
Chapter 5

Sound Waves and Vortices

In this chapter we explore a set of characteristic solutions to the �uid equations with the
goal of familiarizing the reader with typical behaviors in �uid dynamics. Sound waves form
the basis of compressible �uid �ow, while vortex dynamics is characteristic of incompressible
�ow.

5.1 Sound waves
Sound waves are the small-amplitude solutions to the equations for a homogeneous, com-
pressible �uid which is initially at rest and subject to no external forces. Sound waves exist
in more complicated circumstances, but they appear in their purest form in this context.

�Small amplitude� means that deviations in dependent variables from the rest state are
su�ciently small that approximate equations obtained by retaining only terms linear in
these deviations are valid. This process of linearization is used frequently in geophysical
�uid dynamics.

We analyze in particular sound waves in an ideal gas. For this situation we assume that
the (dry) entropy is constant, a trivial solution to the entropy governing equation in the
absence of moisture and radiation e�ects:

dsd

dt
= 0. (5.1)

Since the density and pressure, but not the temperature, appear in the momentum and
continuity equations, it is useful to rewrite the entropy in terms of these variables, eliminating
the temperature using the ideal gas law:

sd = Cvd ln(p/pR)− Cpd ln(ρ/ρR), (5.2)

where Cvd = Cpd − Rd is the speci�c heat of dry air at constant volume, and where the
reference density ρR is consistent with the reference pressure and temperature in the ideal
gas law.

Let us now assume a rest state for the atmosphere in which p = pR and ρ = ρR. From
equation (5.2) we see that the entropy must take on the value sd = 0 under these conditions.
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If we now let p = pR + p′ and ρ = ρR + ρ′, where |p′| ¿ pR and |ρ′| ¿ ρR, then equation
(5.2) becomes, upon solving for p′,

p′

pR

= γ
ρ′

ρR

, (5.3)

where γ = Cpd/Cvd = 1.4, and where we have used ln(1 + p′/pR) ≈ p′/pR for |p′|/pR ¿ 1,
etc.

We now linearize the mass continuity and momentum equations. Since the initial state
is one of rest, the velocity vector itself is a small quantity, which means that terms like vv,
v · ∇ρ′, and ρ′∇ · v must be ignored when we linearize these equations. Further realizing
that space and time derivatives of ρR and pR vanish due to their constancy, we �nd that the
mass continuity and momentum equations reduce to

∂ρ′

∂t
+ ρR∇ · v = 0 (5.4)

and
∂v

∂t
+
∇p′

ρR

= 0. (5.5)

Equations (5.4), (5.4), and (5.5) together govern the behavior of sound waves. Let us
substitute a trial plane wave solution of the form ρ′ = ρ0 exp[i(k · x− ωt)], p′ = p0 exp[i(k ·
x−ωt)], v = v0 exp[i(k ·x−ωt)], where k is the wave vector of the wave, ω is its frequency,
and ρ0, p0, and v0 are constants. After eliminating p′ in favor of ρ′ in equation (5.5), we get

−iωρ0 + iρRk · v0 = 0 (5.6)

and
−iωv0 + iγkpRρ0/ρ

2
R = 0. (5.7)

Equation (5.7) implies that v0 must be parallel to k as long as p0 6= 0, which means that sound
waves are longitudinal waves. Thus, we can write k · v0 in terms of the vector magnitudes
as kv0.

Equations (5.6) and (5.7) constitute a set of linear, homogeneous equations in ρ0 and v0,
and can be rewritten in matrix form as

(
−ω kρR

γkpR/ρ2
R −ω

) (
ρ0

v0

)
= 0. (5.8)

This has a non-trivial solution only when the determinant of the coe�cients of the matrix
is zero. This condition results in the dispersion relation for sound waves:

ω2 = (γpR/ρR)k2 = (γRdTR)k2. (5.9)

From the dispersion relation we see that the phase speed of sound waves in dry air is c =
ω/k = (γRdTR)1/2. At TR = 300 K, this yields c = 347 m s−1. Interestingly, the speed of
sound in an ideal gas depends only on the temperature of the gas. Equation (5.6) tells us
that the density perturbation is related to the velocity perturbation by ρ0 = ρRv0/c, while
equation (5.3) shows that p0 = c2ρ0.
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Figure 5.1: Sketch of a circulation loop which advects with the �uid �ow, symbolized by the
arrows on the left. Stokes' theorem relates the circulation to an area integral of the vorticity,
as shown on the right.

