximation is to compress the dynamics
of the boundary layer into its effects on the surface potential temperature and wind speed,
such that

SB = µ(θI − θB). (11.24)

This requires an independent estimate of the thickness of the boundary layer h in geometric
coordinates as well as the effective wind speed there.
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11.4 Moist convection
Moist convection is an irreversible heat source in the atmosphere because the condensed water
produced by latent heat release mostly falls out as precipitation. Since condensation occurs
in the upward branch of the the convective circulation, this is where the heat is released.
Some precipitation is evaporated if it falls through unsaturated air. This generally produces
cooling in downdrafts. However, if at least some of the precipitation reaches the surface, then
the total heating exceeds the total cooling.

As convection is ultimately a closed circulation, the air lifted and heated in the updrafts
ultimately has to return to low levels. However, except for the air in downdrafts produced by
evaporative cooling, the return flow sinks gradually over a large area as a result of radiative
cooling. Thus, moist convection spans a broad range of scales, with upward motions generally
occurring on small scales, while downward motion is a large-scale phenomenon. This makes
moist convection particularly hard to deal with in geophysical fluid dynamics.

Moist convection has a large effect on radiative transfer in the atmosphere due to the fact
that the cloudy outflow at middle and high levels is generally opaque to infrared radiation
and can cover large areas. Clouds also reflect a large fraction of incident solar radiation back
to space.

Convection also transports horizontal momentum vertically. This transport depends on
the detailed structure of the convection. The vertical divergence of the vertical flux of hori-
zontal momentum acts like a force on the atmosphere.

11.5 Other forms of friction
Flow over terrain can introduce friction into the atmosphere. Pressure tends to be higher on
windward compared to leeward slopes, which exerts a retarding stress on the atmosphere.
This stress is often propagated upward via gravity waves, which by the non-interaction theo-
rem do not deposit their momentum until they dissipate. This form of friction is very difficult
to treat in a quantitative fashion, as it depends in detail on gravity wave dynamics.

Friction also occurs when shear or convective instability is manifested. Simple qualitative
treatments of this type of instability are possible using a Richardson number criterion plus
scaling arguments. We will not deal with these two sources of friction here.
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treatment of heating and friction in the potential vorticity equations.

11.7 Questions and problems
1. For a Boussinesq, non-rotating atmosphere initially at rest, assume heating of the form

S = S0δ(y) cos [π(θ − θM)/(2∆θ)] , −∆θ < θ < ∆θ

is applied starting at time t = 0, where S0, θM , and ∆θ are constants. No potential
vorticity is generated in this case, so q∗ = 0, M∗ = 0, and σ∗ = 0. (Starred quantities
have to do with motion.) Compute the ageostrophic wind directly from the quasi-
geostrophic mass continuity equation (11.16). Make a sketch of the heating and the
flow pattern.

2. Redo problem 1 in a rotating atmosphere with constant Coriolis parameter via the
following steps:

(a) Compute q∗ as a function of time using equation (11.14), ignoring friction and the
geostrophic wind.

(b) From q∗ compute the perturbation Montgomery potential M∗.
(c) From M∗ compute vg and σ∗. Was the assumption of ignoring the geostrophic

wind in the calculation of q∗ justified?
(d) From σ∗ compute the ageostrophic wind using equation (11.16). How does this

result differ from the result of the above problem?

3. Compute the response of the linearized, Boussinesq, hydrostatic primitive equations

∂v

∂t
+
∂Π′

∂y
= 0

∂Π′

∂z
− b′ = 0

∂v

∂y
+
∂w

∂z
= 0

∂b′

∂t
+N2w = S

of an atmosphere initially at rest to a heating profile with spatial structure

S =
db

dt
= S0δ(y) sin(mz)H(t) 0 < z < π/m

where H(t) = 0 for t < 0 and H(t) = 1 for t > 0. Assume constant Brunt-Väisälä
frequency N . Solve the problem by taking the following steps:
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(a) Assuming that w, b′ ∝ sin(mz) and v,Π ∝ cos(mz), show that these equations
can be used to derive a forced wave equation for v:

∂2v

∂t2
− c2∂

2v

∂y2
=
S0

m
δ′(y)H(t),

where δ′(y) = dδ(y)/dy and c2 = N2/m2.

(b) Show that this equation has a solution of the form

v = C [H(y)H(ct− y)−H(−y)H(ct+ y)] cos(mz).

Hint: Note that dH(y)/dy = δ(y) and use the chain rule where needed.

(c) Make sketches (not computer graphs!) which allow you to interpret this solution.
In particular, also show the vertical velocity and the buoyancy perturbation and
compare with the solution to problem 1.

4. Frictional spindown. Consider a slab-symmetric f -plane with ∂/∂x = 0, no heating,
but with frictional force Fx = −λuB exp[−µ(θ − θB)], Fy = 0, where uB(y, t) is the
surface zonal wind, θB is the (constant) surface potential temperature, and λ and µ are
constants.

(a) Show in the quasi-geostrophic case that the potential vorticity advection equation
(11.14) reduces to

∂q∗

∂t
= − 1

σ0

∂Fx
∂y

,

so that we can write the potential vorticity inversion equation as

1

f 2
0

∂2M∗
t

∂y2
+

Γ2
R

N2
R

∂2M∗
t

∂θ2
= − 1

f0

∂Fx
∂y

where M∗
t = ∂M∗/∂t.

(b) Suppose that uB = u0 sin(ly) at time t = 0 and solve for M∗
t at that time,

maintaining zero potential temperature perturbation at the surface, which implies
that (

∂M∗
t

∂θ

)
θB

= 0.

The solution for M∗
t has an inhomogeneous part ∝ cos(ly) exp[−µ(θ − θB)] and a

homogeneous part ∝ cos(ly) exp[−m(θ − θB)], with m to be determined.

(c) From M∗
t find ∂σ∗/∂t and use equation (11.16) to solve for the ageostrophic wind

va as a function of y and θ at t = 0.
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(d) Sketch va as a function of y at the surface and compare the spatial dependence to
that of the initial (geostrophic) surface wind uB. Examine the vertical structure
of va and its magnitude as a function of the meridional wavenumber l of the
geostrophic wind. In particular, compute

ˆ ∞
θB

vadθ.

(e) Compare the magnitude of va at the surface with the surface meridional wind
predicted by the zonal momentum equation (shown below) in steady state and
zonal symmetry:

∂u

∂t
+
∂M

∂x
− fv = Fx.


