
Chapter 8

Atmospheric Models

An accurate model of the atmosphere requires the representation of continuous vertical pro-
�les, leading to a fully three-dimensional treatment. However, many aspects of atmospheric
�ow can be represented qualitatively by a small number of layers. In this chapter we consider
single and two layer models of the atmosphere.

8.1 Atmospheric thermodynamics

In order to de�ne our models, we need to learn a bit about atmospheric thermodynamics.
The earth's atmosphere obeys the ideal gas law, which can be written

p

ρ
= RT, (8.1)

where p is the pressure, ρ is the air density, T is the absolute temperature, and R =
287 J kg−1 K−1 is the universal gas constant divided by the molecular weight of air. Ig-
noring the e�ects of moisture, the speci�c dry entropy (i. e., the entropy per unit mass of
air) is

sd = Cp ln(T/TR)−R ln(p/pR), (8.2)

where TR = 300 K and pR = 1000 hPa are constant reference values of temperature and
pressure and Cp = 1005 J kg−1 K−1 is the speci�c heat of air at constant pressure. The dry
entropy is useful because the speci�c entropy of a parcel does not change under reversible
expansions and contractions in which heat is neither added nor removed from the parcel.
Meteorologists use a variable related to the entropy called the potential temperature θ:

θ = TR exp(sd/Cp) = T (pR/p)κ, (8.3)

where κ = R/Cp. Since the potential temperature is a function of the entropy alone, it
is also conserved in expansions and contractions. The potential temperature of a parcel is
the temperature it would acquire upon reversible adiabatic compression or expansion to the
reference pressure pR.

Combining equations (8.1) and (8.3) yields an equation for the atmospheric density as a
function of potential temperature:

ρ =
p1−κpκ

R

Rθ
. (8.4)
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Figure 8.1: Schematic pro�le of potential temperature as a function of height in the earth's
atmosphere.

In order to simplify the momentum equation in the atmospheric case, we wish to eliminate
the density ρ in the expression dp/ρ in favor of the potential temperature. Using equation
(8.4), we note that

dp

ρ
=

Rθdp

p1−κpκ
R

=
Rθ

κ
d

(
p

pR

)κ

. (8.5)

Using R/κ = Cp and de�ning the Exner function Π = Cp(p/pR)κ, we write

dp

ρ
= θdΠ. (8.6)

Combining the de�nition of the Exner function with that of potential temperature in equation
(8.3), we can easily show that

Π = Cp(p/pR)κ = CpT/θ. (8.7)

We now rewrite the hydrostatic equation ∂p/∂z = −gρ in terms of potential temperature
and Exner function as

θ
∂Π

∂z
= −g (8.8)

where g is the acceleration of gravity. This is useful for layer models of the atmosphere
in which the potential temperature is constant in each layer, since the layer thickness h is
proportional to the change in Exner function across the layer:

h = −θ∆Π/g. (8.9)

Figure 8.1 shows a highly schematic pro�le of the potential temperature in the earth's
atmosphere. Typically, a boundary layer exists next to the earth's surface which has nearly
constant potential temperature through its depth. Above the tropopause in the stratosphere
the potential temperature increases strongly with height. The free troposphere between the
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top of the boundary layer and the tropopause exhibits a less strong increase in potential
temperature with height than the stratosphere. The boundary layer thickness ranges typi-
cally from 500 m over the ocean to 2 − 3 km over land, while the tropopause ranges from
8 km above sea level in polar regions to 16 km in the tropics.

8.2 Single layer model of atmosphere

Though of limited applicability, we could in principle de�ne a single layer model of the earth's
atmosphere with a uniformly constant potential temperature equal to the average potential
temperature θ of the atmosphere. From the hydrostatic equation (8.8) the Exner function
as a function of height would be

Π =
g(h + d− z)

θ
(8.10)

where d(x, y) is the terrain height. The horizontal Exner function gradient in this case is
∇Π = g∇h/θ, and the momentum equation is therefore

dv

dt
+ g∇(h + d) + f ẑ× v = F (8.11)

where F is an externally applied force, typically surface friction. Notice that this equation
is identical to the momentum equation for the shallow water �ow of an incompressible �uid.

