
Chapter 3

Moist thermodynamics

In order to understand atmospheric convection, we need a deep understand-
ing of the thermodynamics of mixtures of gases and of phase transitions. We
begin with a review of some of the fundamental ideas of statistical mechanics
as it applies to the atmosphere. We then derive the entropy and chemical
potential of an ideal gas and a condensate. We use these results to calcu-
late the saturation vapor pressure as a function of temperature. Next we
derive a consistent expression for the entropy of a mixture of dry air, wa-
ter vapor, and either liquid water or ice. The equation of state of a moist
atmosphere is then considered, resulting in an expression for the density as
a function of temperature and pressure. Finally the governing thermody-
namic equations are derived and various alternative simplifications of the
thermodynamic variables are presented.

3.1 Review of fundamentals
In statistical mechanics, the entropy of a system is proportional to the loga-
rithm of the number of available states:

S(E,M) = kB ln(δN ), (3.1)

where δN is the number of states available in the internal energy range
[E,E + δE]. The quantity M = mN/NA is the mass of the system, which
we relate to the number of molecules in the system N , the molecular weight
of these molecules m, and Avogadro’s number NA. The quantity kB is Boltz-
mann’s constant.
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Consider two systems in thermal contact, so that they can exchange en-
ergy. The total energy of the system E = E1 + E2 is fixed, so that if the
energy of system 1 increases, the energy of system 2 decreases correspond-
ingly. Likewise, the total entropy of the system is the sum of the entropies
of each part, S = S1 + S2. In equilibrium, the total entropy will be at a
maximum, which means that the partial derivative of entropy with respect
to E1 will be zero. Furthermore, since dE1 = −dE2, we have at thermal
equilibrium

∂S

∂E1

=
∂S1

∂E1

+
∂S2

∂E1

=
∂S1

∂E1

− ∂S2

∂E2

= 0, (3.2)

which tells us that ∂S1/∂E1 = ∂S2/∂E2. The thermodynamic definition of
temperature T is given by

1

T
=
∂S

∂E
, (3.3)

so at thermal equilibrium we have T1 = T2.
If the two systems are also in diffusive equilibrium, with as many molecules

going from system 1 to system 2 as vice versa, then we have in analogy to
equation (3.2)

∂S

∂M1

=
∂S1

∂M1

+
∂S2

∂M1

=
∂S1

∂M1

− ∂S2

∂M2

= 0, (3.4)

where the total massM =M1+M2 is constant so that the change in the mass
of one system is minus the change in mass of the other system dM2 = −dM1.
Thus, the condition for diffusive equilibrium is ∂S1/∂M1 = ∂S2/∂M2. The
chemical potential µ is defined by

µ

T
= − ∂S

∂M
, (3.5)

so the condition for diffusive equilibrium (but not necessarily thermal equi-
librium) is µ1/T1 = µ2/T2. If thermal equilibrium also exists, then this
simplifies to µ1 = µ2.

In most physical systems the entropy is also a function of one or more
external parameters as well as of the internal energy and mass of the system.
For instance, the entropy of an ideal gas is also a function of the volume V
in which the gas is contained. Taking the differential of the entropy S =
S(E,M, V ), we find

dS =
∂S

∂E
dE +

∂S

∂M
dM +

∂S

∂V
dV =

1

T
dE − µ

T
dM +

∂S

∂V
dV. (3.6)
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Solving for dE results in a familiar equation:

dE = TdS − T ∂S
∂V

dV + µdM. (3.7)

The second term on the right side of the above equation is the mechanical
work done by the system on the outside world. Thus the coefficient of dV
must be the pressure if the system under consideration is a gas:

T
∂S

∂V
= p. (3.8)

The physical meaning of the chemical potential is now clear; −µ/T is the en-
tropy per unit mass added to the system by inward mass transfer at constant
energy and volume. The enthalpy of an ideal gas is defined H = E + pV .
Combining this with equations (3.6) and (3.8) results in

dS =
1

T
dH − V

T
dp− µ

T
dM. (3.9)

3.2 Ideal gas again
The entropy of a diatomic ideal gas is given by

S =

(
MR

m

)[
5

2
ln

(
E

M

)
+ ln

(
V

M

)
+D

]
(3.10)

where R = NAkB is the universal gas constant, NA being Avogadro’s number.
The constant D can be taken as arbitrary for our purposes. The factor of 5/2
changes to 3/2 for a monatomic gas and 3 for non-linear triatomic molecules
such as water.

