
Chapter 2

Convection and turbulence

2.1 Boussinesq energetics
Here we recap the governing equations in the Boussinesq approximation for
later use and show how energy is transported and transformed.

The momentum equation in the Boussinesq approximation takes the form

dv

dt
+∇π − bẑ + 2Ω× v = 2ν∇ ·D (2.1)

where we have retained the strain rate form of the viscous term:

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.2)

Mass continuity is given by
∇ · v = 0. (2.3)

We now arbitrarily add a diffusion term to the buoyancy equation, based on
the idea that the diffusive flux of buoyancy is given by −κ∇b where κ is the
kinematic diffusivity, so that the diffusive source of buoyancy is ∇ · (κ∇b).
We assume that the diffusivity is constant, so that the governing equation
for buoyancy becomes

db

dt
= κ∇2b. (2.4)

It is important to note that this formulation hides a variety of sins! For in-
stance, in the case of an incompressible fluid, the addition of diffusion means
that equation (2.3) should have a diffusion term as well, since the full mass
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continuity equation does not. We resolutely ignore this small error. For an
ideal gas, where the buoyancy equation is derived from the entropy equa-
tion, this formulation ignores the irreversible generation of entropy, which
can be important under certain circumstances. This issue will be discussed
in greater detail later. In spite of the above issues, the Boussinesq equations
retain a special interest for approximate studies of atmospheric flows due to
their simplicity.

We now demonstrate the energy conservation properties of the Boussinesq
equations. Dotting equation (2.1) with the velocity results in

dv2/2

dt
+ v · ∇π − bvz = 2νv · (∇ ·D). (2.5)

The Coriolis term v · (Ω×v) = 0 and hence does not appear in this equation.
The quantity v2/2 is the kinetic energy per unit mass. However, given the as-
sumption in the Boussinesq approximation that the mass density is constant
except in the buoyancy term, it is also proportional to the kinetic energy per
unit volume. The second term in the above equation can be written ∇· (vπ)
by virtue of the mass continuity equation (2.3). Furthermore, we can expand
the parcel derivative of v2/2

dv2/2

dt
=
∂v2/2

∂t
+ v · ∇(v2/2) =

∂v2/2

∂t
+∇ · (vv2/2) (2.6)

by the same reasoning. Finally,

bvz = b
dz

dt
=
dbz

dt
− zdb

dt
=
∂bz

∂t
+∇ · (vbz)− κz∇2b. (2.7)

Substituting these relations into equation (2.5) results in

∂

∂t

(
v2/2− bz

)
+∇ ·

[
v
(
v2/2− bz + π

)]
= −κz∇2b+ 2νv · (∇ ·D), (2.8)

where the terms involving viscous and diffusive processes have been placed
on the right side of the equation.

The viscous and diffusive terms can be manipulated to further advantage:

z∇2b = ∇ · (z∇b)−∇z · ∇b = ∇ · (z∇b− bẑ) (2.9)

and

v · (∇ ·D) = vj
∂Dij

∂xi
=
∂vjDij

∂xi
− ∂vj
∂xi

Dij = ∇ · (v ·D)−DjiDij (2.10)
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where we have used the fact that ∂vj/∂xi = Rji + Dji and that RjiDij = 0
by symmetry considerations. Substituting these into equation (2.8) results
in

∂

∂t

(
v2/2− bz

)
+∇·

[
v
(
v2/2− bz + π

)
+ κ(z∇b− bẑ)− 2νv ·D

]
= −2ν|D|2

(2.11)
where |D|2 = DjiDij is the sum of the squares of the components of the
strain rate tensor, and therefore is positive definite.

This equation is in the form

∂e

∂t
+∇ · Fe = Se (2.12)

where e is the total mechanical energy per unit volume (assuming that the
density equals unity) with v2/2 being the kinetic energy and −bz the gravi-
tational potential energy. The latter is larger when the buoyancy is smaller
at higher levels, i. e., the density is greater there – this explains the minus
sign.

The quantity Fe is the energy flux. The part v(v2/2 − bz) is the flux of
energy due to mass transport while vπ represents energy transport due to
pressure work of one part of the fluid on another. The balance is the flux
due to viscosity and to diffusion of buoyancy.

