
Chapter 4

Simple models of Convection

In this chapter we discuss various simple models of convection. These in-
clude plume and thermal models as well as the vertical mixing model for
shallow moist convection. Though three-dimensional numerical models of
atmospheric convection have become quite common, the simple models pro-
vide a context for developing conceptual understanding which is difficult
to obtain from the more complex models. They can also provide a “sanity
check” on three-dimensional numerical models in simple cases. A good source
for plume and thermal models is the paper by Morton, Taylor, and Turner
(1956).

4.1 Plume or jet models
We begin with the Boussinesq mass continuity, vertical momentum, and
buoyancy equations, written in time-independent form (∂( )/∂t = 0):

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (4.1)

∂vxvz
∂x

+
∂vyvz
∂y

+
∂v2z
∂z

+
∂π′

∂z
− b′ = 0 (4.2)

∂vxb

∂x
+
∂vyb

∂y
+
∂vzb

∂z
= 0. (4.3)

We have split the kinematic pressure and the buoyancy into mean (b0(z), π0(z))
and perturbation (b′, π′) parts in the momentum equation, with the mean
parts related hydrostatically.

53



CHAPTER 4. SIMPLE MODELS OF CONVECTION 54

n

v
e

R

v

a

2R
v, b

Figure 4.1: Sketch of a plume and the cylindrical control volume containing
it. Shown at right is the assumed “top hat” profile of vertical velocity and
buoyancy inside the plume.

We assume an ascending plume in the form of a column of radius R which
varies with height z, as shown in figure 4.1. At each level the vertical velocity
v and buoyancy b inside the plume take on constant values, as shown in the
figure. Outside the plume we assume that v = 0 and b = b0(z).

We now integrate equations (4.1) - (4.3) over the horizontal area with
constant radius a, as shown in figure 4.1. The mass continuity equation
becomes

2πavr(a) +
dπR2v

dz
= 0, (4.4)

where we have used Gauss’s law to find that∫ (
∂vx
∂x

+
∂vy
∂y

)
dA =

∮
(vx, vy) · n̂dl = 2πavr(a), (4.5)

where n̂ is the unit outward normal to the cylinder shown in figure 4.1 and
vr(a) is the radial wind at radius a. Mass continuity outside of the plume
requires that 2πavr(a) = 2πRvr(R) ≡ −2πRve, where the plume radius
R < a, and where we have defined the entrainment velocity (positive inward)
as ve = −vr(R). The inward flow defined by this velocity is needed to account
for the entrainment of environmental fluid by the turbulent flow in the plume.
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Equation (4.4) thus becomes

dR2v

dz
= 2Rve. (4.6)

We now address the question of how to estimate the entrainment velocity.
This is a difficult problem in general, but once the plume has evolved enough
to forget its initial state, ve can be expressed solely in terms of current con-
ditions. In the simple case in which both the plume and the surrounding
environment have zero buoyancy, the only variable or parameter with the
units of velocity is the upward velocity of the plume itself, v. We thus set

ve = (α/2)v (4.7)

where α/2 is the constant of proportionality, with the factor of 1/2 included
so as to cancel out the factor of 2 on the right side of equation (4.6). Our
mass continuity equation thus becomes

dR2v

dz
= αRv. (4.8)

A similar treatment of the vertical momentum equation (4.2) yields

d

dz
[R2(v2 + π′)] = R2b′. (4.9)

The x and y derivative terms evaluate to zero because the vertical velocity
is assumed to be zero outside of the plume:∫ (

∂vxvz
∂x

+
∂vyvz
∂y

)
dA =

∮
(vxvz, vyvz) · n̂dl = 2πRvr(a)vz(a) = 0, (4.10)

which implies that the plume entrains no momentum from the environment.
The pressure perturbation term π′ is conventionally dropped from this

equation, partly because a scale analysis is thought to show that this term is
not important for a tall, skinny plume, but mainly because it is very difficult
to evaluate. The scale analysis is probably incorrect, but we shall nevertheless
drop the pressure term as well in order to follow historical precedent. In
partial defense, the effect of the pressure term is to redistribute in space the
effect of the buoyancy force, not to change its overall strength. Thus, we
arrive at the simple equation for vertical momentum:

dR2v2

dz
= R2b′. (4.11)
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A similar treatment of the buoyancy equation produces

dR2vb

dz
= αRvb0, (4.12)

where the arguments made for the entrainment of mass are extended to the
entrainment of environmental buoyancy b0(z). Equations (4.8), (4.11), and
(4.12) constitute the fundamental governing equation for a steady, entraining
plume.