The temperature may be obtained from equation (3.3), from which we
find that

E =
5MRT

2m
=MCV T, (3.11)

where CV = 5R/(2m) is the specific heat at constant volume. The specific
energy, or the energy per unit mass, is given by

e = CV T. (3.12)
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Constant Value Meaning
kB 1.38× 10−23 J K−1 Boltzmann’s constant
NA 6.02× 1023 Avogadro’s number
R 8.314 J K−1 Universal gas constant
mD 28.9 g mol−1 Molecular weight of dry air
mV 18.0 g mol−1 Molecular weight of water
ε 0.623 mV /mD

RD 287 J K−1 kg−1 Gas constant for dry air R/mD

RV 461 J K−1 kg−1 Gas constant for water vapor R/mV

CPD 1005 J K−1 kg−1 Specific heat of dry air at const pres
CV D 718 J K−1 kg−1 Specific heat of dry air at const vol
CPV 1850 J K−1 kg−1 Specific heat of water vapor at const pres
CV V 1390 J K−1 kg−1 Specific heat of water vapor at const vol
CL 4218 J K−1 kg−1 Specific heat of liquid water
CI 1959 J K−1 kg−1 Specific heat of ice (−20◦ C)
µBL 3.15× 106 J kg−1 Binding energy for liquid water
µBI 2.86× 106 J kg−1 Binding energy for ice
eSF 611 Pa Saturation vapor pressure at freezing
TF 273.15 K Freezing point
pR 105 Pa Reference pressure

Table 3.1: Thermodynamic constants.
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The pressure comes from equation (3.8) with the ideal gas law as a result:

p =
MRT

mV
=
RTρ

m
. (3.13)

The density is defined ρ = M/V . The chemical potential, as defined by
equation (3.5), is

µ = CPT − sT (3.14)

where CP = CV + R/m = 7R/(2m) is the specific heat at constant pressure
and s = S/M is the specific entropy, or the entropy per unit mass. Finally,
the specific enthalpy is defined as

h = e+ p/ρ = CPT. (3.15)

The specific entropy, which is the preferred form of entropy for atmo-
spheric thermodynamics, may be recast in terms of the temperature and
density, temperature and pressure, or pressure and density, using the ideal
gas law:

s = CV ln(T/TR)− (R/m) ln(ρ/ρR) + sR

= CP ln(T/TR)− (R/m) ln(p/pR) + sR

= CV ln(p/pR)− Cp ln(ρ/ρR) + sR. (3.16)

The constant reference values TR, pR, and ρR are those values related by the
ideal gas law which yield a specific entropy equal to sR.

3.3 Equation of state for air
Air effectively consists of a mixture of gases in constant proportions plus wa-
ter vapor in variable proportions plus any condensate content. Treating the
gaseous components of air as ideal gases, we first consider all gas components
with the exception of water vapor. The partial pressure of this dry gaseous
component is the sum of the partial pressures of the constituent gases:

pD =
∑

pi = RT
∑

(ρi/mi) = RTρD/mD = RDTρD, (3.17)

where RD = R/mD is the gas constant for dry air and the total density of
dry air is the sum of the component densities

ρD =
∑

ρi. (3.18)
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The mean molecular weight of the dry air is defined by

1

mD

=
1

ρD

∑(
ρi
mi

)
. (3.19)

Dry air as a whole thus satisfies the ideal gas law with a molecular weight
mD. A similar equation exists for the vapor pressure of water:

pV = RV TρV (3.20)

where RV = R/mV is the gas constant for water vapor.
The total pressure is the sum of the partial pressures of dry air and water

vapor. Applying the ideal gas law to each of these components results in

p = pD + pV = RT

(
ρD
mD

+
ρV
mV

)
=
RTρ

mD

[
1 +

ρV
ρ

(
mD

mV

− 1

)]
. (3.21)

The ratio ρV /ρ = ρV /(ρD + ρV ) = rV /(1 + rV ) ≈ rV where rV = ρV /ρD is
the mixing ratio of water vapor. Furthermore mD/mV − 1 ≈ 0.61, so to a
good approximation in the Earth’s atmosphere,

p = RDTρ(1 + 0.61rV ) (3.22)

where RD = R/mD is the gas constant for dry air. The quantity

TV = T (1 + 0.61rV ) (3.23)

is called the virtual temperature. It allows the dependence of the equation
of state for air on moisture to be swept under the rug, resulting in the simple
form

p = RDTV ρ. (3.24)

3.4 Condensed matter
From elementary quantum statistical mechanics, the entropy of a collection of
N identical harmonic oscillators with classical resonance frequency ω = E0/~
and total energy E is

S = NkB

[
ln

(
E − U
NE0

)
+ const

]
(3.25)
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where U is the external potential energy of the oscillators exclusive of the
internal oscillator energy. This potential energy could arise, for instance, if
the entire set of oscillators exists in a potential well.

We can approximate the entropy of a blob of condensed matter at room
temperature by this equation if we assume that each molecule is associated
with three oscillators, one for each dimension. We first rewrite this equation
in terms of the mass M of the blob rather than the number of oscillators,
realizing thatNkB = 3nR = 3MR/m ≡MCC , where kB is Boltzmann’s con-
stant, n is the number of moles, m is the molecular weight of the condensate,
and CC = 3R/m is the specific heat:

S =MCC

[
ln

(
E − U
M

)
+D

]
. (3.26)

The quantity D is an arbitrary constant.
To apply this equation to a real condensate we have to take into account

the fact that the oscillators exist in a potential well with binding energy
per unit mass µB. We also have to take into account the fact that the con-
densate is an elastic medium on the macroscopic scale, so that compressing
it adds internal energy and therefore decreases binding energy. To the ex-
tent that the compression remains small and elastic, the potential energy is
U = −MµB +Mk(V/M − 1/ρC)