On the right side of equation (2.12) is the energy source term Se =
−2ν|D|2. Since this is never positive, the source is actually an energy sink
due to the action of viscosity in converting mechanical energy into internal
energy, i. e., heat. This is the only interchange in the Boussinesq system be-
tween mechanical and internal energy. Thus, the Boussinesq approximation
does not include the fluid dynamics of heat engines.

2.2 Boussinesq stability analysis
We begin by analyzing the stability of a horizontally homogeneous fluid at
rest. We use the Boussinesq approximation with viscosity and diffusion ig-
nored for simplicity, and assume an ambient buoyancy profile of the form
b0(z) = γz, where γ is a constant. Positive γ corresponds to the potential
temperature increasing with height in an ideal gas, or the density decreas-
ing with height in an incompressible fluid. We further define an ambient
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kinematic pressure profile π0(z) in hydrostatic balance with b0:

dπ0
dz

= b0. (2.13)

Writing the buoyancy and kinematic pressure as the sum of the ambient
profiles plus a small perturbation, b = b0 + b′, π = π0 + π′, and assuming
the velocity is the same order of smallness as b′ and π′, we linearize the
Boussinesq equations in terms of small quantities:

∂v

∂t
+∇π′ − b′ẑ = 0, (2.14)

∇ · v = 0, (2.15)
∂b′

∂t
+ γvz = 0. (2.16)

We now try plane wave solutions of the form (v, π′, b′) ∝ exp[i(kxx +
kzz − ωt)], where the omission of the y component of the wave vector does
not represent a loss of generality, due to the symmetry of the governing
equations to rotations about a vertical axis. The resulting equations can be
written in matrix form:

−iω 0 ikx 0
0 −iω ikz −1
ikx ikz 0 0
0 γ 0 −iω



vx
vz
π′

b′

 = 0, (2.17)

with the additional condition −iωvy = 0, or vy = 0 for ω 6= 0. This equation
has non-trivial solutions only when the determinant of the coefficients of the
square matrix is zero, which leads us to the following dispersion relation:

ω2 =
k2xγ

k2x + k2z
. (2.18)

Let us first consider the case γ > 0 and set γ = N2. The quantity N is
called the Brunt-Väisälä frequency. In this case the equilibrium state of rest
is stable, in that small perturbations of sinusoidal form do not grow with
time, but oscillate, due to the fact that ω is real. Since any disturbance can
be represented as a superposition of sinusoidal disturbances by the Fourier
theorem, that means that all disturbances of sufficiently small amplitude are
stable.
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Figure 2.1: Gravity wave packet in its plane of oscillation, showing the wave
vector k, the group velocity ug, and the fluid motions.

The mass continuity equation leads us to the condition

k · v = 0, (2.19)

where k = (kx, ky, kz) is the wave vector. Thus, the motion of fluid parcels
is normal to the wave vector, which means that these waves are transverse.
We can easily show that the group velocity ug of the wave takes the form

ugx =
∂ω

∂kx
=

k2zN

(k2x + k2z)
3/2
, ugz =

∂ω

∂kz
= − kxkzN

(k2x + k2z)
3/2
, (2.20)

from which we infer that the group velocity is also normal to the wave vector:

ug · k = 0. (2.21)

Thus, a wave packet has the appearance in the x− z plane as illustrated in
figure 2.1. These waves are called gravity waves, and they are ubiquitous in
the atmosphere.

From equation (2.18), we note that gravity waves have a maximum fre-
quency equal to N when k2z � k2x, i. e., when the wave fronts are vertical.
The mechanism behind gravity waves becomes clear in this case. If the am-
bient buoyancy increases with height, then a lifted parcel finds itself in an
environment with less buoyancy than its surroundings. Bouyancy forces thus
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Figure 2.2: Flow pattern for convection, with kx = 2π/λ and kz = π/h.

act to restore the parcel to its original level. The parcel overshoots, putting
it into a region of positive buoyancy. The result is an oscillatory motion in
which the parcel bobs up and down. Slantwise oscillations can also occur,
but the frequency of such oscillations is reduced from N , as equation (2.18)
shows. A typical oscillation period for vertical motions in the atmosphere is
10 min.

