
Chapter 12

Mid-latitude Atmospheric Dynamics

We now use the tools we have developed to understand the behavior of the earth's atmosphere
at middle latitudes. This is a region dominated by Rossby wave dynamics acting on a complex
basic state. We �rst describe this state and then show how the various types of Rossby waves
produced the observed �ows.

12.1 Basic state of atmosphere
Figure 12.1 shows an idealized sketch of the north-south vertical structure in middle lati-
tudes. This is the region in which the equator-pole temperature gradient is concentrated.
As a result, the surface slopes downward toward the pole in isentropic coordinates. The
tropopause also slopes downward in the same sense � the coldest temperatures in the atmo-
sphere are at the tropopause over the equator, but at the same time the warmest potential
temperatures in the troposphere exist there.

Ambient potential vorticity in the troposphere tends to be nearly constant on isentropic
surfaces, i. e., along horizontal lines in isentropic coordinates, in spite of the increase in
planetary vorticity with latitude. This is related to the fact that potential vorticity tends
to decrease somewhat with elevation within the troposphere in middle latitudes due to an
increase in isentropic density with height. Isentropic surfaces increase in geometric height
with latitude, and the resulting increase in isentropic density approximately compensates for
the increase in planetary vorticity.

The reason for the near-constancy of potential vorticity on isentropic surfaces is unknown,
but it is speculated to be the result of north-south mixing of parcels on isentropic surfaces,
which would tend to homogenize the potential vorticity on these surfaces. However it comes
about, it has one important consequence: The free troposphere in middle latitudes does not
support Rossby waves to any great extent! As we shall see, two other types of Rossby waves
dominate in middle latitudes, those based on the surface temperature gradient, and those
rooted in the tropopause.

91



CHAPTER 12. MID-LATITUDE ATMOSPHERIC DYNAMICS 92

270

300

330

360

po
te

nt
ia

l t
em

pe
ra

tu
re

 (
K

)

latitude (deg)
4030 50 60 7020

surface

troposphere

stratosphere

tropopause

q

q

Figure 12.1: Schematic of north-south structure of atmosphere in middle latitudes. The
surface tilts down to the north in isentropic coordinates, as does the tropopause. The dash-
dotted lines show pro�les of ambient potential vorticity as a function of potential temperature
at two latitudes.

12.2 Simplifying approximations
The approximations made to simplify to a tractable form the governing equations away from
the equator while retaining their essence are a bit complex, involving two levels of lineariza-
tion. Let us assume a constant reference value of the isentropic density ηR. Corresponding
to this we de�ne reference pro�les of Montgomery potential MR(θ) and geopotential ΦR. In
the Boussinesq context, we easily calculate that

MR = −L2(θ − θR)2

2
(12.1)

and
ΦR = θRL2(θ − θR) (12.2)

where the combination
L2 ≡ gηR

ρRθR

(12.3)

occurs frequently enough to warrant its own symbol.
We postulate for simplicity an ambient state with a zonal (east-west) wind U which takes

the form of constant shears in the meridional (north-south) and θ directions:

U = U0 + Sθ(θ − θR) + Syy. (12.4)

The full wind is then a combination of this and a disturbance part, v = U x̂ + v∗g, where the
disturbance wind is approximated by the geostrophic wind. The condition of geostrophic
balance then requires the Montgomery potential and geopotential to be

M = MR(θ)− f0

∫
Udy + M∗

= −L2(θ − θR)2/2− f0[U0y + Sθ(θ − θR)y + Syy
2/2] + M∗ (12.5)
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and
Φ = θR

[
L2(θ − θR) + f0Sθy − ∂M∗

∂θ

]
(12.6)

where the disturbance part of the Montgomery potential M∗ is related to the disturbance
geostrophic wind by

v∗g =
1

f0

(
−∂M∗

∂y
,
∂M∗

∂x

)
. (12.7)

The potential vorticity inversion equation comes as usual from the potential vorticity
de�nition q = (f + ζ)/η, which we linearize to

q

q0

=
1 + βy/f0 + ζ/f0

1 + η∗/ηR

≈ 1 +
βy

f0

− η∗

ηR

+
ζ

f0

, (12.8)

where q0 = f0/ηR. The isentropic density is split into a constant reference part and a
disturbance part for this linearization, η = ηR + η∗, with the assumption that |η∗| ¿ ηR.
The relative vorticity equals