2/2 where V is the compressed volume of
the condensate and ρC is its uncompressed density. When there is no com-
pression, V/M = 1/ρC , and the last term vanishes. The constant k is related
to the compressibility of the condensate. The result is

S =MCC{ln[E/M + µB − k(V/M − 1/ρC)
2/2] +D}. (3.27)

Applying equations (3.3) and (3.5), we find the temperature T

CCT = E/M + µB − k(V/M − 1/ρC)
2/2 (3.28)

and chemical potential µ:

µ = −sT + e− (kV/M)(V/M − 1/ρC), (3.29)

where s = S/M is the specific entropy and e = E/M is the specific energy.
Using equations (3.8) and (3.28) we find an expression for the pressure:

p = −k(V/M − 1/ρC). (3.30)
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Using equations (3.28) and (3.30), we can rewrite the specific entropy in
terms of just the temperature

s = CC ln(T/TR) + sRC , (3.31)

where sRC is the entropy of the condensate at the reference temperature
TR, and the chemical potential in terms of temperature, volume, mass, and
pressure

µ = −sT + CCT − µB + pV/M + p2/(2k). (3.32)

The term quadratic in pressure p2/(2k) = k(V/M−1/ρC)
2/2 can be omitted

from the chemical potential under ordinary conditions since it is typically
much less than pV/M = p/ρ, where ρ is the actual density of the condensate
under pressure p. This is easily demonstrated:

p2/(2k)

pV/M
=
pρ

2k
= −k(1/ρ− 1/ρC)ρ

2k
= (ρ/ρC − 1)/2, (3.33)

which is much less than unity as long as the condensate’s density doesn’t
increase much under compression. Given this near-incompressibility, we can
also set V/M = 1/ρC in equation (3.32), so that the chemical potential
simplifies to

µ = −sT + CCT − µB + p/ρC . (3.34)

Finally, we use equation (3.28) to obtain an expression for the specific
energy e = E/M :

e = CCT − µB. (3.35)

The specific enthalpy is

h = e+ pV/M = CCT − µB + p/ρC . (3.36)

Terms involving p2/(2k) have been dropped in the specific energy and en-
thalpy equations as was done in the chemical potential equation.

3.5 Vapor and condensate in equilibrium
In equilibrium the vapor pressure of water equals its saturation vapor pres-
sure. Since diffusive as well as thermal equilibrium exists between the phases,
the temperatures and chemical potentials of the two phases must be equal.
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From equations (3.14) and (3.16) we find that the chemical potential of the
vapor phase of water is

µV = CPV T [1− ln(T/TR)] +RV T ln(pV /eSF )− sRV T (3.37)

where CPV is the specific heat of water vapor at constant pressure, TR is a
constant reference temperature, RV = R/mV is the gas constant for water
vapor, pV is the partial pressure of water vapor, eSF is a constant reference
pressure taken to equal the saturation vapor for freezing, and sRV is the
specific entropy of water vapor when T and pV equal their reference val-
ues. Similarly, the chemical potential for condensed water is obtained from
equations (3.31) and (3.34):

µC = CCT [1− ln(T/TR)]− µB + pC/ρw − sRCT (3.38)

where CC is the specific heat of the condensate, µB is its specific binding
energy, pC is the pressure in the condensate, ρw is the condensate density,
and sRC is the specific entropy of the condensate at temperature T = TR.

Equating these two chemical potentials and solving for the vapor pressure
of water pV , which in equilibrium equals the saturation vapor pressure eS
yields

eS = eSF

(
TR
T

)(CC−CPV )/RV

exp

(
sRV − sRC + CC − CPV

RV

− µB − pC/ρw
RV T

)
.

(3.39)
A simple way to write this is

eS = eSF

(
TF
T

)(CC−CPV )/RV

exp

(
LC(TF )

RV TF
− LC(T )

RV T

)
exp

(
pC

RV Tρw

)
,

(3.40)
where

LC(T ) = µB − (CC − CPV )T (3.41)

is called the latent heat and where we must satisfy the constraint

sRV − sRC =
LC(TF )

TF
. (3.42)

We have taken the freezing point TF = TR as a convenient reference temper-
ature. In practice eSF is determined by experiment, as is LC(TF ), and hence
µB.
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The condensate pressure in the last factor in the exponential in equation
(3.40) is conventionally approximated by zero, since this term normally in-
troduces a fractional error of only about 0.001 in most atmospheric problems.
However, there are applications in cloud physics for which this term is very
important, as we shall see later.

3.6 Moist entropy
We now have the tools to compute the specific entropy of air containing water
vapor, condensate, either in the form of small water or ice particles that move
with the airflow or precipitation that falls relative to the flow.

