
Chapter 4

Vorticity and Potential Vorticity

In this chapter we explore a way of solving the shallow water equations for motions with
characteristic time scales longer than the rotation period of the earth. Under this constraint
the motions of parcels are very nearly in geostrophic balance, i. e., the Coriolis and pressure
gradient forces nearly counterbalance each other.

4.1 Circulation and vorticity

The vorticity of a �uid �ow is de�ned as the curl of the velocity �eld:

ζ ≡ ∇× v. (4.1)

The vorticity plays a key role in the dynamics of an incompressible �uid, as well as in the
sub-sonic �ow of a compressible �uid. For shallow water �ow only the vertical component
of the vorticity is of interest:

ζ =

(
∂vy
∂x
− ∂vx

∂y

)
ẑ (4.2)

The vorticity is related to a quantity called the circulation, de�ned as the closed line
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Figure 4.1: Sketch of a circulation loop which advects with the �uid �ow, symbolized by the
arrows on the left. Stokes' theorem relates the circulation to an area integral of the vorticity,
as shown on the right.
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integral of the �uid velocity component parallel to the path:

Γ =
∮

v · dl =
∫
∇× v · ndA =

∫
ζ · ndA. (4.3)

The second form of the circulation involving the vorticity is obtained using Stokes' theorem.
Hence the area integral is over the region bounded by the circulation path. Figure 4.1
illustrates the circulation loop.

Of particular interest is the circulation loop which moves and deforms with the �uid �ow.
The area, shape, and orientation of this loop evolve with time. However, the time rate of
change of the circulation around such a loop obeys a surprisingly simple law, as we now
show.

We wish to take the time derivative of Γ. However, the fact that the circulation loop
evolves with time complicates this calculation. It is simplest to write the circulation integral
in �nite sum form while taking the derivative in which dl→ ∆li = li+1 − li as illustrated in
the left panel of �gure 4.1:

dΓ

dt
=

d

dt

∑
vi · (li+1 − li) =

∑ dvi

dt
·∆li +

∑
vi ·∆vi, (4.4)

where we use vi = dli/dt. We then revert to integral forms and note further that v · dv =
d(v2/2), which results in

dΓ

dt
=
∮ dv

dt
· dl +

∮
d(v2/2). (4.5)

The second term on the right is the integral of a perfect di�erential over a closed path and
is therefore zero.

The total time derivative of velocity can be eliminated using the shallow water momentum
equation:

dv

dt
+ g∇h+ f ẑ× v = 0. (4.6)

We work for now in an inertial reference frame in which f = 0 and introduce a rotating
frame at a later stage. In this case equation (4.5) becomes

dΓ

dt
= −

∮
g∇h · dl = −

∮
d(gh). (4.7)

The integral of a perfect di�erential around a closed loop is zero, so we arrive at the Kelvin
circulation theorem (see Pedlosky, 1979):

dΓ

dt
= 0. (4.8)

In geophysical �uid dynamics we always use the circulation as computed in an inertial
reference frame. However, we often have to compute the circulation directly given the �uid
velocity in the rotating frame of the earth. Recall that the velocity in the inertial frame vI

can be related to the velocity in the rotating frame v by

vI = v + Ω× r, (4.9)
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where Ω is the rotation vector of the earth and r is the position vector relative to the center
of the earth. The circulation thus becomes

Γ =
∮

vI · dl =
∮

v · dl +
∫

[∇× (Ω× r)] · ndA, (4.10)

where we have used Stokes' theorem to convert the second line integral into an area integral
bounded by the circulation loop. A well-known vector identity can be used to reduce the
last term: ∇× (Ω× r) = Ω(∇· r)−Ω ·∇r = 3Ω−Ω = 2Ω. Substituting this into equation
(4.10) results in

Γ =
∮

v · dl +
∫

2Ω · ndA =
∫

(∇× v + 2Ω) · ndA. (4.11)

In the context of a rotating reference frame, the curl of the �uid velocity in the inertial
frame is called the absolute vorticity,

ζa = ∇× vI = ∇× v + 2Ω, (4.12)

and ζ = ∇× v is called the relative vorticity.