The mass per unit area in a layer of �uid of thickness h is ρh where ρ is the vertical
average of the density over the layer. The mass continuity equation thus becomes

∂ρh

∂t
+∇ · (ρhv) = ρM (8.12)

where a mass source term ρM has been added to this equation.
For a nearly incompressible �uid of almost uniform density such as ocean water, the

average density ρ can be accurately approximated by a constant value, which as we saw
earlier can then be extracted from the space and time derivatives. A similar approximation,
called the Boussinesq approximation is sometimes used for the atmosphere. This has the
e�ect of making the atmospheric governing equations identical to those for the ocean, but is
much less justi�ed in the case of the atmosphere than it is in the ocean. In the Boussinesq
approximation we equate ρ to the mean density of the atmospheric layer in its unperturbed
state, ρm. This could be obtained by dividing the mass per unit area in the layer ∆p0/g by
the layer thickness:

ρm =
∆p0

gh
. (8.13)

The quantity ∆p0 is the constant pressure thickness of the layer in the reference state.
Since the density is now taken to be constant, the mass continuity equation can then be
approximated by

∂h

∂t
+∇ · (hv) = M, (8.14)

which is identical to the mass continuity equation for an incompressible �uid.
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8.3 Boundary layer and surface friction

Recall that the force per unit area of the atmosphere on the ocean is given by the so-called
bulk �ux formula. By Newton's third law, the force of the ocean on the atmosphere is equal
and opposite to the force of the atmosphere on the ocean resulting in a frictional force per
unit area on the atmosphere of

T = −ρCD|v|v (8.15)

where ρ is the atmospheric density at the surface, v is the atmospheric surface wind (actually
the wind minus the surface ocean current), and CD ≈ 1− 2× 10−3 is the drag coe�cient.

The atmosphere generally has a turbulent, neutrally strati�ed layer next to the surface
known as the boundary layer in which surface friction is thought to be distributed more
or less uniformly. The force per unit mass acting on the air in the boundary layer is thus
F = T/(ρh) where h is the thickness of the boundary layer. In the free atmosphere above
the boundary layer we often approximate the �ow by the geostrophic wind, which is a result
of geostrophic balance, i. e., a balance between the pressure gradient force and the Coriolis
force. In the boundary layer a better approximation is a three-way balance between the
pressure gradient force, the Coriolis force, and surface friction. This balance is called Ekman

balance, and as with geostrophic balance, it is obtained by ignoring parcel accelerations.
In a single layer model we can write the two components of the momentum equation

absent the acceleration terms as

g
∂h

∂x
− fvy + (CDv/h)vx = 0 (8.16)

g
∂h

∂y
+ fvx + (CDv/h)vy = 0 (8.17)

where v = (v2
x + v2

y)
1/2.

Let us specialize to the case in which ∂h/∂x = 0, which constitutes no loss of generality
since we can orient the coordinate axes any way we like. We divide equations (8.16) and
(8.17) by f and recognize −(g/f)(∂h/∂y) as the geostrophic wind in the x direction, vgx.
Further de�ning ε = CD/(hf) as a measure of the strength of friction, (8.16) and (8.17)
simplify to

εvvx − vy = 0 (8.18)

vx + εvvy = vgx (8.19)

with the resulting solutions

vx =
vgx

1 + ε2v2
vy =

εvvgx

1 + ε2v2
. (8.20)

These solutions are not completely explicit, because v remains undetermined. However,
squaring and adding the equations for vx and vy results in a quadratic equation for v2 which
has the solution

v2 =
(1 + 4ε2v2

gx)
1/2 − 1

2ε2
. (8.21)

A not very accurate approximation to equation (8.20) is to assume that v is constant, pre-
sumably taking on a value determined by the mean geostrophic wind in equation (8.21).
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Figure 8.2: Illustration of geostrophic wind and Ekman balance wind in the atmospheric
boundary layer.
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Figure 8.3: Two layer model of the atmosphere. The e�ect of terrain is represented by the
terrain height d(x, y).