The entropy per unit mass of dry air under these conditions is

s = sD + rV sV + rCsC , (3.43)

where
sD = CPD ln(T/TR)−RD ln(pD/pR) + sRD (3.44)

is the specific entropy of dry air, CPD is the specific heat of dry air at constant
pressure, RD = R/mD where mD is the molecular weight of dry air, pD is
the partial pressure of dry air, sRD is the constant reference entropy for dry
air, and the reference pressure is unconstrained, but typically chosen to be
pR = 1000 hPa.

sV = CPV ln(T/TR)−RV ln(pV /eSF ) + sRV (3.45)

is the specific entropy of water vapor, CPV is the specific heat of water vapor
at constant pressure, RV = R/mV wheremV is the molecular weight of water
vapor, pV is the partial pressure of water vapor, sRV is the constant reference
entropy for water vapor, and

sC = CC ln(T/TR) + sRC (3.46)

is the specific entropy of both advected condensate (sC) and precipitation
(sR), CC is its specific heat, and sRC is the constant reference entropy for
the condensate. The mixing ratio of water vapor is defined as the ratio of
the densities of vapor and dry air, rV = ρV /ρD, with a similar definition for
advected condensate mixing ratio in terms of the densities of the respective
condensate components and dry air rC = ρC/ρD.



CHAPTER 3. MOIST THERMODYNAMICS 45

Substituting these expressions into equation (3.43) and rearranging, we
get

s = (CPD + rVCPV + rCCC) ln(T/TR)−RD ln(pD/pR)

−rVRV ln(pV /eSF ) + sRD + rV sRV + rCsRC . (3.47)

For many purposes this is a perfectly adequate form for the moist entropy.
However, an alternate form is more commonly used, which takes advantage
of the fact that pV /eSF = HeS/eSF , where H is the relative humidity. The
ratio eS/eSF may be obtained from equation (3.39), resulting in the form

s = (CPD + rTCC) ln(T/TR)−RD ln(pD/pR)

+
LCrV
T
− rVRV lnH + sRD + rT sRC , (3.48)

where the total cloud water mixing ratio rT = rV + rC appears. We have
ignored the term containing the pressure in the condensate pC , as this is
normally small as long as the condensate occurs in sufficiently large particles
(see the chapter on cloud physics).

The final bit of physics needed is the fact that liquid and ice co-exist in
diffusive equilibrium at the freezing temperature TF . (The freezing point does
not vary with pressure with the approximations used here for the entropy of
the condensate, so the triple point has the same temperature as the freezing
point in our treatment.) Setting the chemical potentials of ice and liquid to
each other at the freezing point and taking this temperature as our reference
temperature, we find

(CL − sRL)TF − µBL = (CI − sRI)TF − µBI , (3.49)

where a subscripted L indicates liquid and a subscripted I indicates ice. This
can be rearranged to yield

sRI − sRL =
LL(TF )− LI(TF )

TF
=
LF (TF )

TF
(3.50)

where the latent heats of condensation and fusion are defined

LL(T ) = µBL − (CL − CPV )T (3.51)

and
LI(T ) = µBI − (CI − CPV )T. (3.52)
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We also define the latent heat of freezing as the difference between the latent
heats of fusion and condensation:

LF (T ) = LI(T )− LL(T ) = µBI − µBL + (CL − CI)T. (3.53)

We finally arrive at consistent equations for the entropy of moist air for
temperatures warmer

s = (CPD + rTCL) ln(T/TF )−RD ln(pD/pR)

+
LLrV
T
− rVRV lnH, T > TF , (3.54)

and colder

s = (CPD + rTCI) ln(T/TF )−RD ln(pD/pR)

+
LIrV
T
− rVRV lnH

−LF (TF )rT
TF

, T < TF (3.55)

than freezing. We have made the assumption that condensate is ice below
freezing and liquid water above freezing. In these equations we have set
sRD = sRL = 0, which leaves us with

sRI = −
LF (TF )

TF
(3.56)

according to equation (3.42). Setting TR = T = TF in equation (3.39), substi-
tuting condensate constants appropriate to liquid water, and using equation
(3.51) we find that

sRV =
LL(TF )

TF
. (3.57)

Using the above choices for entropy constants and reference temperature,
we finally rewrite equation (3.47) into a form which is valid both above and
below freezing,

s = (CPD + rVCPV + rLCL + rICI) ln(T/TF )

−RD ln(pD/pR)− rVRV ln(pV /eSF )

+
LL(TF )rV − LF (TF )rI

TF
. (3.58)
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In deriving this equation we make the equilibrium assumption that rL = 0
for T < TF and rI = 0 for T > TF . We can write the vapor pressure of water
pV in terms of the mixing ratio rV using the ideal gas law for each of these
components:

pV
pD

=
RV TρV
RDTρD

=
rV
ε

(3.59)

where ε = mV /mD = 0.623.

3.7 Wet-bulb temperature
The wet-bulb temperature TW is the temperature at which a parcel reaches
saturation as condensate is evaporated into it at constant pressure. Since
moist entropy is (approximately) conserved in this evaporation process, the
wet-bulb temperature may be obtained by inverting the entropy equation
(3.58) for temperature, using the actual values of entropy and pressure with
the actual vapor pressure and mixing ratio replaced by their saturation values
at the wet-bulb temperature. Since these latter values are not known in
advance, the calculation is necessarily iterative.

3.8 Governing equations
In this section we consider the governing equations for mass, water substance,
and moist entropy in a real atmosphere.