When γ < 0, we set γ = −σ2 and write the dispersion relation

ω = ± ikxσ

(k2x + k2z)
1/2
. (2.22)

In this case, small perturbations to the horizontally homogeneous equilibrium
state are unstable, since exp[i(kxx+kzz−ωt)] grows with time if ω is positive
imaginary. The resulting instability is called convective instability, and the
fully developed flow is called convection. An alternative solution form is
more physically appealing and gives rise to the same dispersion relation:
vx ∝ cos(kxx) cos(kzz) exp(−iωt); b′, vz ∝ sin(kxx) sin(kxz) exp(−iωt); π′ ∝
sin(kxx) cos(kzz) exp(−iωt). This flow pattern satisfies vz = 0 at z = 0, h,
where h = π/kz. Thus, it can be thought of as the flow which occurs between
two rigid surfaces at these levels. The resulting flow is shown in figure 2.2.

The largest growth rates in equation (2.22) occur when k2z � k2x, i. e.,
when the convective cells are tall and skinny.
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Figure 2.3: Illustration of a circulation loop with fluid velocity v, unit normal
n to the area bounded by the loop, and fluid flow velocity v.

2.3 Kelvin circulation theorem

2.3.1 Derivation

The Kelvin circulation theorem expresses a result central to geophysical fluid
dynamics. The circulation around a loop embedded in a fluid is defined

Γ =
∮
v · dl. (2.23)

The Kelvin theorem tells us how the circulation evolves with time under the
condition that each element of the loop (illustrated in figure 2.3) moves with
the fluid in which it is embedded. However, before stating and proving this
theorem, we note that by Stokes’ theorem, the circulation can also be written

Γ =
∫
∇× v · n̂dA, (2.24)

where the area integral is over any surface which is bounded by the circulation
loop. The quantity ζ ≡ ∇× v is called the vorticity.

In order to incorporate the fact that the circulation loop moves with the
fluid, we approximate the integral in equation (2.23) by a finite sum:

Γ ≈
∑
i

vi ·∆li, (2.25)

where ∆li is the ith segment of the circulation loop and vi is the fluid velocity
in that segment. We assume that the segment moves with the fluid, so that
d∆li/dt = ∆vi, i. e., the difference between the fluid velocities at each end
of the loop segment. Thus,

dΓ

dt
≈
∑
i

(
dvi
dt
·∆li + vi ·∆vi

)
. (2.26)
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Figure 2.4: Planetary velocity vp at position r for a planet with rotation rate
and axis defined by the vector Ω.

Returning to the exact integral form and realizing that v ·dv = d(v2/2), this
equation becomes

dΓ

dt
=
∮ (

dv

dt
· dl + d(v2/2)

)
. (2.27)

The second term on the right side is a perfect differential which vanishes in
a line integral around a closed loop.

The time derivative of the velocity is given by the momentum equation

dv

dt
= −θ∇Π−∇Φ, (2.28)

where we have used the ideal gas form, neglecting for now both viscosity and
rotation. The quantity Φ = gz is called the geopotential, and is the potential
energy per unit mass associated with the gravitational and centrifugal forces.
Except near boundaries or at very small scales, the molecular viscosity is
unimportant in the atmosphere. We will reintroduce rotation shortly.

Introduction of equation (2.28) into (2.27) results in the geopotential term
dropping out, since it also is in the form of a perfect differential: ∇Φ·dl = dΦ.
The net result is that

dΓ

dt
= −

∮
θdΠ, (2.29)

where we have used ∇Π · dl = dΠ.
Equation (2.29) is an expression of the Kelvin circulation theorem in an

inertial reference frame in which viscous forces are negligible. To generalize
this to the reference frame of the rotating earth, we note that the fluid velocity
in the inertial frame is v = vp+vr, where vp = Ω×r is the planetary rotation
velocity, as illustrated in figure 2.4, and vr is the earth-relative velocity. The
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corresponding components of the circulation are Γ = Γp + Γr, where the
Kelvin theorem as defined by equation (2.29) applies to Γ. To extend this
to Γr, the circulation defined in the rotating reference frame of the earth, we
note that