The speed of sound forms a dividing line in �uid dynamics. Even for �ows in a com-
pressible �uid like air, the �uid acts much like an incompressible �uid if the characteristic
velocities are much less than the speed of sound. Only for �uid velocities comparable to or
greater than c does essentially incompressible behavior enter. The ratio of the characteristic
velocity of a �ow to the speed of sound is called the Mach number :

M =
Vtypical

c
. (5.10)

Most �ows in geophysical contexts have M ¿ 1, and thus behave in essentially incompressible
fashion.

The analysis in this section is presented in detail to provide a clear example of how lin-
earized perturbation solutions are obtained. One point worth emphasizing is that the initial
or base state itself must be a solution to the full equations of motion for the perturbation
analysis to be valid. The reader is left to verify that the base state in this case, v = 0,
ρ = ρR, p = pR, does indeed satisfy the full governing equations.

5.2 Vorticity and the Kelvin theorem
The vorticity of a �uid �ow is de�ned as the curl of the velocity �eld:

ζ ≡ ∇× v. (5.11)
The vorticity plays a key role in the dynamics of an incompressible �uid, as well as in the
low Mach number �ow of a compressible �uid.

The vorticity is related to a quantity called the circulation, de�ned as the closed line
integral of the �uid velocity component parallel to the path:

Γ =
∮

v · dl =
∫
∇× v · ndA =

∫
ζ · ndA. (5.12)

The second form of the circulation involving the vorticity is obtained using Stokes' theorem.
Hence the area integral is over the region bounded by the circulation path. Figure 5.1
illustrates the circulation loop.
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Of particular interest is the circulation loop which moves and deforms with the �uid �ow.
The area, shape, and orientation of this loop evolve with time. However, the time rate of
change of the circulation around such a loop obeys a surprisingly simple law, as we now
show.

We wish to take the time derivative of Γ. However, the fact that the circulation loop
evolves with time complicates this calculation. It is simplest to write the circulation integral
in �nite sum form while taking the derivative in which dl → ∆li = li+1 − li as illustrated in
the left panel of �gure 5.1:

dΓ

dt
=

d

dt

∑
vi · (li+1 − li) =

∑ dvi

dt
·∆li +

∑
vi ·∆vi, (5.13)

where we use vi = dli/dt. We then revert to integral forms and note further that v · dv =
d(v2/2), which results in

dΓ

dt
=

∮ dv

dt
· dl +

∮
d(v2/2). (5.14)

The second term is the integral of a perfect di�erential over a closed path and is therefore
zero.

The total time derivative of velocity can be eliminated using the momentum equation.
We work for now in an inertial reference frame and introduce a rotating frame at a later
stage. In this case equation (5.14) becomes

dΓ

dt
=

∮ (
−∇p

ρ
−∇Φ

)
· dl. (5.15)

The second term can be written −∇Φ · dl = −dΦ, and is therefore also a perfect di�erential
which integrates to zero. However, the �rst term −ρ−1∇p·dl = −ρ−1dp in general is not, and
therefore must be retained. Thus we arrive at the Kelvin circulation theorem1 (see Pedlosky,
1979):

dΓ

dt
= −

∮ dp

ρ
. (5.16)

In geophysical �uid dynamics we always use the circulation as computed in an inertial
reference frame. However, we often have to compute the circulation directly given the �uid
velocity in the rotating frame of the earth. Recall that the velocity in the inertial frame vI

can be related to the velocity in the rotating frame v by

vI = v + Ω× r, (5.17)

where Ω is the rotation vector of the earth and r is the position vector relative to the center
of the earth. The circulation thus becomes

Γ =
∮

vI · dl =
∮

v · dl +
∫

[∇× (Ω× r)] · ndA, (5.18)

where we have used Stokes' theorem to convert the second line integral into an area integral
bounded by the circulation loop. A well-known vector identity can be used to reduce the

1Technically, Kelvin's theorem refers to the special case of a homogeneous, incompressible �uid, in which
case (as we shall show) the right side of equation (5.16) is zero.
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last term: ∇× (Ω× r) = Ω(∇ · r)−Ω · ∇r = 3Ω−Ω = 2Ω. Substituting this into equation
(5.18) results in

Γ =
∮

v · dl +
∫

2Ω · ndA =
∫

(∇× v + 2Ω) · ndA. (5.19)

In the context of a rotating reference frame, the curl of the �uid velocity in the inertial
frame is called the absolute vorticity,

ζa = ∇× vI = ∇× v + 2Ω, (5.20)

and ζ = ∇× v is called the relative vorticity.

