
Chapter 6

Two-dimensional Homogeneous Flow

6.1 Vorticity in two dimensions
The �rst step in understanding geophysical �uid dynamics and how it is used comes from
examining the evolution of the �ow of a two-dimensional, incompressible �uid. In this case
we assume that the �ow is con�ned to the x − y plane, with no dependence on z. The
incompressibility condition in this case becomes

∂vx

∂x
+
∂vy

∂y
= 0. (6.1)

The vorticity only has a z component in this case,

ζz =
∂vy

∂x
− ∂vx

∂y
. (6.2)

In the two-dimensional, incompressible case, we can de�ne a streamfunction ψ such that

vx = −∂ψ
∂y

(6.3)

and
vy =

∂ψ

∂x
. (6.4)

This choice trivially satis�es equation (6.1). Substitution into equation (6.2) results in a
Poisson equation for the streamfunction:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ζz. (6.5)

In mathematical physics terms, this is a relatively easy equation to solve, and it shows that
the streamfunction, and hence the velocity �eld, is readily obtained from the vorticity �eld
and the boundary conditions applicable to this equation.

Figure 6.1 illustrates the relationship between contours of constant streamfunction and
the velocity �eld. The velocity vectors are everywhere tangent to the contours of streamfunc-
tion and the magnitude of the velocity is inversely proportional to the contour spacing. In
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Figure 6.1: Illustration of the relationship between contours of constant streamfunction and
the velocity �eld.

a steady �ow, parcels traverse the domain following lines of constant streamfunction. Hence
these contours are also called streamlines. Note however, that if the �ow is non-steady, parcel
trajectories no longer coincide with streamlines.

The �ow adjacent to a stationary wall bounding the �uid is parallel to the wall. The
streamfunction along the wall is therefore constant. Specifying the value of the stream-
function on the walls bounding a �uid as well as the vorticity distribution in the interior is
su�cient to guarantee a unique solution to equation (6.5).

The governing equation for vorticity may be obtained from the circulation theorem in
this case:

dΓ

dt
= 0. (6.6)

In the two-dimensional case the area of a circulation loop lying in the x− y plane does not
change in area as it advects with the �uid in this case. (Think of a vertical cylinder with end
plate area equal to the area of the circulation loop. Since the volume of the cylinder is �xed
by the incompressibility condition, and since the height of the cylinder does not change due
to the two-dimensional nature of the �ow, the end plate area must remain �xed.) For such
a loop, Γ = ζzA where A is the area of the loop, and the vorticity of parcels is conserved, i.
e.,

dζz
dt

= 0. (6.7)

Solution to the two-dimensional, incompressible, homogeneous �ow problem can now be
visualized. Suppose at the initial time the vorticity �eld is speci�ed. Equation (6.5) is solved
to obtain the streamfunction, and hence the velocity �eld. Equation (6.7) is then used to
advect parcels and their associated vorticity to new locations. The process is then repeated.

This is the simplest example of an advection-inversion process. The inversion part is
the solution of the streamfunction equation given the vorticity. The vorticity is the key
dependent variable in this problem, and it obeys a particularly simple evolution equation �
it just moves around with the �uid!
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6.2 Problems
1. Imagine a point vortex where the vorticity �eld is given by ζz = Cδ(x)δ(y) where C is

a constant equal to the strength of the vortex and δ() is the Dirac delta function. (The
Dirac delta function has an integral of one, but is only non-zero where the argument is
zero.) Solve for the streamfunction on an in�nite domain on which ψ → 0 at in�nity.
Hint: Use cylindrical symmetry and the Kelvin theorem applied to a circular loop
centered on the vortex to obtain the velocity �eld. From this the streamfunction can
be obtained by integration. If you have experience with electromagnetism, think of the
problem of the magnetic �eld surrounding an in�nite wire carrying a current.

2. Consider a two-dimensional, incompressible �uid which is irrotational except for two
point vortices of equal but opposite strength ±C separated by a distance d. Describe
the speed and direction of motion of the two vortices.

3. Repeat the above problem for the case in which the two vortices have strength of the
same sign and magnitude.