This linear Ekman balance approximation is used when a linear relationship between the
boundary layer wind and the geostrophic wind is needed to simplify computations.

Figure 8.2 provides a schematic illustration of the boundary layer wind resulting from
Ekman balance. In this �gure the thickness decreases to the north, resulting in the illustrated
geostrophic wind (assuming f > 0). The Ekman balance wind is smaller in magnitude and
is rotated in direction down the thickness or pressure gradient.

The single layer model of the boundary layer ignores the e�ect of the overlying atmo-
sphere, which is a major approximation. If the free troposphere is approximated as the upper
layer in a two-layer model, the �ow in the boundary layer responds to the thickness gradient
in this layer as well as in the boundary layer.

8.4 Two-layer model

The single layer model of the atmosphere is of limited validity, and as in the ocean, a two layer
model describes a much wider range of observed phenomena. Figure 8.3 shows a model of the
atmosphere containing two homogeneous layers. The upper layer has potential temperature
θ1 and thickness h1, while θ2 and h2 represent the corresponding variables for the lower layer.
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We compute the Exner function in layer 1 to be

Π1 =
g

θ1

(h1 + h2 + d− z), (8.22)

where we have assumed that Π = 0 at the top of layer 1. The Exner function at the interface
between the layers is

ΠI =
g

θ1

h1 (8.23)

and in layer 2 is

Π2 = ΠI +
g

θ2

(h2 + d− z) = g[h1/θ1 + (h2 + d− z)/θ2]. (8.24)

The surface Exner function (z = d) is thus

ΠS = g(h1/θ1 + h2/θ2). (8.25)

Proceeding as in the single layer model, the momentum equations for the two layers are
therefore

dv1

dt
+ g∇(h1 + h2 + d) + f ẑ× v1 = F1, (8.26)

dv2

dt
+ g∇[(θ2/θ1)h1 + h2 + d] + f ẑ× v2 = F2. (8.27)

These look a lot like the corresponding momentum equations for the two layer ocean, the
only di�erence being the replacement of ρ1/ρ2 by θ2/θ1. For generality an arbitrary external
force per unit mass is included for each level.

The mass continuity equations for the Boussinesq approximation are derived as in the
single layer case, resulting in

∂h1

∂t
+∇ · (h1v1) = M1 (8.28)

∂h2

∂t
+∇ · (h2v2) = M2, (8.29)

where as in the single layer case we have added source terms M1 and M2. The quantities
ρm1M1 and ρm2M2 represent the mass of air per unit area added to each layer as a result of
heating or cooling associated with convection or radiation. The quantities ρm1 and ρm2 are
the (constant) mean densities in each layer in analogy with ρm de�ned above for the single
layer model. Conservation of mass implies that mass lost in one layer reappears in the other
layer, i. e.,

ρm1M1 + ρm2M2 = 0. (8.30)

We think of the two layer model as approximating an atmosphere with a constant gradient
in potential temperature with respect to pressure, as illustrated in �gure 8.4. The level
separating the upper and lower layers is adjusted so that the average potential temperature
in each layer of the actual atmosphere is the same as the potential temperature of the
layer. In this way an atmosphere with horizontal variability in pressure-averaged potential
temperature (but no variation in vertical structure) can be represented approximately by
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Figure 8.4: Sketch of the potential temperature as a function of pressure in the two layer
model (thick lines) and the constant gradient pro�le it is assumed to approximate (slanted
thin lines).

the two-layer model. The mean potential temperature of the atmosphere in this model is
given by

θm =
ρm1h1θ1 + ρm2h2θ2

ρm1h1 + ρm2h2

. (8.31)

The surface potential temperature is sometimes needed for calculating surface heat �uxes.
Examination of �gure 8.4 shows that the actual surface potential temperature, as opposed
to θ2 the potential temperature of the lower layer, is given by

θS = θm − (θ1 − θ2). (8.32)

8.5 E�ects of heating

In our two-layer model, heating increases the mean temperature of the atmospheric column,
not by increasing θ1 or θ2 , but by transferring mass from the lower layer to the upper layer.
This is accomplished in the model by assigning a positive value of M1 and a negative value
of M2, with the ratio of the two source terms adjusted to satisfy equation (8.30).