4.2 Two-dimensional homogeneous �ow

An important step in understanding geophysical �uid dynamics and how it is used comes
from examining the evolution of the �ow of a two-dimensional, homogeneous, incompressible
�uid. This is a simpli�cation of shallow water �ow in which the thickness of the �uid layer is
forced to be constant, say, by two horizontal, parallel plates between which the �uid �ows.
In this case the mass continuity equation becomes

∂vx
∂x

+
∂vy
∂y

= 0. (4.13)

As for the shallow water �ow, the vorticity only has a z component,

ζz =
∂vy
∂x
− ∂vx

∂y
. (4.14)

In this case we can de�ne a streamfunction ψ such that

vx = −∂ψ
∂y

(4.15)

and

vy =
∂ψ

∂x
. (4.16)

This choice trivially satis�es equation (4.13). Substitution into equation (4.14) results in a
Poisson equation for the streamfunction:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ζz. (4.17)



CHAPTER 4. VORTICITY AND POTENTIAL VORTICITY 38

ψ
1

ψ
2

ψ
3

ψ
4

Figure 4.2: Illustration of the relationship between contours of constant streamfunction and
the velocity �eld.

In mathematical physics terms, this is a relatively easy equation to solve, and it shows that
the streamfunction, and hence the velocity �eld, is readily obtained from the vorticity �eld
and the boundary conditions applicable to this equation.

Figure 4.2 illustrates the relationship between contours of constant streamfunction and
the velocity �eld. The velocity vectors are everywhere tangent to the contours of streamfunc-
tion and the magnitude of the velocity is inversely proportional to the contour spacing. In
a steady �ow, parcels traverse the domain following lines of constant streamfunction. Hence
these contours are also called streamlines. Note however, that if the �ow is non-steady, parcel
trajectories no longer coincide with streamlines.

The �ow adjacent to a stationary wall bounding the �uid is parallel to the wall. The
streamfunction along the wall is therefore constant. Specifying the value of the stream-
function on the walls bounding a �uid as well as the vorticity distribution in the interior is
su�cient to guarantee a unique solution to equation (4.17).

The governing equation for vorticity may be obtained from the circulation theorem:

dΓ

dt
= 0. (4.18)

For two-dimensional homogeneous �ow the area of a circulation loop lying in the x−y plane
does not change as it advects with the �uid. (Think of a vertical cylinder with end plate
area equal to the area of the circulation loop. Since the volume of the cylinder is �xed by
the incompressibility condition, and since the height of the cylinder does not change due to
the two-dimensional nature of the �ow, the end plate area must remain �xed.) For a tiny
loop over which the vorticity doesn't vary much, Γ = ζzA where A is the area of the loop,
and the vorticity of parcels is conserved, i. e.,

dζz
dt

= 0. (4.19)

Solution to the two-dimensional, incompressible, homogeneous �ow problem can now be
visualized. Suppose at the initial time the vorticity �eld is speci�ed. Equation (4.17) is
solved to obtain the streamfunction, and hence the velocity �eld. Equation (4.19) is then
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Figure 4.3: Segment of shallow water �ow to which we apply the circulation theorem. The
two surfaces of area A indicate the upper and lower bounds of the �ow. The region between
them has volume Ah. The vertical component of the absolute vorticity is ζa.

used to move parcels and their associated vorticity to new locations. The process is then
repeated.

This is the simplest example of an advection-inversion process. The inversion part is
the solution of the streamfunction equation given the vorticity. The vorticity is the key
dependent variable in this problem, and it obeys a particularly simple evolution equation �
it just moves around with the �uid!

4.3 Low Rossby number �ow

If both the Coriolis term and the horizontal pressure gradient term in the momentum equa-
tion are much larger than the acceleration, then we can ignore the acceleration to zeroth
order, resulting in

vx ≈ vgx = − g
f

∂

∂y
(h+ d) vy ≈ vgy =

g

f

∂

∂x
(h+ d), (4.20)

where vg = (vgx, vgy) is called the geostrophic wind. (The e�ects of terrain have been in-
cluded.) The geostrophic wind is equal to the actual wind when the parcel acceleration is
exactly zero. It is thus an approximation to the horizontal momentum equation which is
analogous to the hydrostatic approximation in the vertical momentum equation.