4.1.1 Non-buoyant jet

A plume which is not buoyant with respect to its environment is generally
called a jet. The simplest case we can consider is that of an initial jet of fluid
which has the same buoyancy (or density) as its environment. In this case
the buoyancy perturbation is zero and from the vertical momentum equation
(4.11) we conclude that

R2v2 ≡ P = constant. (4.13)

Under these conditions the mass flux equation (4.8) integrates to

R2v = αP 1/2z, (4.14)

where we have adjusted the constant of integration so that zero radius occurs
at z = 0. Thus the mass flux in the jet increases linearly with distance
traveled. Equation (4.13) tells us that v = P 1/2/R, so that

R = αz, (4.15)

i. e., the radius of the jet also expands linearly with distance traveled and α
is the tangent of the half-angle of expansion. We also note that the velocity
decreases with distance according to

v =
P 1/2

αz
, (4.16)

which simply means that the jet slows down as mass with zero initial mo-
mentum is entrained.
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4.1.2 Buoyant plume, neutral environment

In this case we assume that the plume starts out with non-zero buoyancy,
but that the environment remains neutrally buoyant, with b0(z) = 0, which
implies that b′ = b. The buoyancy equation (4.12) integrates trivially in this
case to

R2vb ≡ B = constant. (4.17)

Using this to eliminate the buoyancy from equation (4.11) results in

dR2v2

dz
=
B

v
. (4.18)

To make further progress, we assume that R = Czγ and v = Dzδ and
substitute into equations (4.8) and (4.18). After some algebra, this results
in γ = 1, δ = −1/3, C = 3α/5, and D = [25B/(12α2)]1/3. Thus,

R = (3α/5)z, (4.19)

v =
(

25B

12α2z

)1/3

, (4.20)

b =
(25)2/3(12)1/3B2/3

9α4/3z5/3
. (4.21)

The plume radius expands linearly as in the case of the non-buoyant jet, but
with a smaller angle of expansion. The velocity still decreases with distance,
but at a lesser rate, due to the contribution of the buoyancy force to the
momentum of the plume. In addition, the buoyancy decreases with distance
as a result of the entrainment of zero-buoyancy fluid into the plume. There
are other possible solutions to this problem, but this solution is the only one
that exhibits simple power law behavior. Solutions of this type are called
similarity solutions, since the solution at any value of z > 0 can be obtained
from the solution at some standard level by simple rescaling with powers of
z.

4.1.3 Plume in unstable environment

There are no similarity solutions for the case of a stable environment, since
the plume terminates after a finite distance due to the development of neg-
ative buoyancy at some level. However, such solutions exist for the case of
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an unstable environment, i. e., in the case for which b0 decreases with z.
Let us assume that b0 = −Γz where Γ is a positive constant. For similarity
to hold, b′ must also be proportional to z – otherwise b = b0 + b′ would
not take the form of a simple power law. We set b′ = Γ′z where Γ′ > 0,
since it is necessary to have positive buoyancy for similarity to hold. Thus,
b = b0 + b′ = −(Γ − Γ′)z. We assume as before that R = Czγ and v = Dzδ.

Substituting these assumptions into equations (4.8), (4.11), and (4.12)
results in γ = 1, δ = 1, C = α/3, D2 = Γ′/4, and Γ′ = Γ/4. Thus,

b = −(3Γ/4)z, (4.22)

b′ = (Γ/4)z, (4.23)

R = (α/3)z, (4.24)

v = Γ1/2z/4. (4.25)

Unlike the previous cases, plumes in this environment start off with zero
initial buoyancy perturbation, velocity, and radius at z = 0. Thus, they can
be considered to form spontaneously from infinitesimal fluctuations in the
environment. The opening angle of the plume is less than in either of the
above cases, and the plume velocity increases with displacement rather than
decreasing, as does the buoyancy perturbation b′.

The spontaneous generation of plumes in this case presents the following
problem of interpretation; how can one determine the rate at which a partic-
ular environment produces such plumes? This question can only be answered
if the effect of the plumes on reducing the instability of the environment is
somehow included. If this is done, then one could imagine a balance between
the creation of instability by some mechanism and its removal by the action
of the resulting plumes. The number of plumes would then be just that re-
quired to counter the destabilization. The stabilizing effects of the plumes
would come from descending motion surrounding the plume updraft. How-
ever, this descending motion is ignored as a part of the idealizations made in
creating the plume model. Thus, with the current model we cannot answer
the above question. We will address this issue later.