If ∆Q is the heat added to the atmosphere per unit area in time interval ∆t, we can
relate ∆Q to M1 and M2. We approximate ∆Q = T∆S by TR∆S, where TR is a constant
reference temperature and ∆S is the entropy per unit area added to the column. We can
relate ∆S to the (constant) speci�c entropy in each layer and the change in mass per unit
area in each layer, ρm1M1 and ρm2M2:

∆Q = TR∆S = TR(sd1ρm1M1 + sd2ρm2M2)∆t. (8.33)

Using equation (8.30) and the relationship between potential temperature and dry entropy
(8.3) simpli�es this to

dQ

dt
= CpTR ln(θ1/θ2)ρm1M1, (8.34)

from which we can infer M1. Using equation (8.30) we also �nd that M2 = −(ρm1/ρm2)M1.
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heating

Figure 8.5: Schematic illustration of the �ow that occurs in response to steady, isolated
heating in a non-rotating environment.

8.5.1 Steady heating in non-rotating environment

As a simple example of the response of the two-layer model to heating, we consider a lin-
earized, two-dimensional case with steady, isolated heating which produces a source term in
the upper layer of the form

M1(x) = M0δ(x) (8.35)

where M0 is a constant and δ(x) is the Dirac delta function. The time-independent, lin-
earized, two-dimensional momentum equations in the absence of an applied force are

g
∂

∂x
(h01η1 + h02η2) = 0 g

∂

∂x
(νh01η1 + h02η2) = 0 (8.36)

which simply tells us that the fractional thickness perturbations η1 = η2 = 0 in this case.
(We could take them as being constant, but this is pointless, as it would be tantamount to
needlessly rede�ning the ambient thicknesses h01 and h02.) The mass continuity equations
in the linearized, time-independent case simplify to

∂v1x

∂x
=

M1

h01

∂v2x

∂x
=

M2

h02

= −ρm1M1

ρm2h02

= −ρm1h01

ρm2h02

∂v1x

∂x
, (8.37)

with the resulting solutions

v1x =
M0

2h01

x

|x|
v2x = − ρm1M0

2ρm2h02

x

|x|
. (8.38)

The character of this �ow is illustrated in �gure 8.5. Upward mass transfer occurs between
layers in the isolated heating region at x = 0. There is �ow away from the heated region
in the upper layer (layer 1) while the reverse occurs in the lower layer (layer 2). In the
steady, linearized case the layer thicknesses do not change. It is noteworthy that the out�ow
in the upper layer and the in�ow in the lower layer continue undiminished to ±∞ in the
time-independent case.

8.5.2 Response to a heating pulse

How does the above response to steady heating become established? We approach this
question by determining the response of a non-rotating, two layer system to a pulse of heat
at the origin at zero time. In order to simplify the calculation we assume a special case
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h01 = h02 and de�ne c2 = gh01. We make the further idealization that ρm1 = ρm2, which we
call the strict Boussinesq approximation. This assumption is not defensible in a quantitative
sense, but the results nevertheless qualitatively represent what happens in the more general
case.

The two-dimensional governing equations linearized about a resting base state are

∂v1

∂t
+ c2 ∂

∂x
(η1 + η2) = 0 (8.39)

∂v2

∂t
+ c2 ∂

∂x
(νη1 + η2) = 0 (8.40)

∂η1

∂t
+

∂v1

∂x
= M0δ(x)δ(t) (8.41)

∂η2

∂t
+

∂v2

∂x
= −M0δ(x)δ(t) (8.42)

where v1 and η1 are the velocity and fractional thickness perturbation in the upper layer and
v2 and η2 are the corresponding variables in the lower layer. The constant M0 represents the
strength of the heating pulse and the ratio of the potential temperatures in the two layers is
given by ν = θ2/θ1. As can be veri�ed by direct substitution, the solution to these equations
for x > 0 is

η1 = [η1xδ(x− cxt) + η1iδ(x− cit)]H(t) (8.43)