3.8.1 Mass continuity

The fact that water substance can be added to and subtracted from a parcel
of air complicates the mass continuity equation. Since the mass of the dry
air component is conserved, we define the mass continuity equation in terms
of the dry air component only, resulting in

∂ρD
∂t

+∇ · (ρDv) = 0 (3.60)

where ρD is the density of dry air and v is the air velocity. Note in this case
that the velocity must be defined as that of the dry air component in order
for this equation to be correct.
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3.8.2 Water substance

The total water substance divides naturally into three components in the
atmosphere, with the total water substance mixing ratio equal to the sum
of the vapor mixing ratio rV , the advected condensate mixing ratio rC , and
the precipitation mixing ratio rP . It is helpful to consider the vapor and
advected condensate together, which gives us the total cloud water mixing
ratio rT = rV + rC . The cloud water mixing ratio obeys the equation

∂ρDrT
∂t

+∇ · (ρDrTv −K∇rT ) = ρD (E − P)− ∂FV

∂z
(3.61)

where ρD is the density of dry air, E is the evaporation rate of precipitation
per unit mass of dry air, P is the corresponding production rate of precipi-
tation, K is the dynamic eddy mixing coefficient (i.e., it includes the density
factor ρd), and FV (z) is the upward diffusive flux of water vapor from the sur-
face into the lowest layers of the atmosphere. Note that eddy mixing tends
to homogenize mixing ratios, which explains the form of the eddy mixing
term in equation (3.61). The bulk flow velocity v is defined as the velocity
of the dry air component.

The precipitation mixing ratio obeys a similar equation

∂ρDrR
∂t

+∇ · [ρDrR(v − wTk)−K∇rR] = −ρD (E − P) (3.62)

with the exception that the precipitation terminal velocity −wTk is included
and the signs of the precipitation source and sink terms are reversed.

3.8.3 Entropy

The change of entropy of a parcel of air with volume V and fixed dry air
mass MD consists of three parts, the change due to added heat, the change
due to added mass, and the change due to phase transformations and other
chemistry:

dS = dSheat + dSmass + dSchem. (3.63)

The heating part is simply

dSheat =
MDQdt

T
(3.64)

where T is the temperature and Q is the heat added per unit mass of dry air
per unit time.
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We divide the change in mass of component i of the parcel as

dOi = dMi + dNi (3.65)

where dMi is the net transfer of the mass of the ith component into the
parcel and dNi is the change in the mass of this component via phase change
or chemical reaction. Given that the two components with variable mass are
water vapor and advected condensate, the mass part can be written

dSmass = sV dMV + sCdMC (3.66)

where dMV and dMC represent the changes in the masses of water vapor
and advected condensate in the parcel due to diffusion through the sides
of the parcel as well as addition and removal of mass through precipitation
formation and evaporation. (Precipitation is not considered to be part of the
system.) We assume implicitly that mass enters and leaves the parcel with
the specific entropies characteristic of the parcel.

The chemical part of the change in entropy is assumed to take place
at constant volume, dV = 0, and zero mass flux in and out of the parcel,
dMV = dMC = 0. In the case of phase transitions between water vapor and
condensate it can be written

dSchem = −µV

T
dNV −

µC

T
dNC = −µV − µC

T
dNV (3.67)

where dNV and dNC are the masses added to water vapor and advected
condensate by evaporation and condensation respectively and where µV and
µC are the chemical potentials of vapor and condensate. This equation arises
from the fact that

µi

T
= −

(
∂S

∂Oi

)
= −

(
∂S

∂Ni

)
(3.68)

where the last step is justified since dMi is assumed to be zero for this part
of the change in entropy. Since loss of water vapor by condensation results
in an equal gain in condensate in this case, we have dNC = −dNV . The
temperature of the advected condensate is assumed to equal the temperature
of the air parcel as a whole. This is justified because equilibration between
the small advected condensate particles and vapor occurs rapidly. Thus, to
a good approximation the condensate will be in phase equilibrium with the
vapor, resulting in µV = µC . In this case dSchem = 0.
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The specific entropy of water vapor is given by equations (3.45) and (3.57),

sV = CPV ln(T/TF )−RV ln(pV /eSF ) + LL(TF )/TF , (3.69)

while that for condensate is

sC =

{
CI ln(T/TF )− LF (TF )/TF , T < TF

CL ln(T/TF ), T > TF
(3.70)

from equations (3.46) and (3.56). For the dry air component,

sD = CPD ln(T/TF )−RV ln(pD/pR). (3.71)

The chemical potentials of vapor and condensate divided by temperature are
similarly

µV /T = −CPV ln(T/TF ) +RV ln(pV /eSF ) + CL − µBL/TF (3.72)

and

µC/T =

{
CI [1− ln(T/TF )]− µBI/T + LF (TF )/TF , T < TF

CL[1− ln(T/TF )]− µBL/T, T > TF
. (3.73)

Recognizing s = S/MD = sD + rV sV + rCsC as the specific entropy of
air, dividing equation (3.63) by MDdt, and substituting equations (3.64) and
(3.66) results in the governing equation for entropy,

ds

dt
=
Q

T
+ sV

(
drV
dt

)
d

+ sC

[(
drC
dt

)
d

+

(
drC
dt

)
p

]
+ s∗C

(
drC
dt

)
e

, (3.74)

where drV = dMV /MD and drC = dMC/MD are the changes in mixing ratios
of vapor and advected condensate. The subscripted d refers to mass addition
by a diffusive process, the subscripted p refers to conversion of advected
condensate to precipitation, and the subscripted e refers to conversion of
precipitation to advected condensate. The quantity s∗C is the condensate
entropy at the wet-bulb temperature TW , which is the temperature toward
which precipitation tends as it falls through unsaturated air.