5.2.1 Homogeneous, incompressible �uid
For a homogeneous, incompressible �uid, we have constant density ρ. In this case the pres-
sure term in equation (5.16) is also a perfect di�erential, so the Kelvin circulation theorem
becomes

dΓ

dt
= 0. (5.21)

For a very small loop over which the absolute vorticity is essentially constant, Γ = ζa · nA,
where A is the area of the loop and n is the unit normal to the loop. Thus, if the loop
associated with a parcel of �uid expands in area, the component of the absolute vorticity
normal to the loop must decrease correspondingly.

In the special case in which the absolute vorticity in a homogeneous, incompressible �uid
is everywhere zero, the circulation theorem shows that it will always remain zero. This is a
profound result which we will exploit later.

5.2.2 Inhomogeneous, incompressible �uid
If an incompressible �uid is inhomogeneous, i. e., if the density varies with position, then
equation (5.21) doesn't generally apply. However, in the limited case in which the circulation
loop is con�ned to a surface of constant density, this equation is valid, since ρ is constant over
the circulation loop. Furthermore, by virtue of the incompressibility condition, a circulation
loop which advects with the �uid (as it does in the case of the Kelvin theorem) will always
remain embedded in a surface of constant density if it starts out that way. Thus, equation
(5.21) remains valid for all time in this case.

5.2.3 Diabatic ideal gas
In the case of an ideal gas in which no latent heat release, radiative heating or cooling, or
other heat source exists, changes in the speci�c enthalpy h can be related solely to changes
in the dry entropy and pressure:

dh = Tdsd + dp/ρ. (5.22)
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Figure 5.2: Sketch of a homogeneous slab of ocean water. The rotation vector Ω of the earth
is shown in each of three cases. In the left panel the slab is at the north pole. In the center
panel it has moved to the equator without change of shape. In the right panel it remains at
the north pole, but deforms so as to reduce its radius and increase its thickness.

In this case the circulation theorem can be written
dΓ

dt
=

∮
Tdsd. (5.23)

The enthalpy term drops out as it appears in the form of a perfect di�erential. In this case
equation (5.21) applies to circulation loops embedded in surfaces of constant dry entropy.
The condition of no heating means that parcels conserve dry entropy, so analogously to the
case of an inhomogeneous, incompressible �uid, equation (5.21) will apply for all time in this
special case.

An alternate way to represent the right side of the Kelvin theorem equation in the case of
an ideal gas is to rewrite dp/ρ in terms of the potential temperature and the Exner function:

dΓ

dt
= −

∮
θdΠ =

∮
Πdθ. (5.24)

The last step results from d(θΠ) being a perfect di�erential. This result is equivalent to that
of equation (5.23) since dsd = Cpddθ/θ and Π = CpdT/θ. The latter equation comes from
combining the de�nition of potential temperature with the de�nition of Exner function.

5.3 Ocean example
As an example of the use of the Kelvin theorem, let us consider a circular slab of ocean
water, assumed to be homogeneous in temperature and salinity. Suppose the slab starts out
at the north pole, as illustrated in the left panel of �gure 5.2. Let us further suppose that
the slab is at rest in this location. The circulation around the periphery of the slab is totally
due to planetary rotation in this case, and has the value Γ = 2πR2Ω.

If the slab moves to the equator without change of shape, the orientation is such that
the planetary contribution to the circulation is zero. However, since circulation is conserved
in this case, the slab must be rotating with tangential velocity at the rim V determined by
Γ = 2πRV . Solving for V results in V = RΩ.
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If the slab remains at the north pole, but is deformed such that the thickness is doubled,
the radius necessarily decreases by a factor 21/2 so that the volume of the slab remains the
same. This deformation decreases the planetary part of the circulation to 2π(R/21/2)2Ω =
πR2Ω. The balance has to be taken up by rotation relative to the earth with tangential
velocity at the rim determined by conservation of circulation: 2πR2Ω = πR2Ω+2π(R/21/2)V
implies V = RΩ/21/2.

Let us attach some numbers to these estimates. The rotation rate of the earth is 2π
divided by the period of rotation, which is about 4 min less than 24 h � dynamically, the
sidereal day rather than the solar day should be used. This results in Ω = 7.29× 10−5 s−1.
If R = 100 km, then we �nd V = 7.29 m s−1 in the case in which the slab moves undeformed
to the equator.

5.4 Irrotational, incompressible �ow
Suppose we have an incompressible, homogeneous (i. e., constant density) �uid which has
zero vorticity everywhere. Thus, we have the conditions ∇×v = 0 and ∇·v = 0 everywhere
in the �uid for all time, according to arguments based on the Kelvin circulation theorem.
Solutions for �ows of this type are particularly easy to obtain.