η2 = [η2xδ(x− cxt) + η2iδ(x− cit)]H(t) (8.44)

v1 = [v1xδ(x− cxt) + v1iδ(x− cit)]H(t) (8.45)

v2 = [v2xδ(x− cxt) + v2iδ(x− cit)]H(t) (8.46)

where the Heaviside function H(t) is de�ned

H(t) =

{
0, t < 0
1, t > 0

. (8.47)

The solution is in the form of two non-dispersive waves originating at the heating pulse
and propagating to the right at the speeds of the external and internal gravity modes,

cx = c(1 + ν1/2)1/2 ci = c(1− ν1/2)1/2. (8.48)

The thickness perturbations are symmetric in x while the velocities are antisymmetric, which
allows the solutions for x < 0 to be obtained from the x > 0 solutions.

The constant coe�cients in equations (8.43) - (8.46) are

η1x = −M0(ν
−1/2 − 1)/4 v1x = cxη1x (8.49)

η2x = −M0(1− ν1/2)/4 v2x = cxη2x (8.50)

η1i = M0(ν
−1/2 + 1)/4 v1i = ciη1i (8.51)

η2i = −M0(1 + ν1/2)/4 v2i = ciη2i. (8.52)
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Figure 8.6: Schematic diagram of the rightward-moving external and internal waves in thick-
ness and velocity resulting from a heat pulse at the origin. The thick vertical line segments
represent the displacements of the layer tops while the arrows illustrate the directions and
relative magnitudes of the wind pulses in the waves.

In verifying these solutions, �rst note that ∂H(t)/∂t = δ(t). Second, derivatives of
the Dirac delta function are subject to the chain rule as with any other function, e. g.,
∂δ(x − ct)/∂t = −cδ′(x − ct). Third, note that a product of delta functions of the form
δ(t)δ(x − ct) simpli�es to δ(t)δ(x) since this product is only non-zero when t = 0 by virtue
of the �rst delta function.

Figure 8.6 illustrates qualitatively the results of this calculation. At time t = 0 a pulse
of heating occurs at the origin, resulting in the formation of wave pulses which propagate
away from the origin. There are two types of pulses, those associated with the external
mode of the two layer system, and those associated with the internal mode. The former
propagates more rapidly than the latter. The external mode pulse consists of a depression in
both the top of the upper layer and the interface between the layers and instantaneous �ows
toward the origin in both layers. The internal mode pulse exhibits elevation in the top of the
upper layer of the same magnitude as the depression in the upper layer associated with the
external mode. However, the displacement of the interface is downward and of much larger
magnitude. The �ow velocities in the upper and lower layer are respectively away from and
toward the origin, and have much larger magnitudes than in the external mode.

The solution we have obtained for this problem is special in the sense that the solution
for any heating distribution may be derived from it. In particular, de�ning Kη1,2(x, t) as
η1,2 in equations (8.43) and (8.44) with M0 = 1, the distribution of fractional thickness
perturbation in the upper layer can be obtained for any space-time distribution of heating,
as represented by the upper and lower layer source functions M1,2(x, t), can be obtained via
the double integral

η1,2(x, t) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dt′Kη1,2(x− x′, t− t′)M1,2(x

′, t′). (8.53)

The function Kη1,2(x, t) is called the Green's function for η1,2. Similar solutions can be
obtained for the velocity in the upper and lower layers as well by de�ning the Green's
function Kv1,2(x, t) for the velocities in the same manner.
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8.6 Potential vorticity in the atmosphere

Hoskins et al. (1987) provides an extensive discussion of the usefulness of analyzing potential
vorticity on isentropic (constant potential temperature) surfaces in the atmosphere. The
e�ects of friction and heating on the potential vorticity distribution are considered by Haynes
and McIntyre (1987, 1990) and Raymond (1992).