4.2 Thermal models
Sometimes convection does not occur continuously as in a steady plume,
but transiently. In this case we can idealize the convective element as a
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homogeneous ascending parcel, which we call a thermal. If the thermal is
also entraining environmental air, we can use the method of open systems to
treat its evolution. In this method, any extensive quantity X possessed by
the thermal is subject to an equation of the form

dX

dt
= SX +

(
dX

dt

)
in

−
(
dX

dt

)
out

, (4.26)

where SX is the source of the quantity X and the last two terms on the
right side of the above equation represent the gain and loss of X as mass is
transferred into or out of the thermal from the environment. As in the case
of the plume, we assume that the thermal is turbulent and the environment
is quiescent, so that the transfer of mass is only into the thermal from the
environment.

For the case in which X is mass, we can write the mass conservation
equation as

d

dt
(4πR3ρR/3) = 4πR2ρRve, (4.27)

where we idealize the thermal as being spherical of radius R and invoke
the Boussinesq approximation in which the density is replaced by a constant
reference density ρR except in the expression for buoyancy. The quantity ve is
the entrainment velocity, which is the velocity of environmental air adjacent
to the thermal, relative to the motion of the surface of the thermal. We
assume here for simplicity that ve takes on a uniform, radially inward value,
an assumption that we will later find to be rather poor.

For the case of momentum, we assume that the only source (which in this
case is the external force) is buoyancy, ignoring pressure and drag forces to
be consistent with plume theory:

d

dt
(4πR3ρRv/3) = −(4πR3/3)g[ρ− ρ0(z)], (4.28)

where v is the upward thermal velocity, g is the acceleration of gravity, ρ is
the air density in the thermal, and ρ0(z) is the density of the surrounding
environment.

We assume here an incompressible fluid, so that density is conserved by
parcels. However, by employing the Boussinesq approximation, we implicitly
extend the analysis to other situations in which the Boussinesq approximation
is valid. The buoyancy equation can be written

d

dt
[4πR3(ρ− ρR)/3] = 4πR2(ρ0 − ρR)ve. (4.29)
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An equation is needed to relate the vertical position of the thermal to the
vertical velocity and the elapsed time:

dz

dt
= v. (4.30)

Finally, we assume a simple similarity relationship between the entrainment
velocity and the vertical velocity:

ve = αv, (4.31)

where α is a constant.
Equations (4.30) and (4.31) can be used to simplify the governing equa-

tions for a thermal to
dR3

dz
= 3αR2, (4.32)

dR3v

dz
= R3b′/v, (4.33)

and
dR3b

dz
= 3αR2b0, (4.34)

where the buoyancy is defined b = −g(ρ− ρR)/ρR, the environmental buoy-
ancy is b0 = −g(ρ0− ρR)/ρR, and the buoyancy perturbation is b′ = b− b0 =
−g(ρ− ρ0)/ρR.

The mass equation can be immediately solved to yield

R = αz, (4.35)

which shows that the thermal expands linearly in radius with height under the
similarity condition, just as does the plume. Furthermore, unlike the case of
the plume, the opening angle is independent of any further information about
the solution as long as similarity is maintained. Solutions to the two other
equations depends on the assumptions made about the vertical structure of
b0(z) and the starting values of b and v.

4.2.1 Non-buoyant parcel

As with the plume case, we begin with a non-buoyant “thermal” with an
initial upward motion in a neutrally stable environment. In this case we
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Figure 4.2: Expansion of a thermal under similarity conditions. We have
assumed the small angle approximation α ≈ tanα = tan(R/z).

have b0 = b′ = 0, so that equation (4.34) is irrelevant and equation (4.33)
integrates trivially to

R3v ≡ P = constant. (4.36)

From equation (4.35) we conclude that

v =
P

α3z3
, (4.37)

which means that the initial parcel velocity drops off very rapidly with dis-
tance.