Γp =
∮

Ω× r · dl =
∫

[∇× (Ω× r)] · n̂dA = 2Ω ·
∫

n̂dA, (2.30)

from which we conclude that

dΓr
dt

=
dΓ

dt
− dΓp

dt
= −

∮
θdΠ− 2Ω · d

dt

∫
n̂dA. (2.31)

An alternative form of this equation comes from eliminating Γ using equa-
tion (2.24) and bringing the second term on the right to the left side:

d

dt

∫
[∇× v + 2Ω] · n̂dA = −

∮
θdΠ. (2.32)

The quantity ζa = ∇× v + 2Ω is called the absolute vorticity, and is in fact
the vorticity as measured in a non-rotating reference frame. We refer to 2Ω
as the planetary vorticity, as it is the part of the absolute vorticity which is
caused by the earth’s rotation.

2.3.2 Potential vorticity

Imagine a circulation loop embedded in a surface of constant potential tem-
perature θ in an atmosphere in which dθ/dt = 0. In this case the loop will
always remain embedded in this surface, which by virtue of the conserved
potential temperature is a material surface. In this case the right side of
equation (2.32) is the integral over a closed loop of a perfect differential, and
is therefore zero. If the constant potential temperature surface is flat (an
assumption which becomes better as the circulation loop is made smaller),
then equation (2.32) tells us that

dζaθA

dt
= 0, (2.33)

where ζaθ is the component of absolute vorticity normal to the constant po-
tential temperature surface and A is the area of the circulation loop. Except
in extreme circumstances, isentropic surfaces are nearly horizontal, so ζaθ
is nearly the vertical component of the absolute vorticity. However, since
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Figure 2.5: A control volume for the definition of potential vorticity. The
upper and lower faces are surfaces of constant potential temperature.

the horizontal components of vorticity are generally much stronger than the
vertical component, even a slight deviation from vertical of the normal to
the isentropic surface can result in a significant contribution to ζaθ from the
horizontal components.

As A increases or decreases in response to the evolution of the flow, ζaθ
decreases or increases correspondingly. Furthermore, since

ζaθ = ζθ + Ωθ (2.34)

where ζθ and Ωθ are the components of the relative vorticity and the earth’s
rotation vector normal to the isentropic surface, changes in latitude of a
parcel result in a tradeoff between ζθ and Ωθ.

Imagine now a control volume as shown in figure 2.5 with upper and
lower faces being surfaces of constant potential temperature with area A and
separation d. If the box moves and deforms with the flow, we can apply
equation (2.33) to a path around the periphery of the volume. Since the
surfaces bounding the volume advect with the fluid, the mass of fluid inside
the volume M does not change with time. Furthermore, we have M = ρAd,
where ρ is the density of the fluid. Finally, we can relate d and θ2 − θ1 to
the gradient of θ: |∇θ| = (θ2 − θ1)/d. Putting these results together with
equation (2.33), we conclude that

d

dt

(
M |∇θ|ζaθ
ρ(θ2 − θ1)

)
=

M

(θ2 − θ1)
d

dt

(
∇θ · ζa
ρ

)
= 0. (2.35)

The quantity q = ∇θ · ζa/ρ is called the potential vorticity, and we have
shown that it is conserved in parcels,

dq

dt
= 0, (2.36)

when potential temperature is conserved and when no frictional forces oper-
ate. Later we will relax these restrictions. Potential vorticity is a powerful
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Figure 2.6: Circulation path illustrating baroclinic vorticity generation.

tool for understanding atmospheric dynamics in general, and the long-time-
scale effect of convection on the environment in particular.

2.3.3 Baroclinic vorticity generation

Figure 2.6 indicates a vertically oriented circulation loop in a fluid with hor-
izontal surfaces of constant Exner function, but tilted surfaces of constant
potential temperature. Ignoring the horizontal component of planetary vor-
ticity (which is generally small compared to the horizontal component of
relative vorticity), we apply equation (2.29) to this situation. In the compu-
tation of the line integral around the illustrated path, the contribution from
segments A and C is zero, since dΠ = 0 there. Thus, the integral reduces to

dΓ

dt
= −[θB(Π5 − Π1) + θD(Π1 − Π5)] = (θD − θB)(Π5 − Π1), (2.37)

where θB and θD are the average values of θ over the B and D segments of the
line integral. Given the slope of the constant potential temperature surfaces
(represented by the dashed lines) and the fact that θ increases upward in a
stable atmosphere, we have θD > θB. Furthermore, Π5 > Π1, since Exner
function decreases upward, so the circulation around the loop as defined in
figure 2.6 increases with time. This suggests downward motion over segment
B of the loop and upward motion over segment D, which produces increasing
vorticity pointing out of the page according to Stokes’ theorem. The re-
sulting motion is in the sense needed to make the constant entropy surfaces
horizontal.
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2.4 Turbulence
Big whorls have little whorls