ζ =
∂vgy

∂x
− ∂vgx

∂y
=

∂v∗gy

∂x
− ∂v∗gx

∂y
− Sy (12.9)

in this case, from which we deduce that the potential vorticity divides naturally into three
pieces,

q = q0 +
βy − Sy

ηR

+ q∗. (12.10)

The �rst term is the planetary vorticity at y = 0, the second has to do with latitudinal
variation of the ambient absolute vorticity, and the third is the disturbance part of the
potential vorticity, which takes the form

q∗ = − η∗

ηR

+
1

ηR

(
∂v∗gy

∂x
− ∂v∗gx

∂y

)
. (12.11)

Using equation (12.7) as well as the relation
η∗

ηR

= − 1

L2

∂2M∗

∂θ2
, (12.12)

the linearized inversion equation in terms of disturbance quantities only �nally becomes
q∗

q0

=
1

L2

∂2M∗

∂θ2
+

1

f 2
0

∇2M∗. (12.13)

The linearized advection equation in this case becomes
∂q∗

∂t
+ U

∂q∗

∂x
+

β

f0ηR

∂M∗

∂x
= 0 (12.14)

where we have assumed that |v∗g| ¿ U and that |q∗| ¿ |(βy − Sy)/ηR|.
We often desire U to be independent of y in y − z space, i. e., U = U(z). Taking the

partial derivative of equation (12.6) while holding Φ constant and assuming M∗ = 0 implies
that the ambient �ow satis�es (∂θ/∂y)Φ = −f0Sθ/L

2. A similar y derivative of equation
(12.4) combined with the desired condition that (∂U/∂y)Φ = 0 results in

Sy = f0S
2
θ/L

2 (12.15)
for U to be independent of y in geometrical coordinates.
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12.3 Mid-latitude Rossby waves
In this section we work out the dynamics of three types of Rossby waves, those related to
the beta e�ect, those supported by a north-south temperature gradient at the surface, and
those which are linked to the tropopause.

12.3.1 Internal waves
As noted above, internal Rossby waves dependent on a north-south gradient of potential
vorticity are unlikely to occur in the middle latitudes. We nevertheless investigate their
properties. In the interests of simplicity, let us imagine that the troposphere is bounded
above and below by (geometrically) horizontal rigid surfaces at geopotential values of ΦL = 0
and ΦU = gh, corresponding to constant potential temperature reference values θL and θU ,
imagining the upper surface to correspond to the tropopause. We thus ignore the tilt of the
surface and the tropopause in middle latitudes. We also postulate a background environment
at rest.

The potential vorticity inversion equation is

1

f 2
0

∇2M∗ +
1

L2

∂2M∗

∂θ2
=

q∗

q0

≡ ε (12.16)

with lower and upper boundary conditions
(

∂M∗

∂θ

)

L,U

= −Φ∗
L,U/θR = 0. (12.17)

The potential vorticity evolution equation is

∂ε

∂t
+

β

f 2
0

∂M∗

∂x
= 0. (12.18)

A trial plane wave solution is

M∗ = M0 cos[m(θ − θL)] sin(kx− ωt), (12.19)

ε = ε0 cos[m(θ − θL)] sin(kx− ωt), (12.20)
where M0 and ε0 are constants and m is the vertical wave number in isentropic coordinates.
This trial solution satis�es the equations subject to the conditions

ε0 = −
(

m2

L2
+

k2

f 2
0

)
M0 (12.21)

and
m =

π

θU − θL

(12.22)

with the dispersion relation
ω = − kβ

k2 + f 2
0 m2/L2

. (12.23)
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Figure 12.2: Illustration of lower boundary surface θL(x, y, t) where the geopotential is as-
sumed to equal zero.

The family resemblance with the Rossby waves on a beta plane in shallow water �ow is
clear. The wave moves to the west with frequency increasing in magnitude until a critical
wavenumber is reached. Beyond this point the frequency decreases with wavenumber and
the group velocity is to the east.

Constant values of potential vorticity along isentropic surfaces corresponds to e�ectively
having β = 0. In this case wave propagation does not occur.