4.2.2 Buoyant thermal, neutral environment

The second example is that of an initially buoyant parcel in a neutrally stable
environment, i. e., b0 = 0 and b = b′. Equation (4.34) integrates trivially in
this case to

R3b ≡ B = constant, (4.38)

which means that
b = b′ =

B

α3z3
. (4.39)
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Assuming that v = Dzδ, where D and δ are constants, we find upon substi-
tution of this and equations (4.35) and (4.39) into equation (4.33) that

v =
(
B

2α3

)1/2 (1

z

)
. (4.40)

Thus, the velocity drops off less rapidly with height than in the non-buoyant
case.

4.2.3 Thermal in unstable environment

For our final example we consider a thermal starting in an unstable environ-
ment with zero velocity and zero buoyancy perturbation. The environmental
buoyancy takes the form b0 = −Γz where Γ is a constant. As for the corre-
sponding plume problem, we assume for the sake of similarity that b′ = Γ′z,
so that b = b0 + b′ = −(Γ − Γ′)z. From these assumptions and equations
(4.34) and (4.35) we conclude that Γ′ = Γ/4, which means that

b′ = Γz/4. (4.41)

We now assume that the vertical velocity takes the form v = Dzδ, where
D and δ are constants. Substitution into equation (4.33) finally gives us
δ = 1 and D = Γ1/2/4, so that

v = Γ1/2z/4. (4.42)

Thus, both the buoyancy perturbation and the velocity increase linearly with
z, as does the thermal radius. These relations are very similar to those for a
plume in an unstable environment.

4.3 Nonsimilar thermals
So far we have assumed that thermals and plumes develop in a self-similar
fashion, which means that the tangent of the half-angle of expansion α =
dR/dz is constant. However this does not allow us to study the initiation of
thermals in the atmosphere. In order to make progress, we need to attack
the problem by means other than simple theory.

Sánchez et al. (1989) reported a laboratory study and numerical simula-
tions of a thermal starting from rest with an initial buoyancy in both neutral
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and stably stratified environments. The experiments were carried out in a
water tank and the thermal consisted of a parcel of salty water mixed with
food coloring. Stratification was produced by filling the tank with water of
variable salt concentration.

Figure 4.3 shows the evolution of a typical thermal launched from rest
into an unstratified environment. The behavior of the thermal is clearly
not self-similar, at least until the last two pictures. The volumes of many
thermals were measured from photographs as a function of distance from
their starting point, assuming cylindrical symmetry. Converting these into
equivalent radii for spheres of the same volume, the results of Sánchez et al.
(1989) imply that the radius depends on distance traveled according to

R = R0 exp[µ(z/R0 − ζ)], (4.43)

where R0 is the initial parcel radius starting from rest, µ = 0.095, and
ζ = 0.56.

The opening angle of thermal expansion is clearly not constant in this
case. We define an instantaneous opening angle (actually the tangent of the
half-opening angle)

α =
dR

dz
= µ exp[µ(z/R0 − ζ)] = µR/R0, (4.44)

which shows that the expansion angle starts with a value near µ, and then
increases as the thermal evolves. Similarity thermals typically have α ≈ 0.25,
so the initial value of α is smaller than the similarity value by a factor of
≈ 2.5. The thermal must move more than 10 initial radii before the value
of α approaches its similarity value. Meanwhile the thermal grows by more
than a factor of 2.6 in radius, or 18 in volume.

Entrainment into thermals actually occurs in a conceptually different
manner than is envisioned in the simple model described in the previous
section. In that model, entrainment is basically a turbulent process which
is assumed to occur locally over the surface of a roughly spherical turbulent
blob. In laboratory experiments such as the one described here, entrainment
is at least initially a laminar flow process in which environmental fluid is
swept around the thermal as it rises through the environment, and is en-
gulfed into the rear of the thermal, as shown in figure 4.4.

Sánchez et al. (1989) found that the growth of a thermal by entrainment
obeyed equation (4.43) in a stably stratified as well as in a neutral environ-
ment. We can therefore compute the evolution of the buoyancy perturbation
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Figure 4.3: Laboratory thermal launched into an unstratified environment
from rest (Sánchez et al., 1989). Notice that picture E is presented at a
different scale than the others. The dot spacing on the left side of each
picture is 1 cm.
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Figure 4.4: Initial evolution of a thermal. The buoyancy distribution causes
the circulation around the loop shown in the left panel to increase, resulting
in the distortion of the initial spherical blob of fluid as shown in the center
panel. Entrainment occurs primarily via the bulk engulfment of air into the
rear of the evolving thermal. Eventually the thermal takes the form of a
vortex ring, as shown in the right panel.