That feed on their velocity

And little whorls have lesser whorls

And so on to viscosity

L. F. Richardson (1922)

This ditty expresses an essential truth about turbulence, which is a three-
dimensional chaotic flow in which many scales of motion are active, and in
which a cascade of kinetic energy proceeds from larger to smaller scales, with
viscosity converting the kinetic energy to heat at the smallest scales.

2.4.1 Reynolds decomposition

We first present a formalism which by itself contains no physics, but which
represents a useful framework for discussing turbulence. Suppose we wish
to compute numerically the evolution of a flow. This is normally done by
approximating the continuous fluid equations by finite analogs in which de-
pendent variables such as velocity and buoyancy are defined only on a regular
grid. If the size of a grid cell is L, then structure and motion on scales less
than L will not be represented explicitly in the calculation and must be rep-
resented parametrically. The division between the explicitly represented flow
and the leftovers is called the Reynolds decomposition.

Let us define a low pass filter or smoothing operator by an overbar. This
operator removes variance in velocity, buoyancy, and pressure on scales less
then L while leaving scales greater than L untouched. A smoothed variable
is fully representable by its values on the grid, whereas the part removed by
the smoothing operator is not. In the context of the Boussinesq equations,
we divide the velocity, buoyancy, and kinematic pressure into explicitly rep-
resented and implicit parts, the latter indicated by superscripted primes:

v = v + v′ (2.38)

b = b+ b′ (2.39)

π = π + π′. (2.40)
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We assume that v′ = 0 and v = v, that terms like vv′ ≈ 0, and that
vv ≈ vv, etc.

Since ∇ · v = 0 in the Boussinesq case, we can write the Boussinesq
equations for momentum and buoyancy in flux form as follows:

∂v

∂t
+∇ · (vv) +∇π − bẑ = 2ν∇ ·D (2.41)

∂b

∂t
+∇ · (bv) = κ∇2b (2.42)

where we have ignored rotation. Substituting equations (2.38)-(2.40) into
equations (2.41) and (2.42) and applying the smoothing operator results in

∂v

∂t
+∇ · (v v + v′v′ − 2νD) +∇π − bẑ = 0 (2.43)

∂b

∂t
+∇ · (bv + b′v′ − κ∇b) = 0. (2.44)

In addition we have for mass continuity

∇ · v = 0. (2.45)

If we can now come up with models for the eddy correlation terms on the right
sides of equations (2.43) and (2.44), then we have a closed set of approximate
governing equations defined on a finite grid. The rest of this chapter is
devoted to this quest.

The quantity v′v′ is the subgrid scale flux of momentum, while b′v′ is
the subgrid scale flux of buoyancy. In other words, these terms represent
the transport of momentum and buoyancy by the small-scale motions which
are not represented in the explicit flow calculation. A slightly different in-
terpretation of the first term is as a type of stress called the Reynolds stress :
TR ≡ −v′v′. The divergence of the Reynolds stress acts like a force on the
flow, but it is really due to the transport of momentum by subgrid scale ed-
dies, just as the ordinary stress tensor is due to the transport of momentum
by deviations in the motion of molecules from the bulk flow.

One immediate difficulty presents itself with the above formalism. The
primed part of the flow is sometimes viewed as the turbulent part, whereas
the smoothed part is taken to be some average or mean flow on which the
turbulence is superimposed. In this case there is no guarantee that the grid
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size is the same as the characteristic size of the turbulent eddies. An alternate
interpretation of the Reynolds decomposition is that it is not a decomposition
based on spatial scale, but on the mean and variations within an ensemble
of possible flows which are envisioned to be possible subject to a nearly fixed
set of initial and boundary conditions. For instance, a thunderstorm which
develops as a result of some specified set of meteorological forcings may have
turbulent eddies which are changed significantly if the initial forcings are
changed by even a tiny amount. However, the overall structure of the thun-
derstorm may be the same. If we imagine an ensemble of thunderstorms
(think parallel universes) in which the forcings differ only by small amounts,
then the variables with an overbar are ensemble averages, whereas the over-
bars of products of primed variables are averages over deviations from the
ensemble mean.