The compressibility of the atmosphere forces a slight change in the de�nition of potential
vorticity q of a layer:

q =
ζa

ρh
(8.54)

where ζa and h are the absolute vorticity and layer depth as usual and ρ is the vertically
averaged air density in the layer. The reason for this change becomes evident upon taking
the total (or parcel) time derivative of the potential vorticity:

dq

dt
=

d

dt

(
ζa

ρh

)
=

d

dt

(
ζaA

ρhA

)
=

d

dt

(
Γa

m

)
(8.55)

where A is a tiny area of a column in the air layer of interest. In the last step we equate
the absolute vorticity times this area to the absolute circulation Γa about the column and
the product ρhA to the mass m of the column. Since the column moves with the �ow, the
circulation is conserved in the absence of external forces, and the mass is similarly conserved
if there are no mass sources or sinks. Thus, the potential vorticity obeys dq/dt = 0 in this
case as before. This condition would not have held for air had the mean air density not been
added to the de�nition of potential vorticity.

In order to obtain the governing equation for potential vorticity in the case of mass sources
and sinks, we take a slightly di�erent approach than before, starting with the components
of the momentum equation for a single layer with no topography but with an externally
applied force:

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ g

∂h

∂x
− fvy = Fx (8.56)

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ g

∂h

∂y
+ fvx = Fy (8.57)

We now use a trick which simpli�es the derivation. Taking the advection terms in equation
(8.56), we add and subtract an additional term:

vx
∂vx

∂x
+ vy

∂vx

∂y
= vx

∂vx

∂x
+ vy

∂vx

∂y
+ vy

∂vy

∂x
− vy

∂vy

∂x
. (8.58)

The �rst and third terms on the right can be written ∂[(v2
x + v2

y)/2]/∂x while the second and
fourth combine to make −vyζ where ζ = ∂vy/∂x−∂vx/∂y is the relative vorticity. Applying
the same trick to equation (8.57), we write these equations as

∂vx

∂t
+

∂

∂x

(
v2

x + v2
y

2

)
− vyζ + g

∂h

∂x
− fvy = Fx (8.59)

∂vy

∂t
+

∂

∂y

(
v2

x + v2
y

2

)
+ vxζ + g

∂h

∂y
+ fvx = Fy (8.60)
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Finally, we take the y derivative of equation (8.59) and subtract it from the x derivative
of equation (8.60), resulting in an equation for the absolute vorticity ζa = ζ + f :

∂ζa

∂t
+

∂ζavx

∂x
+

∂ζavy

∂y
=

∂Fy

∂x
− ∂Fx

∂y
. (8.61)

This is called the vorticity equation for obvious reasons. The absolute vorticity appears in
the time derivative because ∂f/∂t = 0, and therefore f can be added to ζ in this term
without changing the equation. Note that this equation also applies to individual layers in
a �uid represented by two or more layers, as the only change in this case is the replacement
of the g∇h term with g times the gradient of something more complicated. As long as this
term is in the form of a gradient, it cancels out in the derivation of the vorticity equation.

The next step involves use of the mass continuity equation, which for single or multi-layer
systems takes the form

∂ρh

∂t
+∇ · (ρhv) = ρM (8.62)

for the layer under consideration, as demonstrated above. Since q = ζa/(ρh), we can solve this
for absolute vorticity ζa = qρh and substitute into equation (8.61). Product rule expansions
of derivatives yield

ρh

(
∂q

∂t
+ v · ∇q

)
+ q

(
∂ρh

∂t
+∇ · (ρhv)

)
=

∂Fy

∂x
− ∂Fx

∂y
(8.63)

and use of equation (8.62) simpli�es this to

dq

dt
=

∂q

∂t
+ v · ∇q = − q

h
M +

1

ρh

(
∂Fy

∂x
− ∂Fx

∂y

)
(8.64)

which is the governing equation for potential vorticity in the presence of mass sources and
sinks as well as frictional or other nonconservative forces. Each layer in a multi-layer system
will have a governing equation for potential vorticity in that layer.

Note that no approximation has yet been made in the derivation of equation (8.64).
However, potential vorticity inversion is most easily discussed in the context of the Boussinesq
approximation. Below we investigate inversion in single and two-layer models.