of a thermal starting from rest in either type of environment using equations
(4.32) and (4.34), which together result in a simple equation for the buoyancy
of such a thermal,

db

dz
= −3α

R
(b− b0) = −3µ

R0

(b− b0), (4.45)

where we have used equation (4.44) for the spreading angle. Letting b0 = Γz
to represent a stable environment and defining b′ = b − b0 = b − Γz, we get
an equation for b′,

db′

dz
+

3µ

R0

b′ = −Γ, (4.46)

which has the solution

b′ = (ΓL0 + Γl) exp(−z/l) − Γl (4.47)

where l = R0/(3µ). The quantity ΓL0 is the initial buoyancy perturbation
of the parcel where L0 is the distance the parcel would ascend to come into
buoyancy equilibrium with its environment were there no entrainment. We
call L0 the level of undilute neutral buoyancy.

The actual level of neutral buoyancy L is the value of z for which b′ = 0.
This is found by solving equation (4.47) with b′ set to zero:

L/l = ln(1 + L0/l). (4.48)
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Figure 4.5: Schematic of a typical conditionally unstable atmospheric sound-
ing. LCL is lifting condensation level, LFC is level of free convection, and
LNB is level of neutral buoyancy. Plotted are the moist entropy and the
saturated moist entropy as a function of pressure.

4.4 Conditional instability
Figure 4.5 shows a schematic of a conditionally unstable sounding expressed
in terms of the moist entropy and the saturated moist entropy plotted as
a function of height. Conditional instability means that finite energy must
be expended to lift a parcel to the point where it is positively buoyant.
The decrease in both saturated and unsaturated moist entropy up to some
level, followed by an increase with height is universally found in conditionally
unstable soundings.

The saturated moist entropy is the moist entropy with the vapor mixing
ratio replaced by the saturated mixing ratio. The moist entropy is conserved
in both moist and dry adiabatic processes, so the moist entropy of a surface
parcel lifted through the troposphere follows the vertical trajectory shown in
figure 4.5. The saturated moist entropy of the surface parcel initially follows
a line of constant potential temperature, which low in the troposphere slants
sharply to the left, as shown. However, when the saturated entropy line
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intersects the moist entropy line, the parcel becomes saturated. This level is
called the lifting condensation level (LCL). Subsequently the saturated moist
entropy equals the moist entropy, so both follow the vertical trajectory of the
lifted surface parcel.

Neglecting virtual temperature effects, the difference between the satu-
rated moist entropy of a parcel and its surrounding environment is a measure
of the buoyancy of the parcel relative to the environment. Thus, when the
saturated moist entropy of the parcel exceeds the saturated moist entropy
of the environment, the buoyancy of the parcel, which typically is negative
initially, becomes positive. This level is called the level of free convection
(LFC). The parcel will eventually reach its level of neutral buoyancy (LNB),
after which the buoyancy becomes negative.

The buoyancy of a lifted surface parcel is initially negative relative to the
environment (with the exception of a possible shallow region of positive buoy-
ancy over sun-heated land) in almost all cases. Thus, some energy source is
required to lift the parcel initially to its level of free convection. The required
energy per unit parcel mass is called the convective inhibition (CIN). We now
derive an equation for CIN. Realizing that the net buoyancy force consists of
the downward force of gravity on the parcel plus the upward pressure force
which equals the weight of the displaced parcel of environmental air Me, the
work needed to lift the parcel from its initial level (z = zI) to the level of
free convection (z = zLFC) is the CIN times the mass of the parcel Mp:

CIN ×Mp =
∫ zLFC

zI
g(Mp −Me)dz, (4.49)

where g is the acceleration of gravity. Dividing by Mp results in

CIN =
∫ zLFC

zI
g(1 − ρe/ρp)dz, (4.50)

where ρp and ρe are the densities of the parcel and the environment.
It is more convenient to express equation (4.50) in the form of a pres-

sure integral, converting from geometrical height to environmental pressure
p using the hydrostatic equation dp = −gρedz:

CIN =
∫ pI

pLFC

(1/ρe − 1/ρp)dp, (4.51)

where pI and pLFC are the pressures at the initial level and the level of free
convection.
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A convective parcel may contain condensate. To the extent that the
hydrometeors have reached terminal fall speed, the mass of this condensate
must be included in the calculation of the density of the parcel. If the volume
of the condensate in a parcel of volume V is Vc, then the volume of air equals
Va = V − Vc. The mass of condensate is Mc = ρwVc where ρw is the density
of water or ice as appropriate, so the combined density of air and condensate
in the parcel is