12.3.2 Surface waves
A more interesting type of wave is one rooted in the north-south temperature gradient at
the surface. A consequence of the surface potential temperature getting colder to the north
is that a geostrophically balanced ambient wind shear Sθ > 0 exists in the troposphere, with
westerlies increasing with potential temperature. We assume that the surface wind is zero
so that the Montgomery potential is constrained by equations (12.5) and (12.15):

M = −L2(θ − θR)2/2− f0[Sθ(θ − θR)y + f0S
2
θy

2/(2L2)] + M∗. (12.24)

The resulting inversion equation for the disturbance Montgomery potential is

1

f 2
0

∇2M∗ +
1

L2

∂2M∗

∂θ2
= 0 (12.25)

subject to the lower boundary condition (see �gure 12.2)

ΦL = −θR

(
∂M

∂θ

)

L

≈ −θR

[(
∂M

∂θ

)

R

+

(
∂2M

∂θ2

)

R

(θL − θR)

]
= 0. (12.26)

The awkward condition on the θ derivative of M at the free lower boundary has been
approximated by a condition on M at the constant reference level θR. Realizing that θL−θR

is small in magnitude and dropping the term (∂2M∗/∂θ2)R(θL − θR) since it is quadratic in
small quantities, this can be further approximated using equation (12.24)

−f0Sθy +

(
∂M∗

∂θ

)

R

− L2(θL − θR) = 0. (12.27)

Dividing the surface potential temperature perturbation into ambient and disturbance parts,
θL = θL0 + θ∗L, we note that the ambient potential temperature distribution at the surface
satis�es

θL0 = θR − f0Sθy/L2 (12.28)
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while the surface boundary condition for the disturbance is
(

∂M∗

∂θ

)

R

= L2θ∗L. (12.29)

The lower boundary potential temperature governing equation evolves the system in this
case:

∂θ∗L
∂t

+
1

f0

dθL0

dy

(
∂M∗

∂x

)

R

= 0. (12.30)

A trial plane wave solution which decays exponentially with height is

M∗ = M0 exp[−µ(θ − θR)] sin(kx− ωt) (12.31)

θ∗L = θ0 sin(kx− ωt). (12.32)
This trial solution works if

µ =
kL

f0

. (12.33)

It has the dispersion relation
ω =

kSθ

µ
= f0Sθ/L. (12.34)

The ambient surface temperature anomaly (relative to θR) is equivalent in this case
to a thin surface layer of potential vorticity which is positive for θL0 > θR and negative
otherwise. It thus decreases to the north, and the resulting gradient in potential vorticity
supports Rossby wave propagation. The sign of the gradient causes the wave propagation
to be toward the east rather than toward the west as in previous cases. Notice that the
frequency is a constant independent of wavenumber. The group velocity of this wave is thus
ug = ∂ω/∂k = 0, whereas the phase speed c = f0Sθ/(kL). Thus, waves of longer wavelength
move more rapidly.

12.3.3 Tropopause waves
The potential vorticity increases drastically across the tropopause, due to the higher static
stability in the stratosphere relative to the tropopsphere. If we de�ne a horizontal reference
level θR near the mean level of the tropopause, the variability in the height of the tropopause
means that some regions above the reference level have tropospheric values of potential
vorticity, while other regions below the reference level have stratospheric values, as illustrated
in �gure 12.3. If the deviations of the tropopause elevations from the reference level are not
too great, we can consider these deviations to be concentrated at the reference level, resulting
in a potential vorticity anomaly at this level given by

q′ = −∆θ(qS − qT )δ(θ − θR), (12.35)

where ∆θ = θT −θR, θT (x, y, t) being the height (in isentropic coordinates) of the tropopause
as a function of position and time. We approximate qS = f0/ηS and qT = f0/ηT to be
the planetary values of stratospheric and tropospheric potential vorticity at the reference
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Figure 12.3: Sketch of tilted tropopause in isentropic coordinates relative to a reference level
θR. The potential vorticity anomaly ∆q in the triangular region above the reference level
is negative, whereas it is positive in the triangular region below the reference level. This is
because the stratospheric potential vorticity exceeds the tropospheric value, qS > qT .

latitude where f = f0 and assume constant values of isentropic density η above and below
the tropopause with ηT > ηS.