8.6.1 Single layer model

It remains only to derive the potential vorticity inversion equations for the models of interest.
The linearized inversion equation on an f -plane for a single layer model is almost identical
to that used for the ocean in the Boussinesq case:

q =
ζag

ρmh
=

f

ρmh0(1 + η)

(
1 +

1

f

∂vgy

∂x
− 1

f

∂vgx

∂y

)
. (8.65)

The only di�erence is that q0 = f/(ρmh0); the Rossby radius L2
R = gh0/f

2 has its usual
de�nition and the geostrophic wind as before is

vgx = −gh0

f

∂η

∂y
vgy =

gh0

f

∂η

∂x
. (8.66)
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De�ning q∗ = q − q0, equation (8.65) becomes after linearization

L2
R∇2η − η = q∗/q0. (8.67)

The velocity potential is derived as before from the mass continuity equation, but with the
mass source term M included:

∇2χ =
∂η

∂t
− M

h0

. (8.68)

The ageostrophic wind is va = −∇χ as before.

8.6.2 Two layer model

We now investigate a two layer model with equal ambient layer thicknesses h0 and no topog-
raphy, i.e., d = 0. In this model the inversion equations for the two layers become coupled
together. Deriving the geostrophic wind from equations (8.26) (8.27) yields

v1gx = −gh0

f

∂(η1 + η2)

∂y
v1gy =

gh0

f

∂(η1 + η2)

∂x
(8.69)

v2gx = −gh0

f

∂(νη1 + η2)

∂y
v2gy =

gh0

f

∂(νη1 + η2)

∂x
(8.70)

where ν = θ2/θ1 is the ratio of lower to upper level potential temperature as before. In the
Boussinesq approximation the inversion equations become

L2
R∇2(η1 + η2)− η1 = q∗1/q0 (8.71)

L2
R∇2(νη1 + η2)− η2 = q∗2/q0 (8.72)

q∗1 = q1 − q0, q∗2 = q2 − q0. The quantities q0 and LR are de�ned as above. The velocity
potential in each layer is obtained from

∇2χ1 =
∂η1

∂t
− M1

h0

∇2χ2 =
∂η2

∂t
− M2

h0

(8.73)

with the ageostrophic velocities in each layer being v1a = −∇χ1 and v2a = −∇χ2.

8.7 Balanced response to heating

Let us now investigate the balanced response to heating in a two-layer atmosphere with
equal ambient layer thicknesses h0, constant Coriolis parameter f , and steady, delta function
convection in two dimensions starting at time t = 0. For simplicity we make the strict
Boussinesq approximation of equal densities in the two layers, i. e., ρm1 = ρm2 ≡ ρm.
Heating is represented by mass sources in the upper (subscripted 1) and lower (subscripted
2) layers of

ρmM1 = −ρmM2 = ρmM0δ(x)H(t) (8.74)
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where M0 is a constant representing the strength of the convection and H(t) is the Heaviside
function as before. Starting from a uniform state of rest at t = 0, the resulting potential
vorticity perturbation in the upper layer as computed by equation (8.64) is

q∗1 = −q0M0δ(x)t

h0

, (8.75)

with q∗2 = −q∗1 in the lower layer. In deriving this equation we have linearized in the sense
that we have set q = q0 and h = h0 on the right side of equation (8.64).

Given our experience with the solution for a single layer problem of this type, we hy-
pothesize that

η1 = η10 exp(−|x|/LR) η2 = η20 exp(−|x|/LR) (8.76)

where LR = (gh0)
1/2/f is the Rossby radius as before and η10 and η20 are constants (actually

functions of time). Substitution of these trial solutions into equations (8.71) and (8.72)
veri�es their validity subject to the conditions

η10 + η20 =
M0t

h0LR

νη10 + η20 = − M0t

h0LR

. (8.77)

Solution for η10 and η20 and substitution into equation (8.76) results in

η1 =
2M0t

(1− ν)h0LR

exp(−|x|/LR) η2 = − (1 + ν)M0t

(1− ν)h0LR

exp(−|x|/LR). (8.78)

The fractional height perturbation for the top of the upper layer is given by

η1 + η2 =
M0t

h0LR

exp(−|x|/LR). (8.79)