Approximating the magnitude of the acceleration as the ratio of a typical velocity V and
a typical time scale T , the ratio of the acceleration to the Coriolis term is

Ro ≡ 1

fT
(4.21)

where Ro is the Rossby number. Values of Ro � 1 indicate that geostrophic balance is
approximately satis�ed.

4.4 Potential vorticity

We now develop an approximation to shallow water theory for �ows in which the Rossby
number is very much less than unity. This theory has much in common with the above
theory for pure two-dimensional �ow.
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The circulation theorem yields a variable which is of great use in understanding the
dynamics of low Rossby number shallow water �ow. Applying the circulation theorem to a
segment of the �ow as shown in �gure 4.3, we conclude from the Kelvin theorem that the
circulation around the segment is conserved. We can write the circulation as

Γ = ζaA =
ζa
h

(Ah). (4.22)

The quantity Ah is the volume of the �uid parcel. Since the �uid is incompressible, the
volume of this parcel does not change with time. Since the circulation around the parcel is
conserved, the variable

q ≡ ζa
h

(4.23)

which is known as the potential vorticity, is also conserved by parcels, i. e.,

dq

dt
=
∂q

∂t
+ vx

∂q

∂x
+ vy

∂q

∂y
= 0. (4.24)

The vertical component of absolute vorticity increases as the area of the loop decreases.
However, a decrease in the loop area implies an increase in the thickness of the �uid layer.
This increase is in proportion to the increase in absolute vorticity, which is why the ratio of
the two quantities stays the same.

4.5 Potential vorticity inversion

The absolute vorticity can be written approximately as

ζa = f +
∂vy
∂x
− ∂vx

∂y
(4.25)

where as before we have ignored the horizontal component of the earth's rotation. Replacing
the actual �ow velocity by the geostrophic wind and substituting into equation (4.23) results
in

1

h

[
∂

∂x

(
g

f

∂(h+ d)

∂x

)
+

∂

∂y

(
g

f

∂(h+ d)

∂y

)
+ f

]
= q. (4.26)

This partial di�erential equation is elliptic when both f and q are uniformly of the same sign
in the domain of interest. Unique solutions may be obtained if q is known in the interior
and h is speci�ed on the domain boundary.

Equation (4.26) is easiest to understand in the limit of small fractional thickness devia-
tions. Setting h = h0(1 + η) as before, and linearizing in η, this becomes

q0
(
1− η + L2

R∇2(η + d/h0)
)

= q, (4.27)

where q0 = f/h0 is the planetary potential vorticity and where

LR = (gh0)
1/2/f (4.28)
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is called the Rossby radius of deformation. We have assumed as well that f is constant.
Slight further simpli�cation comes from de�ning a perturbation potential vorticity q′ =

q − q0:
L2
R∇2(η + d/h0)− η = q′/q0. (4.29)

Solving for the time evolution of a low Rossby number �ow is now done (in principle) in
three steps:

1. For a given distribution of potential vorticity, �nd the distribution of thickness using
equation (4.26) or in the linear case (4.29).

2. Use equation (4.20) to obtain the geostrophic wind, and hence the approximate �ow
�eld.

3. Use equation (4.24) to advect the potential vorticity distribution to the next time level.
Repeat these steps as needed.

Notice how similar this procedure is to the solution of the two-dimensional incompressible
�ow problem described earlier. The main di�erences are that potential vorticity rather than
vorticity is employed, the inversion equation is slightly more complicated, and the solution
is approximately valid for low Rossby number, not exact.

4.6 Simple inversion examples

We now explore two simple examples of potential vorticity inversion.

4.6.1 Periodic potential vorticity anomaly

Let us imagine a case in which the potential vorticity perturbation varies periodically in
some direction, say the x direction, so that

q′ = εq0 sin(kx), (4.30)

where ε and k are constants and q0 = f/h0 is the ambient planetary potential vorticity.
Assuming also a �at-bottomed domain so that d = 0, equation (4.29) becomes

L2
R∇2η − η = ε sin(kx). (4.31)

We assume a trial solution η = η0 sin(kx), which upon substitution in equation (4.31) yields
the algebraic equation

η0 = − ε

1 + k2L2
R

. (4.32)

Thus, the �uid thickness is

h = h0

(
1− ε sin(kx)

1 + k2L2
R

)
, (4.33)

and the geostrophic velocity components are

vgx = 0 vgy = −fkL
2
Rε cos(kx)