Since the potential vorticity thus takes on uniform, constant values above and below the
tropopause, the evolution of the system is governed solely by the evolution of the potential
vorticity perturbation at the tropopause, or in the above approximation, at the reference
level. This reduces to an evolution equation for ∆θ, since all other factors in equation
(12.35) are constant and drop out:

∂∆θ

∂t
+ vT · ∇∆θ = 0, (12.36)

where vT is the wind at the tropopause.
Just as surface Rossby waves are supported by the north-south gradient in surface po-

tential temperature, tropopause Rossby waves are supported by the north-south gradient in
tropopause potential temperature. However, the details di�er slightly because the structure
of the waves both above and below the tropopause is important.

Both the Montgomery potential and its θ derivative are continuous across the tropopause.
This is because both the geopotential (proportional ∂M/∂θ) and isentropic density (propor-
tional to ∂2M/∂θ2) are expected to remain �nite there. To make the analysis tractable, we
wish to convert these conditions into interface conditions at the reference height θR, as in
the surface case. We do this using Taylor series expansions of M and ∂M/∂θ about the
reference level. The condition that M be continuous at θT becomes

MS(θR) +

(
∂MS

∂θ

)

R

∆θ = MT (θR) +

(
∂MT

∂θ

)

R

∆θ, (12.37)

where the subscripted S and T indicate stratospheric and tropospheric values. Similarly, the
condition that ∂M/∂θ be continuous there reduces to

(
∂MS

∂θ

)

R

+

(
∂2MS

∂θ2

)

R

∆θ =

(
∂MT

∂θ

)

R

+

(
∂2MT

∂θ2

)

R

∆θ. (12.38)
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We the Montgomery potential into ambient and disturbance parts, with the latter being
denoted M∗

S,T .
Taking the second condition �rst, we note that the ambient Montgomery potential in the

stratosphere satis�es (∂2MS/∂θ2)R = −gηS/(ρRθR) ≡ −L2
S with a similar equation for the

troposphere yielding L2
T . Solving for the di�erence in ∂M/∂θ values at the reference level

and dropping disturbances contributions to (∂2M/∂θ2)R in this equation as was done for
surface waves, we get

(
∂MS

∂θ

)

R

−
(

∂MT

∂θ

)

R

= −(L2
T − L2

S)∆θ. (12.39)

Thus, this di�erence is proportional to ∆θ, which in our usual linearization we shall treat as
a small quantity. We further split ∆θ into ambient and disturbance parts, ∆θ = ∆θ0 + ∆θ∗.

Equation (12.37) can be solved for MS −MT , from which we �nd that this quantity is
proportional to ∆θ2. In the linearization we set such terms to zero, so we have

MS(θR)−MT (θR) = 0 (12.40)

to �rst order.
We now postulate trial solutions for the Montgomery potential in the troposphere and

the stratosphere,

MT = −L2
T (θ − θR)2/2− f0

∫
UT dy + M∗

T , θ < θT (12.41)

MS = −L2
S(θ − θR)2/2− f0

∫
USdy + M∗

S, θ > θT (12.42)

where UT (θ, y) and US(θ, y) represent ambient wind patterns in the troposphere and the
stratosphere. We assume that the ambient wind in each case has linear shears in the θ and
y directions:

UT = UR + SθT (θ − θR) + SyT y, (12.43)
US = UR + SθS(θ − θR) + SySy. (12.44)

In order to make equation (12.36) solvable, we insist that the ambient �ow at the tropopause
be independent of y. Letting θ − θR equal the ambient potential temperature perturbation
at the tropopause in equations (12.43) and (12.44) and setting the y derivatives of UT and
US to zero results in

∂∆θ0

∂y
= −SyT

SθT

= −SyS

SθS

= −∆Sy

∆Sθ

(12.45)

where ∆θ0 is the ambient part of ∆θ and where

∆Sy = SyT − SyS ∆Sθ = SθT − SθS. (12.46)

As in the case of the surface wave, we assume that the wave amplitude decays exponen-
tially away from the tropopause in both the troposphere and the stratosphere, giving us the
following form for the disturbance trial solution:

M∗
T = M0 sin(kx− ωt) exp[µT (θ − θR)], θ < θR (12.47)
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M∗
S = M0 sin(kx− ωt) exp[−µS(θ − θR)], θ > θR. (12.48)

Substituting equations (12.41) and (12.42) plus these results into equation (12.39) and
solving for ∆θ yields