ρp =
Ma

V
+
Mc

V
=
Ma

Va

(
V − Vc
V

)
+
Mc

V
= ρ(1 − Vc/V ) + ρc (4.52)

where ρ is the density of the air and ρc is the mass of condensate per unit
total volume. The quantity Vc/V = ρc/ρw. Since ρw ≈ 103 kg m−3 and
ρc ≈ 10−2 kg m−3 at most, Vc/V ≤ 10−5 and can be ignored, which means
to an excellent approximation that

ρp = ρ+ ρc. (4.53)

We use the equation of state for air to compute the parcel density in
terms of the pressure p, temperature T , water vapor mixing ratio rV , and
condensate density:

ρp =
p

RDT (1 + 0.61rV )
+ ρc ≈

p

RDT (1 + 0.61rV − rC)
. (4.54)

The quantity ρcRDT/p ≈ ρc/ρ ≈ rC is to good approximation the mixing
ratio of condensate, i. e., the ratio of condensate density to dry air density.
This series of approximations is valid as long as both rV and rC are very
much less than unity.

The CIN thus becomes

CIN = RD

∫ ln pI

ln pLFC

[Te(1 + 0.61rV e) − Tp(1 + 0.61rV p − rCp)]d ln p, (4.55)

where a subscripted e indicates environment, a subscripted p indicates par-
cel values, and where we have used dp/p = d ln p. We have assumed that
no condensate exists in the environment. An extended virtual temperature
including the effects of condensate is defined

TV = T (1 + 0.61rV − rC), (4.56)



CHAPTER 4. SIMPLE MODELS OF CONVECTION 69

so the integrand is simply the difference between the extended virtual tem-
peratures of the environment and the parcel.

A similar integral yielding the energy released per unit mass in a parcel
ascending from the level of free convection to the level of neutral buoyancy
is called the convective available potential energy (CAPE):

CAPE = RD

∫ ln pLFC

ln pLNB

[Tp(1 + 0.61rV p − rCp) − Te(1 + 0.61rV e)]d ln p. (4.57)

The order of environmental and parcel quantities is reversed in the integrand
compared to the expression for CIN, since CAPE is energy released by the
parcel ascent, whereas CIN is the external energy required to lift the parcel.

At a given pressure level the difference between the temperature of the
parcel and the environment can be related to the difference between the
saturated moist entropies of the parcel and the environment,

s∗p − s∗e =
∂s∗

∂T
(Tp − Te), (4.58)

where the partial derivative of the saturated moist entropy is taken at con-
stant pressure. (Note that the saturation mixing ratio in the definition of
saturated moist entropy is a function of temperature, the effect of which must
be included in the partial derivative.) Thus, to the extent that the differ-
ence between real and virtual temperatures can be ignored, the CIN can be
written

CIN ≈ RD

∫ ln pI

ln pLFC

(
∂s∗

∂T

)−1 [
s∗e(p) − s∗p

]
d ln p. (4.59)

Similarly, the CAPE can be approximated

CAPE ≈ RD

∫ ln pLFC

ln pLNB

(
∂s∗

∂T

)−1 [
s∗p − s∗e(p)

]
d ln p. (4.60)

Above the lifting condensation level the saturated entropy of the parcel may
be replaced by the normal moist entropy in these two equations, since parcel
is saturated there and the two quantities are identical.

4.5 Mixing moist parcels
For dry convection in the atmosphere, we have implicitly assumed that den-
sity mixes linearly, i.e., the density resulting from mixing two parcels, ρm, is
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intermediate between the densities of the original parcels, ρ1 and ρ2, accord-
ing to the equation

ρm = ερ1 + (1 − ε)ρ2, (4.61)

where ε is the mass fraction of parcel 1 in the mixture. When one of the
parcels contains condensed water, this isn’t necessarily true, as we now
demonstrate.

If a thermal contains condensed water, then mixing the thermal with an
unsaturated environment will result in the evaporation of at least some of
the condensed water. As a consequence of the evaporation, the mixed parcel
may be cooler, and therefore less buoyant than either of the initial parcels.
To understand this more quantitatively, we utilize the fact that the enthalpy
is conserved in constant pressure processes in which no heat is added or
removed.

