
Chapter 5

Shallow Water on a Sphere

In this section we derive the shallow water equations on a sphere as an approximation to
�ow on the earth's surface. Contours of constant geopotential (and hence constant elevation)
aren't really spherical, but are somewhat ellipsoidal in shape. However, the di�erence is small
enough to be ignored for most purposes.

We �rst develop the continuity and momentum equations and then derive the tools for
potential vorticity inversion on a sphere. We then introduce common approximations in
which a small patch of a spherical surface can be treated in a simple way. Figure 5.1 shows
the spherical coordinate system we use. Note that the longitude λ is the azimuthal coordinate
and the latitude φ is the elevation coordinate. This system di�ers from the usual spherical
coordinates in which the elevation angle is the co-latitude or π/2− φ.

5.1 Mass continuity

Figure 5.2 shows a �rectangular� region of �uid in latitude φ and longitude λ on a sphere.
The depth of the �uid h itself is a function of λ and φ. If the earth's radius is a, then the
linear dimensions of this region are given by

∆xλ = a cosφ∆λ ∆xφ = a∆φ. (5.1)

The volume of the region of �uid is therefore a2h cosφ∆λ∆φ.
If vλ is the �uid velocity component in the direction of increasing longitude λ and vφ is

the component in the direction of increasing latitude φ, then the rate at which �uid volume
enters the region from the sides is

a2 cosφ∆λ∆φ
∂h

∂t
= [vλ(λ)h(λ)− vλ(λ′)h(λ′)]a∆φ

+ [vφ(φ)h(φ) cos(φ)− vφ(φ′)h(φ′) cos(φ′)]a∆λ (5.2)

where λ′ = λ + ∆λ and φ′ = φ + ∆φ. Dividing by a2 cosφ∆λ∆φ, bringing all terms to the
left side, and taking the limit of small ∆λ and ∆φ, we get the mass continuity equation on
a sphere:

∂h

∂t
+

1

a cosφ

[
∂

∂λ
(hvλ) +

∂

∂φ
(hvφ cosφ)

]
= 0. (5.3)
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Figure 5.1: Spherical coordinate system used in this chapter. The longitude is λ and the
latitude is φ. A local Cartesian coordinate system is de�ned at point P with eastward,
northward, and upward unit vectors de�ned as λ̂, φ̂, and r̂.
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Figure 5.2: Sketch used to obtain shallow water mass continuity equation on a sphere.
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5.2 Momentum equations

The di�cult part of deriving the momentum equations is calculating the total time derivative
of the horizontal velocity. The di�culty is that the orientation of the unit vectors de�ning the
local east-north-up coordinate system changes for di�erent locations on the sphere. Thus,
the variability in these unit vectors needs to be taken into account when taking spatial
derivatives.

If vh(λ, φ, t) = vλλ̂+ vφφ̂ is the horizontal �ow velocity, then

dvh
dt

=
∂vh
∂t

+
dλ

dt

∂vh
∂λ

+
dφ

dt

∂vh
∂φ

. (5.4)

It is possible to show that

• ∂λ̂/∂λ = φ̂ sinφ− r̂ cosφ;

• ∂φ̂/∂λ = −λ̂ sinφ;

• ∂λ̂/φ = 0;

• ∂φ̂/∂φ = −r̂.

Furthermore
dλ

dt
=

vλ
a cosφ

dφ

dt
=
vφ
a

(5.5)

where a is the radius of the earth as before. Finally

∇h =
∂h

∂xλ
λ̂+

∂h

∂xφ
φ̂ =

1

a cosφ

∂h

∂λ
λ̂+

1

a

∂h

∂φ
φ̂. (5.6)

Putting all of this together and splitting into longitudinal and latitudinal components,
we get

∂vλ
∂t

+
vλ

a cosφ

∂vλ
∂λ

+
vφ
a

∂vλ
∂φ
− vλvφ tanφ

a
+

g

a cosφ

∂h

∂λ
− fvφ = 0 (5.7)

∂vφ
∂t

+
vλ

a cosφ

∂vφ
∂λ

+
vφ
a

∂vφ
∂φ

+
v2λ tanφ

a
+
g

a

∂h

∂φ
+ fvλ = 0 (5.8)

where the Coriolis parameter f = 2Ω sinφ now varies with latitude. We have dropped terms
pointing in the r̂ direction. These terms actually enter the vertical momentum equation.
However, they are small compared to the other terms in this equation for ordinary velocities,
and therefore they don't signi�cantly perturb hydrostatic balance. The geostrophic wind is
obtained by dropping all terms related to dvh/dt:

vgφ =
g

fa cosφ

∂h

∂λ
vgλ = − g

fa

∂h

∂φ
. (5.9)

This treatment breaks down near the north and south poles where cosφ → 0, and an
alternate coordinate system needs to be used. Global numerical models deal with the problem
of the poles in a variety of ways which will not be discussed here.
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Figure 5.3: Sketch indicating circulation about a region rectangular in latitude-longitude
space.