Multiplication by the density of dry air ρD and use of the mass continuity
equation (3.60) allows conversion to flux form:

∂ρDs

∂t
+∇ · (ρDsv) =

ρDQ

T
+ ρDsV

(
drV
dt

)
d

+

ρDsC

[(
drC
dt

)
d

+

(
drC
dt

)
p

]
+ ρDs

∗
C

(
drC
dt

)
e

. (3.75)



CHAPTER 3. MOIST THERMODYNAMICS 51

The water vapor diffusion term can be written

ρDsV

(
drV
dt

)
d

= −sV∇ · JV = −∇ · (sV JV ) + JV · ∇sV (3.76)

where JV is the molecular flux of water vapor. This is proportional to minus
the gradient of the chemical potential of water vapor, but this will not enter
the analysis directly due to its small magnitude in atmospheric applications.
In particular, the first term on the right side of equation (3.76) is completely
negligible compared to the divergence of the bulk entropy flux on the left side
of equation (3.75). However, the second term enters indirectly when there
is turbulence. Turbulence transforms variance on large scales down to tiny
scales at which molecular processes can act. We account for this by imposing
implicit smoothing (a Reynolds separation) and replace the molecular flux
of water vapor by the turbulent flux, so that JV → −K∇rV where K is the
eddy mixing coefficient. Assumed here is that turbulent mixing homogenizes
mixing ratio, in contrast to molecular diffusion, which homogenizes chemical
potential divided by temperature. Though both occur, the former dominates
the latter. Applying a similar treatment to the advected cloud water diffusion
term results in our final governing equation for entropy,

∂ρDs

∂t
+∇ · (ρDsv −K∇s) =

ρDQ

T
−K∇rV · ∇sV −K∇rC · ∇sC

− ρDsCP + ρDs
∗
CE , (3.77)

where the time tendencies of condensate mixing ratio due to formation and
evaporation of precipitation have been replaced by −P and E respectively.
A turbulent eddy flux term for the entropy has been added to the left side
of the governing equation as well.

The heating term has contributions from radiation, heat conduction, tur-
bulent dissipation of the flow, turbulent dissipation associated with falling
precipitation, and heat transfer between precipitation and air:

Q

T
=
QRAD +QCOND +QDISS +QPDISS +QPTRANS

T
. (3.78)

The radiative heating per unit volume ρDQRAD is specified externally. The
contribution of heat conduction ρDQCOND was found to be very small by
Pauluis and Held (2002a).
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The dissipation term is given by

ρDQDISS = 2K|D|2 (3.79)

Where D is the rate of strain tensor. As shown by Pauluis, Balaji, and Held
(2000), the precipitation-induced dissipation term is

ρDQPDISS = gρDrPwT (3.80)

where rP is the mixing ratio of precipitation and wT is the precipitation
terminal fall velocity.

The heating term due to sensible heat transfer from the falling precipita-
tion to the air as it warms is approximately

ρDQPTRANS ≈ ρDrP (vz − wT )

[
−CC

dTW
dz

+ LF (TF )δ(z − zF )
]
. (3.81)

In this approximation, the temperature of precipitation is assumed to be the
wet-bulb temperature TW of the atmosphere. The second term on the right
side represents melting or freezing, assumed to occur instantly at the freezing
level zF , of ascending or descending precipitation. (Technically, this is the
level at which TW = TF .) The specific heat of condensate, CC , is assumed
to be that for liquid, CL below the freezing level and that for ice, CI , above
the freezing level. Except for the freezing/melting term in QPTRANS, the
terms QPDISS and QPTRANS are typically similar in magnitude and opposite
in sign.

3.8.4 Classical entropy governing equation

The classical treatment for the generation of entropy by diffusion is given
by de Groot (1951, pp 97-98), Landau and Lifshitz (1959, p 221), de Groot
and Mazur (1962, pp 19-24), Yourgrau, van der Merwe, and Raw (1966, pp
13-14), etc. The arguments of these authors are all variations on a common
theme that starts for our case with the Gibbs relation (with dMD = 0),

TdS = dE + pdV − µV dOV − µCdOC (3.82)

where the terminology is as before. The first law of thermodynamics is then
applied, which we write for consistency with the above work as

dE = Qdt− pdV, (3.83)
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where Q is the heating rate per unit mass. The result is

dS =
Qdt

T
− µV dOV + µCOC

T
. (3.84)

The rest of the development follows along lines similar to those given above,
where drV = dOV /MD, etc., with the result that

ds

dt
=
Q

T
− µV

T

(
drV
dt

)
− µC

T

(
drC
dt

)
(3.85)

in place of equation (3.74).
I believe this derivation to be incorrect for the following reasons: (1) The

closed system first law is applied to an open system. (2) The work done by
the system dW is incorrectly equated to pdV in the case in which only part
of dV is associated with work-producing expansion.