For a mixture of dry air, water vapor, and liquid, the enthalpy per unit
mass of dry air is

h = [CPD + rVCPV + rLCL]T − µBLrL, (4.62)

where rL is the condensed water mixing ratio and rV is the water vapor
mixing ratio. For our purposes it is sufficient to approximate this by

h ≈ CPDT − µBLrL. (4.63)

Let us now consider two parcels of equal temperature T , but the first with
liquid water mixing ratio rL1, and the other unsaturated with vapor mixing
ratio rV 2. The vapor mixing ratio of the first parcel is equal to the saturation
value,

rV 1 = rS(T, p) =
ρS
ρD

=
mV eS(T )

mDpD
≈ mV eS(T )

mDp
, (4.64)

where in the last step we ignore the difference between the partial pressure
of dry air and the total pressure. The enthalpy of the first parcel is

h1 = CPDT − µBLrL1 (4.65)

while the enthalpy of the second parcel is

h2 = CPDT. (4.66)

The enthalpy of the mixture will be

hm = CPDTm − µBLrLm (4.67)
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where Tm is the temperature of the mixture and rLm is its liquid water
mixing ratio. Since enthalpy is conserved in this mixing process and thus
mixes linearly, we have

εh1 + (1 − ε)h2 = hm (4.68)

where ε is the fraction of the first parcel (the cloud fraction) included in the
mixture. This becomes

hm = CPDT − εµBLrL1 = CPDTm − µBLrLm (4.69)

upon substituting equations (4.65)-(4.67). Similarly, the total water mixing
ratio in the mixture is given by

rTm = εrT1 + (1 − ε)rT2 = ε[rL1 + rS(T, p)] + (1 − ε)rV 2 (4.70)

since total water mixes linearly. The total cloud water mixing ratio in parcel
two has been replaced by the vapor mixing ratio since this parcel is unsatu-
rated by hypothesis.

If the fraction ε of parcel one is small enough, then its liquid component
will evaporate completely upon mixing. In this case the right side of equation
(4.69) is just CPDTm and the temperature Tm of the mixture is

Tm = T − εµBLrL1/CPD unsaturated. (4.71)

However, for some critical value of ε = εC , the liquid will all just barely
evaporate, leaving a saturated mixture. At this point we have rS(Tm, p) =
rTm. For larger values of ε, some of the liquid will remain. In this case
equation (4.69) yields

Tm = T + µBL[εrS(T, p) + (1 − ε)rV 2 − rS(Tm, p)]/CPD saturated, (4.72)

where we have set rLm = rTm − rS(Tm, p) and used equation (4.70) for rTm.
This must be solved iteratively for Tm, as no analytical solution exists. An
effective procedure for obtaining Tm is to solve both equations (4.71) and
(4.72) for candidate mixture temperatures. The larger of the two will be the
actual Tm.

Figure 4.6 illustrates the variation in the temperature of the mixed parcel
as a function of the mixing fraction ε. The mixture is coldest at the boundary
between a saturated and unsaturated mixture. The density is related to the
parcel temperature by the ideal gas law.
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Figure 4.6: Temperature of mixture Tm as a function of the mixing fraction
ε for the mixing of cloudy and clear parcels at the same initial temperature
T . The value ε = εC marks the boundary between an unsaturated and a
saturated mixture.

4.6 Moist plumes and thermals
UNDER CONSTRUCTION.

4.7 Vertical mixing models
Entraining plume and thermal models of cumulus clouds were stimulated by
the observation of Stommel (1947) that the liquid water content of clouds
was typically much less than could be explained by the adiabatic lifting of
a parcel of sub-cloud layer air from cloud base. This decrease from the
adiabatic value was thought to be the result of entrainment of air from the
surrounding environment, followed by its mixing with the cloudy air. As
we saw in the above analysis, this results in a reduction in the condensate
mixing ratio in the cloud.

A great deal of effort was put into matching the measured properties
of clouds to laboratory models of plumes and thermals. A major problem
with this effort is that laboratory experiments consisting typically of salt
thermals in a freshwater tank could not emulate the thermodynamic effects
of the evaporation of condensate.