5.3 Vorticity and divergence

We now use the circulation theorem to obtain an expression for the vertical component of
the vorticity on a sphere. Employing equation (5.1, the relative circulation is computed to
be

Γr = vλ(φ)a cosφ∆λ

+ vφ(λ+ ∆λ)a∆φ

− vλ(φ+ ∆φ)a cos(φ+ ∆φ)∆λ

− vφ(λ)a∆φ. (5.10)

For small ∆λ and ∆φ this becomes

Γr = ∆λ∆φ

[
∂

∂λ
(avφ)− ∂

∂φ
(avλ cosφ)

]
. (5.11)

Recall that by Stokes' theorem Γr = ζrA, where A = ∆xλ∆xφ = a2 cosφ∆λ∆φ is the area
of the enclosed region and ζr is the vertical component of the relative vorticity. The relative
vorticity is thus

ζr =
1

a cosφ

(
∂vφ
∂λ
− ∂vλ cosφ

∂φ

)
. (5.12)

Substitution of the geostrophic wind components results in the geostrophic approximation
to the relative vorticity

ζgr =
g

a2 cosφ

[
∂

∂λ

(
1

f cosφ

∂h

∂λ

)
+

∂

∂φ

(
cosφ

f

∂h

∂φ

)]
(5.13)

where the Coriolis parameter f = 2Ω sinφ must be retained inside the φ derivative since it
depends on φ. The potential vorticity is as usual q = (f + ζr)/h.

A similar calculation of the horizontal divergence D of the velocity yields

D =
1

a cosφ

(
∂vλ
∂λ

+
∂vφ cosφ

∂φ

)
. (5.14)
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5.4 Beta-plane approximation

Equations (5.3), (5.7), and (5.8) are di�cult to solve due to the sines and cosines of latitude
which enter. A useful approximation is to treat a region of the earth's surface as being locally
�at in all respects except in the latitudinal variation in the Coriolis parameter, for which a
Taylor series expansion is made about the central latitude φ0 of the region of interest:

f ≈ 2Ω sinφ0 + (2Ω cosφ0/a)y ≡ f0 + βy. (5.15)

where Ω is the angular rotation rate of the earth and a is the earth's radius. A local
Cartesian coordinate system centered on the region is employed with x increasing to the east
and y increasing to the north. This approximation can be justi�ed if the diameter of the
region of interest is much less than the diameter of the earth. This is called the beta-plane

approximation.
A special case of this approximation obtains when φ0 = 0. This is called the equatorial

beta-plane approximation. In this case

f ≈ 2Ωφ = (2Ω/a)y = βy. (5.16)

The equatorial beta-plane approximation is valid for a larger domain in the east-west direc-
tion, i. e., for the entire equatorial strip around the globe as long as the north-south width
of the strip is much less than the earth's diameter.

The f -plane approximation is like the beta-plane approximation except that the region
is assumed to be small enough that the latitudinal variation in the Coriolis parameter can
be ignored as well; f is replaced by a constant representative value.

5.5 Rossby wave on a mid-latitude beta-plane

A �uid of constant depth h0 at rest on a mid-latitude beta-plane exhibits a north-south
gradient in potential vorticity, and should therefore be expected to support Rossby waves.
The potential vorticity in this case takes the form

q =
f0 + βy

h0
= q0(1 + βy/f0), (5.17)

where q0 = f0/h0. If we now introduce nearly geostrophic motion in the form of a fractional
thickness perturbation η∗ and a potential vorticity perturbation q∗, then the linearized po-
tential vorticity inversion equation takes the same form as for Rossby waves due to a tilted
bottom:

L2
R∇2η∗ − η∗ = q∗/q0, (5.18)

where the Rossby radius is de�ned here by L2
R = gh0/f

2
0 .

The geostrophic potential vorticity advection equation linearizes to

1

q0

∂q∗

∂t
+ βL2

R

∂η∗

∂x
= 0. (5.19)
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Figure 5.4: Sketch showing environments of two kinds of Kelvin waves. The large arrows
indicate the allowed direction of propagation in the two cases. (We assume f > 0 in the
left panel.) In each case the transverse extent of the wave scales with the appropriately
de�ned Rossby radius and the curve shows how the wave amplitude varies in the transverse
direction.

Assuming as before an east-west channel of width w, the solution becomes perfectly analogous
to the tilted bottom case, with the dispersion relation

ω = − kL2
Rβ

1 + L2
R(k2 + π2/w2)

. (5.20)

Comparison with the solution for a tilted bottom shows that the two dispersion relations are
identical if we replace fµ by β. Though the physical mechanisms for generating a north-south
gradient in potential vorticity are di�erent in the two cases, the dynamical consequences are
the same.

5.6 Kelvin waves

Kelvin waves are waves in a rotating environment which for various reasons act like gravity
waves in the equivalent non-rotating environment. This is made possible in all cases by the
imposition of a constraint on parcel motions normal to the direction of the wave propagation.