Can the above derivation be rescued? Let us generalize equation (3.83)
to use the actual work done by expansion dW and to include the import and
export of energy via mass exchange,

dE = Qdt− dW + eV dMV + eCdMC , (3.86)

where quantities eV and eC are the specific energies of water vapor and
advected condensate. Note that this equation is derived from energy conser-
vation and is therefore a true expression of the first law of thermodynamics.
It differs from the expression for dE obtained by simply inverting the Gibbs
equation (3.82) in that the heat added Qdt is not equated to the entropy term
TdS, the work done dW is not set equal to pdV , and the specific energies
replace the chemical potentials of water vapor and condensate.

The change in volume of the system actually consists of two parts, the
change due to expansion and compression, dVX , and the change due to the
addition and removal of mass, dVM . The total change in volume is thus
dV = dVX+dVM . The work done by expansion is dW = pdVX . On the other
hand, the change in volume due to a change in mass alone holding pressure
and temperature constant is

pdVM = d(pVM) = d(MVRV T +MCRCT ) = RV TdMV +RCTdMC . (3.87)

where we have used the ideal gas law. (The condensate can be considered
as an ideal gas with very massive molecules, and hence a very small value of
RC .)
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Combining equations (3.82), (3.86), and (3.87) and identifying ei+RiT =
hi as the specific enthalpy of the ith component results in

TdS = Qdt+ (hV − µV )dMV − µV dNV + (hC − µC)dMC − µCdNC (3.88)

where we have used dOV = dMV + dNV , etc. Dividing by T and recognizing
the specific entropy of the ith component as si = (hi − µi)/T brings us to
our original equation (3.63):

dS =
Qdt

T
+ sV dMV + sCdMC −

µV − µC

T
dNV

= dSheat + dSmass + dSchem. (3.89)

Thus, the Gibbs equation approach is consistent with our original result with
phase equilibrium between vapor and advected condensate, provided that the
proper version of the first law of thermodynamics is used.

3.8.5 Momentum

In order to derive the momentum equation, consider a parcel that moves
with the dry air component and is closed with respect to that component,
i.e., the mass of dry air in the parcel MD is conserved. Newton’s second law
generalized for open systems takes the form

d

dt
[(MD +MT )v] = V F + v

dMT

dt
(3.90)

where MT is the mass of the total cloud water, i.e., vapor plus advected
condensate. The term on the left is the time rate of change of momentum of
the dry air plus the total cloud water. Precipitation is not considered to be
part of the system. The first term on the right is the product of the volume
V of the parcel and the external force per unit volume,

F = ∇ · T − gρD (1 + rT + rR)k, (3.91)

where T = −pI + 2KD is the stress tensor with p being the pressure,
K the eddy mixing coefficient, and D the strain rate of the fluid. The
second part of equation (3.91) is just the weight of all material in the parcel,
incorporating the mass densities of the dry air component ρD, the total cloud
water ρT = ρDrT and the precipitation ρP = ρDrP . The third term on the
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right side of equation (3.90) represents the rate at which cloud water mass
is added to the parcel, which we assume to enter with the parcel’s velocity.

Expanding the derivative on the left side of equation (3.90), dividing by
V , and simplifying results in

ρD(1 + rT )
dv

dt
= −∇p+∇ · (2KD)− gρD (1 + rT + rR)k. (3.92)

Finally, dividing by 1 + rT and converting the left side to flux form using
equation (3.60) results in

∂ρDv

∂t
+∇ · (ρDvv) =

−∇p+∇ · (2KD)

1 + rT
− gρD (1 + rR)k. (3.93)

We have made the minor approximation that 1+rR/(1+rT ) ≈ 1+rR, which
is valid because rR, rT � 1.

3.9 Other thermodynamic variables
A variety of approximately conserved thermodynamic variables besides en-
tropy are used in studies of convection. Here we mention a few and discuss
their characteristics.

A simplified form of the entropy is

s = CPD ln(T/TF )−RD ln(p/pR) +
LrV
TF

, (3.94)

where L is the latent heat of condensation at freezing. This approximation
comes from neglecting rL and rI in equation (3.58) and neglecting rV every-
where except where multiplied by L. This also leads to the approximation
pD = p. It is sometimes used in numerical models where maximal simplifi-
cation is desired. A common variation of this formula replaces the constant
reference temperature TF in the latent heat term by the actual temperature.
This is actually a serious mistake, since it means that the dry entropy (given
by the first two terms on the right side of equation (3.94)), the moist entropy
s, and the water vapor mixing ratio rV are not all simultaneously conserved in
transformations which change the temperature but remain non-condensing.
Use of this variation should be avoided.
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Meteorologists use a variable called the equivalent potential temperature,
which can be approximated roughly as

θe = TR exp(s/CP ) = T (pR/p)
RD/CPD exp[LrV /(CPDTR)], (3.95)

where the simplified entropy given by equation (3.94) has been substituted.
The equivalent potential temperature is defined by the meteorologists as the
temperature of a parcel carried moist adiabatically to very low pressure so
as to condense out all the water, and then compressed dry adiabatically to
the reference pressure.