∆θ = ∆θ0 + ∆θ∗ =
−f0∆Sθy + (µS + µT ) M∗

L2
T − L2

S

, (12.49)

where M∗ is the common value of M∗
S and M∗

T evaluated at θ = θR. Since L2
T > L2

S,
the ambient north-south gradient in ∆θ0 is negative, with ∂∆θ0/∂y = −f0∆Sθ/(L

2
T − L2

S).
Combining this with equation (12.45) results in a constraint on ∆Sy:

∆Sy =
f0(∆Sθ)

2

L2
T − L2

S

. (12.50)

The disturbance-related parts of ∆θ and M are related by

∆θ∗ =
(µS + µT )M∗

L2
T − L2

S

. (12.51)

The values of µS and µT are determined by substituting the trial solutions for M∗
S and

M∗
T into the inversion equation (12.25) with ηR replaced respectively by ηS and ηT for the

stratospheric and tropospheric cases. The results are

µS =
kLS

f0

µT =
kLT

f0

. (12.52)

Finally we substitute ∆θ from equation (12.49) into equation (12.36) and linearizing in
starred quantities:

∂∆θ∗

∂t
+ UR

∂∆θ∗

∂x
− ∆Sθ

L2
T − L2

S

∂M∗

∂x
= 0, (12.53)

where UR = UT (θR) = US(θR). Using equations (12.47), (12.48), and (12.49) and assuming
space and time dependence sin(kx − ωt) �nally results in the dispersion relation for these
waves:

ω = kUR − f0∆Sθ

LS + LT

. (12.54)

This Rossby wave has very similar characteristics to the surface wave, in that the group
velocity of the wave equals the speed of the wind at the surface, in this case the tropopause.
The main di�erence is that the phase speed of the wave is to the west relative to the mean
�ow at the tropopause, whereas the phase speed is to the east in the case of the surface
wave. The phase speeds relative to the wind are quantitatively the same (except for sign)
as in the surface wave if LT À LS and |SθT | À |SθS|.

12.4 Baroclinic instability
In the last two sections, the interaction of the surface wave with the tropopause and the
interaction of the tropopause wave with the surface were ignored. In the atmosphere these
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Figure 12.4: Idealized baroclinic environment in the Boussinesq approximation. The shaded
areas indicate the bounding surfaces. The tilt downward with y of the geopotential surfaces
in isentropic coordinates is geostrophically related to the increase in the x component of the
anbient wind with height.

interactions are quite important, and we now investigate a model in which they are con-
sidered. In order to make the analysis easier, the tropopause is replaced by an upper rigid
boundary, since the tropopause acts like such a boundary in the limit of a highly stable
stratosphere.

In the ambient �ow the two boundaries are assumed to have the same isentropic gradient
of geopotential with latitude, as illustrated in �gure 12.4. We further assume an f -plane with
uniform vertical Sθ and horizontal Sy shear in isentropic coordinates, so that the ambient
�ow takes the form

U = Sθ(θ − θR) + Syy. (12.55)
Note that the ambient �ow is taken to be zero at θ = θR and y = 0. Further assuming a
constant ambient isentropic density ηR, the ambient Montgomery potential consistent with
this wind is

M0 = −L2(θ − θR)2/2− fSθ(θ − θR)y − fSyy
2/2 (12.56)

where L2 = gηR/(ρrθR) as usual. The ambient Boussinesq geopotential is easily obtained as
well:

Φ0 = −θR
∂M0

∂θ
= θRL2(θ − θR) + fθRSθy. (12.57)

The ambient potential vorticity takes the simple form

q0 =
f − Sy

ηR

. (12.58)

Since this is constant, the potential vorticity advection equation is trivially satis�ed, which
means that system evolution governed by the advection of the potential temperature on the
upper and lower surfaces.

The ambient y-gradient of potential temperature on these surfaces (which have constant
geopotential) may be obtained by di�erentiating equation (12.57) with respect to y: ∂θ/∂y =



CHAPTER 12. MID-LATITUDE ATMOSPHERIC DYNAMICS 101

−fSθ/L
2. The ambient potential temperature distributions on the upper and lower surfaces

are therefore
θU0 = θT − (fSθ/L

2)y (12.59)
θL0 = θB − (fSθ/L

2)y (12.60)
where θT and θB are constant reference potential temperatures for the top and bottom
surfaces (see �gure 12.4). We demand that the ambient wind at the top surface be U0 =
Sθ(θT − θB)/2 and −U0 at the bottom surface for all y. Thus, in geometrical coordinates the
ambient wind pro�le is independent of height. As shown in equation (12.15), this results in
the constraint Sy = fS2

θ/L
2.