We study two important types of Kelvin waves here, edge waves and equatorially trapped
modes. In the former case a Kelvin wave mode is found which propagates along a lateral
boundary to the �uid. The wave amplitude is maximal at the boundary and decays expo-
nentially away from it.

Equatorially trapped Kelvin modes propagate eastward along the equator and exist be-
cause of the spatial variability of the Coriolis parameter with latitude. The wave amplitude
is maximal on the equator and has a Gaussian structure in latitude.

5.6.1 Edge waves

Let us �rst examine edge waves on the east side of a north-south boundary, as illustrated in
the left panel of �gure 5.4. By hypothesis vx = 0 in this case. The linearized continuity and
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momentum equations are therefore

∂η

∂t
+

{
∂vx
∂x

}
+
∂vy
∂y

= 0 (5.21)

{
∂vx
∂t

}
+ gh0

∂η

∂x
− fvy = 0 (5.22)

∂vy
∂t

+ gh0
∂η

∂y
+ {fvx} = 0, (5.23)

where the terms in curly brackets are to be omitted. Equations (5.21) and (5.23) together are
equivalent to the equations for gravity waves moving in the ±y directions in a non-rotating
environment. We therefore know that the dispersion relation is ω = ±kc where c = (gh0)

1/2.
We also have from equation (5.21) that vy = ±cη. Equation (5.22) thus becomes

∂η

∂x
= ±f

c
η = ± η

LR
, (5.24)

where LR = c/f = (gh0)
1/2/f is the Rossby radius.

Equation (5.24) has the solution

η ∝ exp(±η/LR). (5.25)

The plus sign causes this solution to blow up for x → +∞, which is unacceptable. Expo-
nential decay of η with increasing x occurs for the minus sign. This represents the lateral
structure of the Kelvin wave, which we therefore infer can only move in the minus y direction
in this case. For an arbitrary orientation of the �uid boundary, the Kelvin wave moves so as
to keep the boundary on the right in the northern hemisphere and on the left in the southern
hemisphere. This wave is called an edge wave because its amplitude decays exponentially
away from the �uid boundary on the scale of the Rossby radius.

5.6.2 Equatorial waves

We investigate equatorially trapped Kelvin waves using the linearized shallow water equa-
tions on an equatorial beta-plane:

∂η

∂t
+
∂vx
∂x

+

{
∂vy
∂y

}
= 0 (5.26)

∂vx
∂t

+ gh0
∂η

∂x
− {βyvy} = 0 (5.27){

∂vy
∂t

}
+ gh0

∂η

∂y
+ βyvx = 0, (5.28)

where consistent with the right panel of �gure 5.4, we assume that vy (con�ned to the
curly brackets) is zero. Equations (5.26) and (5.27) tell a similar story to before, i. e., they



CHAPTER 5. SHALLOW WATER ON A SPHERE 56

represent a wave with free gravity wave characteristics moving in the ±x direction. Equation
(5.28) gives the transverse structure of the wave:

∂η

∂y
± βy

c
η = 0, (5.29)

where as before c = (gh0)
1/2 and vx = ±cη, depending on the direction of wave motion.

Equation (5.29) has the solution

η ∝ exp[−βy2/(2c)] (5.30)

for the plus sign, i. e., for eastward-moving waves. This solution decays away rapidly from
the equator on the space scale LR = (2c/β)1/2, known as the equatorial Rossby radius. The
minus sign, corresponding to waves moving to the west, results in the blowup of η far from
the equator, and is thus not acceptable. Therefore, equatorial Kelvin waves can propagate
only to the east.

5.7 Laboratory

1. Grab a small selection of FNL �les and compute longitudinal averages using the Candis
package. Plot these as a function of latitude and pressure. Then determine how
accurately the geostrophic balance condition

fvgλ = −1

a

∂Φ

∂φ

holds, where Φ = gh is the geopotential. The latitudinal or φ derivative is taken at
constant pressure. Since the vertical coordinate in FNL �les is pressure, this derivative
is easy to compute. Remember that for this to turn out correctly, the latitude must
be represented in radians rather than the native units of the FNL �le which is degrees.
Recall also that the Coriolis parameter is a function of latitude, f = 2Ω sinφ.

5.8 Problems

1. Derive equation (5.14) using the methods described in this chapter.

2. Try a solution for the Rossby wave on a beta-plane of the form (η∗, q∗) = (η∗0, q
∗
0) exp[i(kx+

ly − ωt)]:

(a) Find the dispersion relation for this wave, ω = ω(k, l).

(b) Find the x and y components of the group velocity of this wave, ux = ∂ω/∂k
and uy = ∂ω/∂l. Comment on the direction wave packets move relative to the
phase propagation of the wave. In particular, under what conditions is the group
velocity toward the east?



CHAPTER 5. SHALLOW WATER ON A SPHERE 57

3. Show that in order to keep the geostrophic relative vorticity from blowing up at the
equator due to the Coriolis parameter in the denominator, one must have a thickness
�eld of the form h = h0 + A(λ)φn where h0 is a constant, A(λ) is an arbitrary (but
with bounded second derivatives) function of λ, and n ≥ 3.