The ensemble average form of the Reynolds decomposition has the ad-
vantage that the primed part of the flow can be related to real physical pro-
cesses, whereas for the scale separation form this cannot be so easily done.
However, real world measurements are harder to interpret in the context of
the ensemble average form, as we (currently) cannot make measurements in
parallel universes! The best we can do is try to find similar instances of a
phenomenon in the one universe to which we have access and approximate
the ensemble average as an average over these instances.

2.4.2 Inertial subrange

Turbulence generally forms as the result of the breakdown of a smooth flow
due to an instability. The spatial scale of the instability L is called the outer
scale of the turbulence. Energy is supplied to the turbulence at this scale.
In turbulence, we envision eddies successively breaking down into smaller
eddies, which in turn decay into even smaller eddies, as expressed above by
Richardson. A lower limit exists for this breakdown when viscous or other
diffusive processes take over from bulk motion in mixing fluid properties.
The eddy size λ at which this occurs is called the inner scale. Between these
scales, no kinetic energy is lost or gained; it simply cascades to successively
smaller scales from the outer scale to the inner scale. This range of scales is
called the inertial subrange, since only inertial forces are important in this
range.

Eddies are thought to decay to smaller eddies after turning over once. If
an eddy of diameter l has a typical velocity vl, then the time for turnover
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is approximately tl = l/vl. The kinetic energy per unit volume at scale l
(ignoring the factor of two) is v2l , so the rate at which kinetic energy cascades
from one scale to the next is

ε = v2l /tl = v3l /l. (2.46)

Since we assume that kinetic energy is not lost as it cascades to smaller
scales, the dissipation rate ε must be independent of scale within the inertial
subrange. This leads to an estimate for eddy velocity as a function of scale:

vl = (lε)1/3. (2.47)

The breakup of eddies into smaller eddies actually increases the vorticity
as one moves to smaller scales. This may be seen by noting that the vorticity
scales as

ζl = vl/l =
ε1/3

l2/3
. (2.48)

So even though the characteristic eddy velocity decreases as one goes to
smaller scales, the characteristic vorticity increases. This can only happen
(in the absence of other forces) via vortex stretching, which implies that true
turbulence is always three-dimensional. Purely two-dimensional flows cannot
change the vorticity of parcels in the absence of external forces, which means
that there is no such thing as two-dimensional turbulence!

The inner scale is reached when viscous stresses, which scale as νvl/l,
become comparable to Reynolds stresses, which scale as v2l . The kinematic
viscosity is denoted by ν. Equating these two, setting l = λ, and solving for
λ gives us an estimate of the inner scale:

λ =
ν3/4

ε1/4
. (2.49)

At the outer scale, the order of magnitude of the nonlinear advection term
in the momentum equation v · ∇v divided by the order of magnitude of the
viscosity term ν∇2v is called the Reynolds number:

Re =
vLL

ν
=
L4/3ε1/3

ν
. (2.50)
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Figure 2.7: Power spectral density for inertial subrange.

2.4.3 Power spectrum

A Fourier analysis of the kinetic energy per unit mass in the inertial subrange
of turbulence yields a power spectrum of the form seen in figure 2.7, i. e.,
a straight line in log-log space with a slope of −5/3. This represents the
famous minus five-thirds law, and we now endeavor to explain it in terms of
what we have learned.

