
Chapter 7

Isopycnal and Isentropic Coordinates

The two-dimensional shallow water model can carry us only so far in geophysical �uid dynam-
ics. In this chapter we begin to investigate fully three-dimensional phenomena in geophysical
�uids using a type of model which builds on the insights obtained using the shallow water
model. This is done by treating a three-dimensional �uid as a stack of layers, each of con-
stant density (the ocean) or constant potential temperature (the atmosphere). Equations
similar to the shallow water equations apply to each layer, and the layer variable (density or
potential temperature) becomes the vertical coordinate of the model. This is feasible because
the requirement of convective stability requires this variable to be monotonic with geometric
height, decreasing with height in the case of water density in the ocean, and increasing with
height with potential temperature in the atmosphere. As long as the slope of model layers
remains small compared to unity, the coordinate axes remain close enough to orthogonal to
ignore the complex correction terms which otherwise appear in non-orthogonal coordinate
systems.

7.1 Isopycnal model for the ocean

The word isopycnal means �constant density�. Recall that an assumption behind the shallow
water equations is that the water have uniform density. For layered models of a three-
dimensional, incompressible �uid, we similarly assume that each layer is of uniform density.
We now see how the momentum, continuity, and hydrostatic equations appear in the context
of an isopycnal model.

7.1.1 Momentum equation

Recall that the horizontal (in terms of z) pressure gradient must be calculated, since it
appears in the horizontal momentum equations. Figure 7.1 shows how to calculate the
horizontal pressure gradient in terms of the pressure gradient taken parallel to the sloping
isopycnal layer. In particular, note that(

∂p

∂x

)
z

=
p2 − p1

∆x
, (7.1)
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Figure 7.1: Sketch to determine isopycnal pressure gradient. Points 1 and 3 have the same
density, whereas points 1 and 2 have the same value of z.

whereas (
∂p

∂x

)
ρ

=
p3 − p1

∆x
, (7.2)

where the subscripted z and ρ indicate respectively that the geometric height and the density
are held constant.

The hydrostatic equation tells us that

p2 − p3 = gρ∆z. (7.3)

Combining equations (7.1), (7.2), and (7.3) results in

1

ρ

(
∂p

∂x

)
z

=
1

ρ

(
∂p

∂x

)
ρ

+
∂Φ

∂x
, (7.4)

where
Φ = gz (7.5)

is called the geopotential.
We note that the density can be moved inside the x derivative in the �rst term on the

right side of equation (7.4), since the derivative is taken while holding ρ constant. Equation
(7.4) can therefore be rewritten

1

ρ

(
∂p

∂x

)
z

=

(
∂M

∂x

)
ρ

, (7.6)

where the Montgomery potential is de�ned

M = p/ρ+ Φ. (7.7)

Henceforth we drop the subscripted ρ, with the understanding that unlabelled x and y
partial derivatives implicitly hold the density rather than the geometrical height constant.
Based on our derivation of the momentum equation in the shallow water case, we have the
momentum equation for the isopycnal coordinate system

dv

dt
+ ∇M + f ẑ× v = F (7.8)
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where F is an externally imposed force per unit mass.
In isopycnal coordinates the total time derivative has the form

d

dt
=

∂

∂t
+ v ·∇ + Sρ

∂

∂ρ
(7.9)

where Sρ = dρ/dt is the vertical velocity of isopycnal coordinates. This is time rate of change
of density of a parcel, which is mainly related to changes in temperature and salinity of the
parcel. When these changes are absent, there is no vertical motion in isopycnal coordinates.
(Vertical motion still occurs in geometric or pressure coordinates as isopycnal surfaces move
up and down or as parcels slide up and down tilted isopycnal surfaces.)

7.1.2 Continuity equation

As derived previously in the shallow water case, the mass continuity equation for a layer of
�nite thickness h is

∂ρh

∂t
+ ∇ · (ρhv) = 0. (7.10)

In the ocean the layer refers to water between upper and lower surfaces of constant density ρ1
and ρ2, with density di�erence between the lower and upper surfaces equal to ∆ρ = ρ2− ρ1.
In a stably strati�ed ocean, the upper surface density is less than the lower surface density
and hence ∆ρ > 0. This equation comes from relating the �ow of mass in and out of a
stationary test volume to the time rate of change of mass in the volume.

The mean density ρ in the layer, which was originally included in the derivation of the
mass continuity equation but canceled out, has been reinserted. Its variability becomes
important when we generalize to the atmosphere, where the upper and lower layers have
constant potential temperature rather than density. The density in such a layer in the
atmosphere does not remain constant, and therefore cannot be factored out and canceled.