As in the last two sections, potential vorticity inversion is governed by equation (12.25),
which yields real exponential behavior of the disturbance Montgomery potential M∗ in θ
when space and time dependence of the form exp[i(kx− ωt)] is assumed. The form

M∗ = MT exp[µ(θ − θT )] + MB exp[−µ(θ − θB)] (12.61)

includes both upper and lower surface waves, where µ = kL/f as before, and is subject to
the boundary conditions

(
∂M∗

∂θ

)

T

= L2θ∗U

(
∂M∗

∂θ

)

B

= L2θ∗L (12.62)

as in the single surface wave case. The quantities θ∗U and θ∗L are the disturbance poten-
tial temperature perturbations at the upper and lower surfaces. Applying these boundary
conditions yields

µ[MT −MB exp(−µ∆θ)] = L2θ∗U (12.63)
and

µ[MT exp(−µ∆θ)−MB] = L2θ∗L (12.64)
where ∆θ = θT − θB.

The linearized temperature advection equations on the upper and lower surfaces are easily
found to be

∂θ∗U
∂t

+ U0
∂θ

∗
U

∂x
− 2U0

L2∆θ

(
∂M∗

∂x

)

T

= 0 (12.65)

and
∂θ∗L
∂t

− U0
∂θ

∗
L

∂x
− 2U0

L2∆θ

(
∂M∗

∂x

)

B

= 0. (12.66)

Substituting exp[i(kx− ωt)] as before yields

(c− U0)θ
∗
U +

2U0

L2∆θ
[MT + MB exp(−µ∆θ)] = 0 (12.67)

and
(c + U0)θ

∗
L +

2U0

L2∆θ
[MT exp(−µ∆θ) + MB] = 0 (12.68)

where we de�ne the disturbance's phase speed c = ω/k.
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Figure 12.5: Plot of equation (12.69), dispersion relation for baroclinic instability. Instability
occurs when Ω2 < 0, which is con�ned to the approximate range 0 < κ < 2.4. The maximum
growth rate occurs near κ = 1.6, at which point |Ω| = 0.62. For κ > 2.4, a steady propagating
wave occurs.

Equations (12.63), (12.64), (12.67), and (12.68) constitute a set of four linear, homoge-
neous equations in the four unknowns θ∗U , θ∗L, MT , and MB. Setting the determinant of the
coe�cients to zero to obtain the dispersion relation yields

Ω2 = −(2 + κ)2 exp(−2κ)− (2− κ)2

1− exp(−2κ)
(12.69)

where the frequency and wavenumber have been non-dimensionalized:

Ω =
L∆θ

fU0

ω κ =
L∆θ

f
k. (12.70)

With typical mid-latitude values L = 3.7 m s−1 K−1, ∆θ = 45 K, f = 10−4 s−1, and U0 =
20 m s−1, we calculate a scaling length L∆θ/f = 1700 km and a scaling time L∆θ/(fU0) =
1 d.

Figure 12.5 shows the dispersion relation for the baroclinic mode we are studying. In
the region where Ω2 < 0, we can write ω = ±iσ where σ is real. In this range the time
evolution of the mode takes the form exp(−iωt) = exp(±σt). The mode is stationary in
the reference frame we have used, and it either grows or decays in amplitude exponentially
with time, depending on the sign chosen. Modes of this type are called instabilities, as
small perturbations on the ambient �ow will ultimately grow in amplitude until their further
growth is limited by factors not accounted for in the linear analysis. The fastest growing
mode should eventually dominate if the initial perturbations are small. As �gure 12.5 shows,
this occurs when κ = 1.6, which for the case of the example discussed above corresponds to
a wavelength near 6700 km.
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12.5 Problems
1. Show that if the ambient zonal wind has the form U = C(θ − θR)2 rather than the

form shown in equation (12.4), the ambient isentropic density cannot be a constant
independent of y.

2. Redo the analysis of section 12.3.1 for the case in which the wave is con�ned to a
east-west channel of width w, as was done in the case of shallow water Rossby waves
caused by the beta e�ect. Compare the two solutions.