1 + k2L2
R

, (4.34)
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Figure 4.4: Plots of η(x), ∂η/∂x, and velocity vectors associated with a line of potential
vorticity along the y axis, q = Cδ(x).

from which we �nd the absolute vortcity:

ζa = f

(
1 +

k2L2
Rε sin(kx)

1 + k2L2
R

)
(4.35)

Recomputation of the potential vorticity from equations (4.33) and (4.35) yields

q =
ζa
h

= q0

[
1 +

(
k2L2

R

1 + k2L2
R

+
1

1 + k2L2
R

)
ε sin(kx)

]
, (4.36)

where we have made the approximation h−1 = h−10 (1 + η)−1 = h−10 (1− η) as previously. The
two terms inside the large parentheses represent respectively the e�ects of the vorticity per-
turbation and the thickness perturbation on the potential vorticity. They clearly add up to
unity, which means that we recover the assumed form of the potential vorticity perturbation
as expected. However, for k2L2

R � 1 the second term dominates, while for k2L2
R � 1 the

�rst term dominates. In other words, a nearly balanced potential vorticity perturbation with
horizontal scale much greater than the Rossby radius is represented primarily by a thickness
perturbation, while one with scale much smaller than the Rossby radius is manifested mainly
by a vorticity perturbation.

This result is valid in cases far beyond this particular example, and represents a general
characteristic of balanced geophysical �ows.

4.6.2 Line of potential vorticity

Let us now invert the �ow �elds resulting from a concentrated line of potential vorticity
along the y axis:

q′ = q0Cδ(x), (4.37)

where q0 = f/h0 as usual, C is a constant, and δ(x) is the Dirac delta function. The inversion
equation thus becomes

L2
R

∂2η

∂x2
− η = Cδ(x), (4.38)
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where the y derivative vanishes for reasons of symmetry. For x 6= 0 the right side of this
equation is zero and η ∝ exp(±x/LR). We desire a solution which does not blow up when
|x| → ∞, so we assume a solution of the form

η = −η0 exp(−|x|/LR), (4.39)

where η0 is a constant. The minus sign is inserted before η0 on the expectation that a positive
potential vorticity anomaly will result in a negative thickness anomaly as usual.

The form of equation (4.39) is illustrated in the left panel of �gure 4.4. The center panel
shows

∂η

∂x
=

xη0
|x|LR

exp(−|x|/LR), (4.40)

which has a discontinuity of magnitude 2η0/LR at the origin. Since the derivative of a step
function is a Dirac delta function, we know that the second derivative of η will produce a
term (2η0/LR)δ(x) in additional to the normal terms arising from this derivative. The full
second derivative is

∂2η

∂x2
=

2η0
LR

δ(x)− η0
L2
R

exp(−|x|/LR), (4.41)

which upon substitution into equation (4.38) yields

η0 =
C

2LR

. (4.42)

The y component of the geostrophic velocity is

vgy =
g

f

∂h

∂x
=
gh0
f

∂η

∂x
=
fCx

2|x|
exp(−|x|/LR). (4.43)

The geostrophic velocity is illustrated in the right panel of �gure 4.4. The delta function
potential vorticity anomaly is associated with a �shear line� where the y component of the
velocity changes abruptly across the anomaly. The wind decays exponentially away from the
potential vorticity anomaly on the scale of the Rossby radius.

4.7 Rossby waves

The so-called Rossby wave is a geophysical phenomenon of great importance. It is a nearly
balanced �ow pattern which occurs in many contexts in oceanic and atmospheric dynamics.
Since the �ow is approximately balanced, we can use the mathematical apparatus set up to
study low Rossby number �ow. However, before doing this, we �rst make some qualitative
arguments which reveal the basic physical mechanism of the Rossby wave.

Let us imagine a �uid initially at rest in a channel with a tilted bottom and level top,
as illustrated in �gure 4.5. Assuming that the �uid resides in the northern hemisphere of
the earth, the Coriolis parameter f is positive and is taken to be constant. The potential
vorticity of this �uid varies with y by virtue of the variation in the thickness of the �uid
layer with y. Since the �uid layer is thinner for larger y (which we identify as �north�), the
potential vorticity, which we recall is equal to q = f/h, is larger there.
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Figure 4.5: Geometry for �uid in a channel of width w with a bottom of variable height d(y).
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Figure 4.6: Sketch of e�ect of displacing parcels north and south in a �uid with higher values
of potential vorticity to the north.