We approximate wavenumber by the inverse of the length scale, k = 1/l.
In our picture of eddies giving rise to smaller eddies, we imagine typical
eddies to be half the size of their predecessor eddies. The succession of
decreasing eddy sizes is thus a geometric rather than an arithmetic series in
increasing wavenumber. From equation (2.47), the typical velocity for eddies
of wavenumber k is vk = (ε/k)1/3, which means that the kinetic energy
per unit mass scales as (ε/k)2/3. Since a geometric series in wavenumber,
i. e., k = 1/L, 2/L, 4/L, 8/L, ...) where L is the outer scale, implies a
constant interval in log(k) rather than in k, each eddy generation contributes
(ε/k)2/3d log(k) = (ε/k)2/3dk/k = ε2/3k−5/3dk to the power spectrum, whence
the −5/3 slope in the log-log plot of power spectral density.
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2.4.4 Buoyant generation of turbulence

Convective instability can serve as an energy source for turbulence. The
buoyancy perturbation b′ of a parcel (actual minus environmental value)
gives us the buoyant force per unit mass acting on the parcel. The work
done on the parcel under a vertical displacement δz is therefore b′δz. If the
z derivative of the environmental buoyancy profile is γ, then the buoyancy
perturbation as a function of displacement δz is −γδz, so the work done in
a vertical displacement L on a parcel starting from buoyancy equilibrium is
−γL2/2. Equating this to the kinetic energy and solving for the velocity, we
get an estimate of the eddy velocity at the outer scale L where we ignore
numerical factors of order unity:

vL = (−γ)1/2L. (2.51)

(Recall that convective instability occurs when γ < 0.) This sets the dissi-
pation rate in the turbulent cascade produced by the convective instability:

ε = v3L/L = (−γ)3/2L2. (2.52)

We now demonstrate that the kinetic energy produced by buoyancy at
scales much smaller than the outer scale is negligible in comparison to the
kinetic energy cascaded from larger scales. By simply repeating the above
arguments, we see that this specific kinetic energy production rate at scale
l is (−γ)3/2l2, which is less than ε by the factor (l/L)2. Thus, to a good
approximation the energy dissipation rate is independent of scale and the
cascade obeys the laws of the inertial subrange.

2.4.5 Shear instability

Just because the atmosphere is stably stratified does not mean that instabil-
ity cannot occur. If the atmosphere is sheared, i. e., if the horizontal wind
varies with height, a parcel displaced vertically tends to retain the horizontal
velocity of its original level, and thus acquire a velocity different from its
new surroundings. Reference to figure 2.8 shows that the difference between
the parcel velocity and the velocity of its new surroundings is v′ = −Sδz,
where the shear is S = ∂v/∂z and where δz is the vertical displacement of
the parcel. The parcel thus has a specific kinetic energy relative to its new
surroundings of S2δz2/2. This compares to the energy required to lift it
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Figure 2.8: Results of parcel displacement in a sheared, stably stratified
environment.

this distance against the buoyancy force γδz2/2. (We have retained the nu-
merical factors in this calculation.) One might reasonably expect instability
to be possible if the available kinetic energy exceeds the energy required to
overcome buoyancy: S2δz2/2 > γδz2/2, or

Ri =
γ

S2
< 1. (2.53)

The dimensionless quantity Ri is called the Richardson number. (Recall that
Richardson is the author of the ditty about turbulence quoted at the begin-
ning of this section!) Though this argument is rather crude, the above con-
dition serves as a reasonable approximate guide to the instability of sheared
flows.

Though buoyancy serves to extract kinetic energy from the flow in this
case rather than add to it, turbulence generated by this shear instability
exhibits an inertial subrange for the same reasons that convective instability
does. The outer scale of the turbulence is generally determined by the vertical
thickness of the unstable shear layer.

2.4.6 Mixing length theory

The German physicist Ludwig Prandtl, the father of aerodynamics, came up
with a theory of turbulence which stands to this day. Suppose we wish to
estimate the turbulent buoyancy flux v′b′. Prandtl visualized turbulent flows
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as consisting of parcels which move from their original location a distance
l at speed v before mixing with their new surroundings. The quantity v is
an estimate of the magnitude of the turbulent velocity v′ while l is called
the Prandtl mixing length. If a gradient ∇b in the mean buoyancy exists,
then the buoyancy perturbation b′ in the turbulent parcel will be of order
l|∇b|. Assuming that buoyancy flows down the buoyancy gradient, then we
postulate on the basis of the above arguments that

v′b′ = −Clv∇b ≡ −K∇b (2.54)

where C is a dimensionless constant and K = Clv is the eddy mixing coeffi-
cient.