The pseudo-adiabatic equivalent potential temperature is the version of
equivalent potential temperature which is constant under adiabatic expansion
with all condensed water removed as it is formed.

The reversible equivalent potential temperature is related to the entropy
as defined by equation (3.54)

θe = TF exp[s/(CPD + rTCL)]. (3.96)

The extra term rTCL is included to make the equivalent potential tempera-
ture proportional to the temperature when the entropy is substituted. How-
ever, it has the unfortunate side effect of giving the entropy and the equiva-
lent potential temperature different conservation properties when rT varies,
perhaps as a result of the fallout of precipitation.

The final variable we consider is the moist static energy. From the first
law of thermodynamics for a closed parcel, we have for a parcel of unit mass

CPDdT = dq +
dp

ρ
(3.97)

where is the heat added per unit mass. We thus ignore the contribution of
vapor and condensate to the energetics of the system except by virtue of
the effect of latent heat release: dq = −LdrV , where a constant latent heat
of condensation L is assumed. The crucial assumption is that the pressure
change is given by the hydrostatic equation dp = −gρdz, which allows us to
write

d(CPDT + LrV + gz) = dσ = 0, (3.98)
where σ is the moist static energy.

The conservation properties of the moist static energy are problematic,
not only from the point of view of the approximate thermodynamic treat-
ment (a problem which can be fixed) but also from the assumption of hydro-
static equilibrium in pressure changes. Rearranging equation (3.97) results
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in ρ−1∇p = ∇(CPDT + LrV ) which may be substituted in the momentum
equation. Using the identity v · ∇v = ∇(v2/2) − v × ζ and dotting the
momentum equation with v, we get

∂v2/2

∂t
+ v · ∇(v2/2 + CPDT + LrV + gz) = 0. (3.99)

In the steady state where ∂(v2/2)/∂t = 0, we infer that v2/2 + σ is con-
served along streamlines. Thus, σ by itself is not conserved. The error is
often small, but can be signficant in extreme cases. In non-steady situations,
the conservation properties of σ are undefined, though non-conservation is
probably of order v2/2 here as well. However, there seems to be no obvious
way to bound the error in the non-steady situation.
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3.11 Problems
1. Given that the mean radiative brightness temperature of the atmo-

sphere is about 259 K i. e., the earth radiates energy at the same rate
as a black body at this temperature, compute the outflow of energy
from the earth per unit area per unit time.

2. Assuming that the surface latent heat flux exceeds the surface sensible
heat flux by an order of magnitude (true over oceans), estimate the
rainfall rate in radiative-convective equilibrium, converting the units to
millimeters of rain per day. You will need the answer to the previous
problem plus the assumption that all solar radiation is absorbed by
the surface and that thermal radiation is emitted from the middle to
upper troposphere. Moist convection is responsible for transporting
this energy upwards.

3. Given the above-quoted brightness temperature of the earth, that the
mean surface temperature of the earth in the tropics is near 300 K, and
that most solar radiation is absorbed by the surface before being trans-
ferred to the atmosphere, estimate the irreversible entropy production
per unit area per unit time in the earth’s tropical regions. Hint: Recall
that dS = dQ/T .

4. Given the rainfall rate in radiative-convective equilibrium and assuming
that rainfall is formed on the average at an elevation of 5 km, estimate



CHAPTER 3. MOIST THERMODYNAMICS 59

the work done on the atmosphere by the frictional force of falling rain-
drops. From this, estimate the irreversible entropy production per area
per time due to this frictional heating.

5. Consider a box of volume V with air in it at temperature T and total
pressure p. Initially the air in the left half of the box has partial pressure
of water vapor equal to pV = 0 whereas the air in the right half of it
is pV = p0 > 0 (non-condensing). Compute the total entropy of the
air in the box before moisture diffusion starts and after diffusion has
homogenized the vapor pressure in the box. What is the change in the
total entropy in the box, and what is the sign of the change? Hint: Take
the total entropy in each half of the box as the sum of the entropies
of the air and the water vapor. Note that the entropy of a mass M
of ideal gas can be written S = M [CP ln(T/TR) − (R/m) ln(p/pR)].
Also note that the mass of each component in each half of the box is
proportional to its partial pressure in that half, since the temperature
remains constant throughout the mixing process.

6. The rate of viscous heat production per unit mass is equal to the rate
per unit mass at which mechanical energy is destroyed. Compute the
entropy generation rate per unit mass due to mechanical dissipation for
eddies with a typical outer scale of 103 m and a typical velocity at this
scale of 10 m s−1. For this problem exclude the precipitation-generated
part of the dissipation.

7. Consider a steady flow in which parcels are accelerated from zero veloc-
ity to 100 m s−1, such as might occur on being drawn into a jet stream.
Compute the change in static energy under these conditions and ex-
press the change as an equivalent temperature change by dividing by
CPD.