As early as the late 1950s, Squires (1958) pointed out that cooling by
condensate evaporation could lead to downdrafts originating at the top of
small clouds, which penetrate downward through the body of the cloud. This
implies a cloud structure which is much more complex than that representable
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Figure 4.7: Atmospheric sounding represented by labeled curve, with la-
bels being pressure in hPa. The solid straight line is a mixing line between
400 hPa and 900 hPa (see text) and the dashed lines are contours of constant
potential temperature. The cross indicates the characteristics of the mixture
which has potential temperature equal to the environmental potential tem-
perature at 600 hPa. The shaded region indicates possible values of cloud
water mixing ratio and entropy in the cloud at 600 hPa that could result
from entrainment between 600 hPa and 900 hPa.

by a single thermal or plume.
An elegant pioneering paper by Fraser (1968) postulated that the net

effect of a cloud is to mix air from the bottom and top of the cloud and eject
it from the sides of the cloud. The argument was based on thermodynamic
calculations of mixing and buoyancy presented in the previous section.

Paluch (1979) demonstrated, using conserved variables to trace the origin
of cloud parcels, that the process envisioned by Fraser was essentially correct.
The conserved variables used by Paluch were total cloud water (assuming
that the cloud was not precipitating) and a form of equivalent potential
temperature.

Paluch’s technique is illustrated by figure 4.7. The total cloud water
mixing ratio of the environmental sounding of the convection of interest is
plotted versus the (moist) entropy of the environment. Mixing environmental
parcels from different altitudes (really pressures) results in parcel character-
istics which lie along a nearly straight line connecting the points on the
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sounding representing these altitudes. This is because the values of cloud
water mixing ratio and entropy in the mixture are averages of the values
in the original parcels, with weighting factors in proportion to the relative
amounts of mass from each level in the mixture. Thus, if a cumulus cloud has
its base at 900 hPa and its top at 400 hPa, all parcels resulting from mixing
cloud top and cloud base air in varying proportions lie along the mixing line
shown in figure 4.7.

In contrast, if all cloud parcels reaching 600 hPa come from this level or
below, they would have entropy and total cloud water mixing ratios which
put them in the shaded region of figure 4.7.

Paluch found that measurements in real clouds tended to place observed
parcels along mixing lines rather than in the region representing mixtures of
air from levels below the observation level. This is definitive evidence that
vertical mixing does indeed occur, with mixtures descending considerable
distances in clouds.

Raymond and Blyth (1986) developed a model of shallow, nonprecipi-
tating convection which incorporates the ideas of Frasier (1968) and Paluch
(1979). The predictions of this model were then compared against observa-
tions of detrainment in cumulus clouds. The predictions of the model were in
reasonable agreement with the levels at which detrainment actually occurred
in the observed clouds.

4.8 Downdrafts
UNDER CONSTRUCTION. (Show Byers-Braham model of thunderstorm
cell.)
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4.10 Problems
1. Obtain a similarity solution to the plume problem for b0 = K0/z where
K0 is a specified constant. Hint: To maintain similarity, assume that
b′ = K ′/z where K ′ is a constant to be determined.

2. Obtain a non-similarity solution, but using the similarity entrainment
assumption, for the buoyancy perturbation in a thermal starting from
rest at z = 0 with initial radius R0 in a stable environment with b0(z) =
Γz with initial buoyancy anomaly ΓL0. Recall that L0 is the undilute
level of neutral buoyancy. Compare your level of neutral buoyancy to
that obtained using the Sánchez et al. treatment for L0 = 10000 m,
Γ = 2 × 10−4 s−2, and R0 = 1000 m.

3. Using the simplified moist entropy s = CPD ln(T/TF )−RD ln(p/pR) +
LrV /TF (see the chapter on thermodynamics), compute the factor
∂s∗/∂T in equation (4.58). (We get s∗ from s by replacing the va-
por mixing ratio rV with its saturation value rS.) Since we are using
the simplified form for s in which the latent heat L is constant, this
constant value should be used in the differential form of the saturation
vapor pressure equation d ln es/dT = L/(RV T

2).

4. Write a computer program to solve for the temperature of a parcel
obtained by mixing two parcels at initial temperature T and pressure
p, the first with liquid water mixing ratio rL1 and the second with vapor
mixing ratio rV 2. Assume that the parcels mix with fraction ε for the
first parcel and 1−ε for the second. As a check, find and plot the values
of Tm(ε), 0 < ε < 1, for T = 283 K, p = 700 hPa, and with rL1 = 0.005
and rV 2 = 0.003.