CHAPTER 4. VORTICITY AND POTENTIAL VORTICITY 45

Figure 4.6 shows how alternating displacements of parcels of �uid north and south from
their initial positions a�ects the potential vorticity distribution. Parcels moved from south
to north carry with them potential vorticity values lower than their new environment, and
therefore have negative potential vorticity perturbations. The opposite happens with parcels
displaced from north to south.

A positive potential vorticity anomaly is associated with positive relative vorticity. A
counter-clockwise circulation thus exists about the anomaly in this case. Similarly, a nega-
tive anomaly exhibits a clockwise circulation. The net e�ect of these circulations is to cause
northward �ow between anomalies where a positive anomaly exists to the west, and south-
ward �ow in the opposite case. The northward �ow tends to reduce the potential vorticity in
the gap between anomalies, whereas the southward �ow increases it. Examination of �gure
4.6 shows that the net e�ect of this is to shift all anomalies to the left. We thus have a
wave phenomenon in which an east-west train of alternating positive and negative potential
vorticity anomalies moves to the west with time. This type of wave is called a Rossby wave.
Rossby waves play a central role in the large-scale dynamics of the earth's ocean and atmo-
sphere. They depend for their existence on a transverse gradient in potential vorticity. In the
present example the potential vorticity gradient is caused by a gradient in the elevation of
the lower boundary of the the pool of water. Other mechanisms for producing this gradient
exist as well, and we will encounter these as we proceed. Meanwhile, let us analyze this
situation more quantitatively.

We divide the fractional thickness perturbation into two components, the �rst represent-
ing the north-south thickness variation due to the tilt of the bottom surface, and the second
associated with the Rossby wave structure. We assume that the bottom surface depends on
y as

d = h0µy, (4.44)

where y = 0 at the south wall of the channel. Since the �uid surface at rest must be level,
we insist that h + d = h0(1 + η) + h0µy = h0, which means that η = −µy in the rest case.
More generally when there is �uid motion, we postulate that

η = −µy + η∗. (4.45)

In order to maintain the linearization condition |η| � 1, we must have µw � 1 where w is
the channel width, as illustrated in �gure 4.5. In the case in which the �uid is in motion, we
thus have

h+ d = h0(1 + η∗), (4.46)

which means that the geostrophic velocity is given by

vgx = −gh0
f

∂η∗

∂y
vgy =

gh0
f

∂η∗

∂x
. (4.47)

At rest the potential vorticity takes the form

q =
f

h0(1− µy)
≈ q0(1 + µy). (4.48)

In the case with motion we add a potential vorticity perturbation q∗:

q = q0(1 + µy) + q∗. (4.49)
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We now substitute equations (4.45), (4.47), and (4.49) into the potential vorticity conser-
vation equation (4.24) and the inversion equation (4.29). We linearize in quantities having
to do with motion, i. e., η∗, vx, vy, and q

∗, and also replace the velocity components with
their geostrophic counterparts. Recalling that q0 = f/h0,

∂q∗

∂t
+ vgy

∂q0µy

∂y
=
∂q∗

∂t
+ gµ

∂η∗

∂x
= 0, (4.50)

and
L2
R∇2η∗ − η∗ = q∗/q0. (4.51)

Note how the terms containing µ, the tilt of the bottom surface, cancel out of equation (4.51),
leaving only terms involving motion. The e�ect of the tilt of the bottom surface enters only
into the potential vorticity conservation equation (4.50).

Let us now assume a wave moving in the x direction. Since the �uid is con�ned to an
east-west channel, the y velocity must be zero at the north and south boundaries, which
occur at y = 0, w. As a result, both η∗ and q∗ must be zero there as well. Trial solutions
which satisfy these boundary conditions are

η∗ = η∗0 sin(πy/w) exp[i(kx− ωt)] (4.52)

and
q∗ = q∗0 sin(πy/w) exp[i(kx− ωt)], (4.53)

where η∗0 and q
∗
0 are constants. Substitution into equations (4.50) and (4.51) yields two linear,

homogeneous algebraic equations in two unknowns, which can be represented in matrix form
as (

−ω kgµ
1/q0 1 + L2

R(k2 + π2/w2)

)(
q∗

η∗

)
= 0. (4.54)

Setting the determinant of the matrix of coe�cients to zero and solving for the frequency ω
results in the dispersion relation for Rossby waves

ω = − kL2
Rfµ

1 + L2
R(k2 + π2/w2)

. (4.55)

As predicted by the qualitative arguments outlined above, the phase speed ω/k is nega-
tive, i. e., the wave moves in the −x direction, or to the west. Furthermore, the presence of
the wavenumber k in the denominator makes this wave dispersive.