The geostrophic wind has a zero x component in this case whereas the y component of the
ageostrophic wind is zero. From equations (8.69) and (8.70) we �nd the y component of the
geostrophic wind in the two layers to be

v1gy = − 2fM0tx

(1− ν)h0|x|
exp(−|x|/LR) v2gy =

(1 + ν)fM0tx

(1− ν)h0|x|
exp(−|x|/LR), (8.80)

while from equation (8.73) we derive the x component of the ageostrophic wind in each layer:

v1ax =
2M0x

(1− ν)h0|x|
exp(−|x|/LR) v2ax = − (1 + ν)M0x

(1− ν)h0|x|
exp(−|x|/LR). (8.81)

Figure 8.7 shows the response of the two-layer atmosphere to the convection, which is
represented by the upward arrow in the center, illustrating the upward �ow of mass from
layer 2 to layer 1. The steady ageostrophic wind is given by the horizontal arrows, which
�ow away from the convection in the upper layer and toward the convection in the lower
layer. This �ow diminishes on the scale of the Rossby radius LR as one moves away from
the convection. The �ow thus di�ers from the nonrotating case where the in�ow and out�ow
extend laterally to in�nity. Potential vorticity inversion implies that the interface between the
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LRLR

layer 1

layer 2

Figure 8.7: Response of a two-layer model to a line of heating normal to the page, which
causes a transfer of mass from the lower to the upper layer. The ageostrophic response is
shown by the arrows while the geostrophic wind normal to the page is represented by circles
with crosses (into the page) and dots (out of the page).

two layers de�ects downward increasingly with time, with the biggest de�ection occurring
at the location of the convection. In contrast, the top of the upper layer de�ects weakly
upward. The resulting geostrophic �ow is normal to the page as illustrated by the circles
with either a cross (into the page) or a dot (out of the page). The �ow is anticyclonic
around the convection in the upper layer and cyclonic in the lower layer. The geostrophic
�ow increases with time as the de�ection of the surfaces increases. Note that this �ow will
soon intensify enough to invalidate the linearity assumption used at various points in the
analysis.
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8.9 Problems

1. More on Ekman balance.
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(a) Generalize equation (8.20) to the case where both vgx and vgy are nonzero.

(b) Using the linear Ekman balance approximation (holding ε, v, and h constant) and
assuming also that f is constant, show that the divergence

D =
∂vx

∂x
+

∂vy

∂y

of the Ekman balance wind in the boundary layer is proportional to the geostrophic
relative vorticity and �nd the constant of proportionality.

(c) In the steady state case use the linearized mass continuity equation in the bound-
ary layer to relate the geostrophic relative vorticity to the mass source M in the
boundary layer. When M < 0, it is often considered that boundary layer air is
being exported aloft, thus acting as a source for deep convective updrafts. This
process is called Ekman pumping.

2. Obtain η1(x, t) and v1(x, t) for the response of the two-layer model to the mass source
M1 = −M2 = δ(x)H(t). Hint: Use equation (8.53).

3. Consider a single layer Boussinesq model with rotation but no friction.

(a) Linearize and solve for the fractional thickness perturbation and �uid velocity in
response to the mass forcing periodic in space and time

M = M0 cos(kx) sin(ωt)

where M0, k, and ω are externally speci�ed constants. Hint: Try solutions of the
form vx ∝ sin(kx) sin(ωt), vy ∝ sin(kx) cos(ωt), and η ∝ cos(kx) cos(ωt).

(b) For �xed k, determine how the layer thickness and the wind components respond
to the mass forcing as a function of ω. Note particularly the value of ω for which
the solution blows up. Give a physical interpretation of this blowup.

(c) Compare your results with those of Robinson et al. (2008).

4. Repeat the above problem except consider the balanced response to the mass forcing.
In particular:

(a) Use the linearized potential vorticity advection equation to obtain q∗ from M .

(b) Invert the linearized potential vorticity perturbation q∗ equation to obtain the
fractional thickness perturbation η.

(c) From η obtain the geostrophic wind.

(d) Also from η, obtain the ageostrophic wind. Combine with the geostrophic wind
to obtain the total wind.

(e) Determine the range of ω values for which the linearized balanced response is in
reasonable agreement with the linearized full response.