Similar arguments applied to the Reynolds stress would seem to suggest
that v′v′ = −K∇v, but this expression cannot be correct because the left
side is a symmetric tensor while the right side is the deformation rate tensor
which has no defined symmetry. However, if we go by analogy with the
molecular stress tensor in the case of an incompressible fluid, then we can
write

v′v′ = −2KD (2.55)

where D is the strain rate tensor. This suggests that the rotation rate tensor
R plays no role in the generation of turbulence.

The determination of the mixing length l and the characteristic velocity v
of turbulent eddies is a matter for theories of turbulent flow in each situation
to decide. Since turbulence typically has eddies with all sizes between the
inner and outer scales, all scales should contribute to the determination of
the eddy mixing coefficient. However, equation (2.47) shows that the eddy
turnover velocity in the inertial subrange is roughly (lε)1/3, so the contribu-
tion to the eddy mixing coefficient for length scale l is of order l4/3ε1/3. This
increases with eddy size, which means that since ε is constant in the inertial
subrange, the biggest contribution to K comes from eddies on the largest
scale, i. e., at the outer scale for the turbulence. Thus identifying l in the
definition of eddy mixing coefficient with the outer scale is justified.

In three-dimensional numerical calculations on a finite grid, these ideas
can best be applied if the grid size is small enough to put subgrid scale
turbulent eddies in the inertial subrange. In this case the largest turbulent
eddies are assumed to be computed explicitly by the model, and the param-
eterization of subgrid scale flow need not take into account the mechanisms
generating the turbulence – all inertial subrange turbulence is assumed to
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have the same characteristics. The mixing length l for the turbulence is then
assumed to be the grid size L and the characteristic turbulent velocity is
taken to be proportional to the absolute value of the strain rate times L:

K = CL2|D|. (2.56)

The absolute value of the strain rate is the square root of the sum of the
squares of the terms and C ≈ 0.2 in many applications.

In stably stratified shear flow for which the Richardson number Ri > 1,
generally no turbulence is found, as indicated above. This is a common
situation in the atmosphere, and in this case equation (2.56) is often modified
in numerical models by adding a Richardson number dependence which zeros
K when Ri > 1.
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2.6 Problems
1. Using the methods of section 2.1 derive an equation for b2/2 which

takes the variable/flux/source form of equation (2.12). Hint: Multiply
equation (2.4) by b.

2. Show that the integral of equation (2.12) over some volume tells us
that the time rate of change of energy in the volume equals the volume
integral of the source term minus the area integral of the flux of energy
out of the volume.

3. Do a stability analysis for a stratified, inviscid, non-diffusive Boussinesq
fluid at rest in a rotating frame with the rotation vector Ω pointing ver-
tically upward. Examine what happens for both positive and negative
(but constant) γ = db0/dz.
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4. Show that the mean value of the vertical component of the absolute
vorticity averaged globally over a constant height surface in the earth’s
atmosphere is zero. (Hint: Think of Gauss’ law for magnetism; what
property does vorticity share with the magnetic field?)

5. Compute the time scale for eddy overturning as a function of eddy size
l in the inertial subrange. From this, comment on the rapidity with
which smaller scales adjust to changes in conditions at the outer scale.

6. Law of the wall. Consider turbulent, non-buoyant (b = 0) fluid with a
time-independent mean flow in the x direction vx(z) parallel to a rigid
wall at z = 0. Ignore viscosity initially and assume that the mean
kinetic pressure π = 0.

(a) The only length available to determine the size of the dominant
(i. e., outer scale) turbulent eddies a distance z from the wall is z
itself. Write an expression for the eddy mixing coefficient in terms
of z and vx(z) using Prandtl mixing length theory.

(b) Determine vx(z) assuming that the turbulent eddy flux of x mo-
mentum in the z direction is (a uniform) −TRxz and the viscous
flux is negligible. (Recall that TR is the Reynolds stress. Why
must this be independent of z?)

(c) Is this solution realistic as z → 0? Explain what happens phys-
ically there, and estimate the distance from the wall zc that the
solution you have obtained breaks down. Hint: At what distance
from the wall does the Reynolds stress TRxz equal the viscous
stress Txz?

(d) Find vx(z) close to the wall where the viscous stress dominates.