It is perhaps easiest to understand this dispersion relation by adjusting the length and
time scales so that length is measured in units of the Rossby radius LR and time is measured
in terms of the inverse Coriolis parameter f−1. With this rescaling, the dispersion relation
simpli�es to

ω = − µk

1 + k2 + π2/w2
. (4.56)

Figure 4.7 shows how this dispersion relation behaves for µ = 0.1 and w = 3. The
magnitude of the frequency peaks for k = kc ≈ 1.5. For smaller wavenumbers the group
velocity of the wave, ∂ω/∂k, is negative (i. e., westward) for k < kc and positive (eastward)
for k > kc. Thus, in the short wavelength limit, the group velocity moves in the direction
opposite the phase speed.
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Figure 4.7: Dispersion relation for shallow water Rossby waves in a channel with tilted
bottom as represented by equation (4.56) with scaled parameter values µ = 0.1 and w = 3.
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4.9 Problems

1. Suppose we add an additional force per unit mass F to the shallow water momentum
equation, such as might be caused by friction. The momentum equation thus takes the
form (in a non-rotating reference frame)

dv

dt
+ g∇h = F. (4.57)

Derive the Kelvin circulation theorem in this extended case. If F is conservative, does
it enter?

2. Imagine a point vortex in two-dimensional homogeneous �ow where the vorticity �eld
is given by ζz = Cδ(x)δ(y) where C is a constant equal to the strength of the vortex and
δ() is the Dirac delta function. (The Dirac delta function has an integral of one, but is
only non-zero where the argument is zero.) Solve for the streamfunction on an in�nite
domain. Hint: Use cylindrical symmetry and the Kelvin theorem applied to a circular
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loop centered on the vortex to obtain the velocity �eld. From this the streamfunction
can be obtained by integration. If you have experience with electromagnetism, think
of the problem of the magnetic �eld surrounding an in�nite wire carrying a current.

3. Consider a two-dimensional �ow which is stationary except for the �ows associated
with two point vortices of equal but opposite strength ±C separated by a distance d.
Describe the speed and direction of motion of the two vortices.

4. Repeat the above problem for the case in which the two vortices have strength of the
same sign and magnitude.

5. Imagine a shallow water basin of uniform ambient depth h0 in which the Coriolis
parameter f is constant, with f > 0.

(a) Using the linearized shallow water equations from the previous chapter, show that
for a gravity-inertia wave of form (η, vx, vy) ∝ exp[i(kx−ωt)], one has vx = (ω/k)η
and vy = −(if/k)η. The physical solutions are obtained by taking the real part
of these equations.

(b) Compute the potential vorticity distribution produced by the wave. Use the
linearized form for the potential vorticity q = q0(1 − η + ζ/f) where ζ is the
relative vorticity and where the reference potential vorticity is q0 = f/h0.

(c) Determine whether the �ow �eld of this wave is in geostrophic balance.

6. Repeat the analysis of section 4.6.1 for the case q′ = εq0 sin(kx) sin(ky).

7. Consider an east-west channel with �at bottom of width w with a �ow moving uni-
formly in geostrophic balance to the east at speed U . Assume constant f .

(a) For this steady �ow, show that the fractional thickness perturbation takes the
form η = −Uy/(fL2

R) ≡ −µy.
(b) Assume a wave of the form (q∗, η∗) ∝ sin(πy/w) exp[i(kx − ωt)] on this basic

�ow, where η = −µy + η∗, and where the potential vorticity q = q0(1 + µy) + q∗

as in section 4.7, and �nd the dispersion relation ω = ω(k). Hint: Linearize the
potential vorticity evolution equation about a state of uniform motion rather than
a state of rest.