Zero vorticity implies that we can represent the velocity as the gradient of some potential,
χ, which we call the velocity potential :

v = −∇χ. (5.25)

However, zero divergence further implies that the velocity potential obeys a very simple
equation

∇2χ = 0. (5.26)
Let us imagine that the outward normal component of the velocity vn = v ·n = −∇χ ·n

is speci�ed on the boundary of some region. The quantity n is the unit outward normal on
this boundary. Assuming that there are no sources or sinks of �uid inside the region, then
the net �ow out of the region must be zero:

∮
∇χ · ndA = 0. (5.27)

Given this condition, equation (5.26) uniquely determines χ up to a trivial additive constant.
Physically, this implies that the �uid �ow in this case is passive � there are no interesting

internal dynamics, as the entire �ow is determined by what is imposed at the boundary. The
pressure distribution as well as the velocity distribution is �xed as well. To show this, we
note that the term v · ∇v = ∇(v2/2) − v × ζ. (This follows from expanding v × (∇ × v)
according to the rules of vector analysis.) Since ζ = 0 by hypothesis in this case, and since
the density is constant, the momentum equation becomes

∇(−∂χ/∂t + v2/2 + p/ρ + Φ) = 0. (5.28)

It follows that
−∂χ/∂t + v2/2 + p/ρ + Φ = constant. (5.29)



CHAPTER 5. SOUND WAVES AND VORTICES 39

In the special case in which the �ow is time-independent, this reduces to Bernoulli's equation:

v2/2 + p/ρ + Φ = constant. (5.30)

5.5 References
Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, New York, 624 pp.

5.6 Problems
1. Consider perturbations on a rotating, homogeneous (i. e., constant entropy), com-

pressible �uid at rest in its rotating environment, with constant geopotential. Assume
a rotation vector of magnitude Ω pointing in the z direction.

(a) Linearize the governing equations using the treatment of sound waves as guide and
assume all dependent variables to be proportional to exp[i(k ·x−ωt)]. Write the
governing equations in matrix form as in equation (5.8). The dispersion relation
is obtained by taking the determinant of the matrix of coe�cients.

(b) Examine the special case in which k points in the z direction. Solving the disper-
sion relation for ω2 shows that two solutions exist, since this equation is quadratic
in ω2. For each of these solutions determine the relationship between the various
components of the velocity, and between the velocity and the density perturba-
tion.

(c) Repeat for the special case in which k points in the x direction.

2. Suppose we add an additional force per unit mass F to the momentum equation, such
as might be caused by friction. The momentum equation thus takes the form (in a
non-rotating reference frame)

dv

dt
+
∇p

ρ
+∇Φ = F. (5.31)

Derive the Kelvin circulation theorem in this extended case. If F is conservative, does
it enter?

3. Imagine that convection forms in an initially stationary atmosphere at latitude 45◦ S.
The convection draws air in horizontally at low levels, lifts it, and ejects it horizontally
at high levels, as shown in �gure 5.3.

(a) Assuming cylindrical symmetry, �nd the tangential velocity of the in�owing air
at radius a/2, assuming that it started at radius a = 500 km.

(b) Find the tangential velocity of out�ow air at radius a, assuming that it started
at radius a/2.
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Figure 5.3: Sketch of air�ow through a convective system.

4. One can think of a hurricane as an axially symmetric vortex with in�ow at low levels
and out�ow at high levels. The earth-relative velocities in a hurricane are so large that
the planetary contribution to the circulation can be ignored to a reasonable approxi-
mation inside the hurricane.

(a) If the tangential velocity in the hurricane in�ow at the outer radius b of a hurricane
is Vb, what does the circulation theorem tell us the tangential velocity should be
at radius a < b?

(b) The actual hurricane tangential velocity in the in�ow is observed to be equal
to Cr−1/2 where r is the distance from the center of the hurricane and C is a
constant. Determine how the circulation varies with r in this case.

(c) Assume that the tangential frictional force in a hurricane takes the form F =
−KV 2 where V is the tangential velocity and K is a constant. Given this and the
fact that dΓ/dt = (dΓ/dr)(dr/dt) = U(dΓ/dr) in a steady hurricane, determine
how the radial velocity U varies as a function of radius. Hint: Consult the answer
to problem 2.

5. Consider the �ow with the velocity potential

χ = −Ux + A sin(kx) exp(−mz) (5.32)

where U , A, k, and m are constants.

(a) Determine the condition needed to satisfy ∇2χ = 0.
(b) Compute the velocity vector as a function of x and z and make a sketch of the

velocity �eld, showing velocity vectors on an x− z grid.
(c) On the above plot sketch in the trajectories of a representative set of air parcels

as they move through this �ow pattern.