As we intend ultimately to let the layer thickness tend to zero and increase the number
of layers to in�nity, expressing mass continuity in terms of the thickness of the layer is not
satisfactory. However, the layer thickness can be represented as h = −∆ρ(∂z/∂ρ) where
∆ρ is the constant density di�erence across each layer. The minus sign comes from the
realization that ∂z/∂ρ is negative in a stably strati�ed ocean. Substituting this in equation
(7.10) and canceling the constant factor ∆ρ results in

∂η

∂t
+ ∇ · (ηv) = 0 (7.11)

where the density in isopycnal space is

η = −ρ∂z
∂ρ

= −ρ
g

∂Φ

∂ρ
. (7.12)

However, this is not the complete story. If Sρ is non-zero, then there is a vertical �ux of
mass in and out of the test volume in isopycnal coordinates. The vertical mass �ux is ηSρ,
and incorporating the �uxes through the top and bottom surfaces of the test volume results
in the extended equation

∂η

∂t
+ ∇ · (ηv) +

∂ηSρ
∂ρ

= 0. (7.13)
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7.1.3 Density-potential relation

We lack only a relationship between the density in isopycnal space and the Montgomery po-
tential to complete our system of governing equations for the ocean in isopycnal coordinates.

We start with the standard hydrostatic equation

∂p

∂z
= −gρ (7.14)

and change independent variables via the chain rule: ∂p/∂z = (∂p/∂ρ)(∂ρ/∂z). Using
∂ρ/∂z = (∂z/∂ρ)−1, we then get

∂p

∂ρ
= −gρ∂z

∂ρ
= −ρ∂Φ

∂ρ
= −∂ρΦ

∂ρ
+ Φ. (7.15)

Moving the derivative of ρΦ to the left side of the equation and using the de�nition of
Mongomery potential (7.7), we note that the hydrostatic equation takes the simple form

Φ =
∂ρM

∂ρ
(7.16)

in isopycnal coordinates. Combining this with equation (7.12) yields

η = −ρ
g

∂2ρM

∂ρ2
, (7.17)

which is the desired result. Equations (7.8), (7.11), and (7.17) form the complete set of
governing equations for isopycnal coordinates, with auxiliary de�nitions and relations (7.5),
(7.7), (7.12), and (7.16).

7.2 Isentropic model for the atmosphere

In the ocean the density is used as the vertical coordinate because water is (almost) in-
compressible and the density is therefore e�ectively conserved for many purposes. In the
atmosphere the dry entropy or potential temperature plays a similar role. In the atmosphere
we use the potential temperature as the vertical coordinate, giving us isentropic coordinates.
This is by far the simplest coordinate system in which to investigate large-scale atmospheric
phenomena.

7.2.1 Momentum equation

Recalling that dp/ρ = θdΠ where Π = Cp(p/pR)κ is the Exner function and θ is the potential
temperature, and using the same trick employed to get the horizontal pressure gradient in
the isopycnal coordinates of the ocean, we �nd that

θ

(
∂Π

∂x

)
z

= θ

(
∂Π

∂x

)
θ

+

(
∂Φ

∂x

)
θ

=
∂

∂x
(θΠ + Φ)θ =

(
∂M

∂x

)
θ

(7.18)
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where
M = θΠ + Φ (7.19)

is the isentropic coordinate Montgomery potential and

Φ = gz (7.20)

is the geopotential as before. The momentum equation thus becomes

dv

dt
+ ∇M + f ẑ× v = F (7.21)

as in isopycnal coordinates.
The total time derivative in isentropic coordinates is similar to that in isopycnal coordi-

nates
d

dt
=

∂

∂t
+ v ·∇ + Sθ

∂

∂θ
(7.22)

where Sθ = dθ/dt is the heating rate of a parcel. This heating is generally the result of solar
or thermal infrared radiation or latent heat release. As in isopycnal coordinates, there is no
vertical motion in isentropic coordinates if no parcel heating occurs.

7.2.2 Continuity equation

The isentropic density in the atmosphere is de�ned

η = ρ
∂z

∂θ
=
ρ

g

∂Φ

∂θ
. (7.23)

By analogy with the isopycnal case, the mass continuity equation becomes

∂η

∂t
+ ∇ · (ηv) +

∂ηSθ
∂θ

= 0. (7.24)

7.2.3 Density-potential relation

Given the de�nition of isentropic density by equation (7.23), we can rewrite the standard
hydrostatic equation ∂p/∂z = −gρ in isentropic coordinates as

∂p

∂θ
= −gη. (7.25)

Taking the θ derivative of the Montgomery potential and using the Exner function form of
the hydrostatic equation θ(∂Π/∂z) = −g gives us the identity

∂M

∂θ
= Π. (7.26)

Finally, writing the pressure in terms of the Exner function p = pR(Π/Cp)
1/κ and combining

equations (7.25) and (7.26) results in a relation between the isentropic density and the
Montgomery potential:

η = − ∂

∂θ

pR
g

(
1

Cp

∂M

∂θ

)1/κ
 . (7.27)
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In contrast to the isopycnal coordinate case, this relationship is nonlinear.
Equation (7.26) and the de�nition of Montgomery potential may also be used to derive

an equation for the geopotential:

Φ = M − θ∂M
∂θ

= −θ2 ∂
∂θ

(
M

θ

)
. (7.28)

The de�nition of Exner function Π = Cp(p/pR)κ plus that of potential temperature θ =
T (pR/p)

κ tells us that the Exner function can also be written Π = CpT/θ, from which
we can use equation (7.26) to derive the relationship between Montgomery potential and
temperature:

T =
θ

Cp

∂M

∂θ
. (7.29)

Figure 7.2 shows a typical tropical sounding in isentropic coordinates. This particular
sounding is a three-week average taken at 95◦ W, 10◦ N during September 2001 (Raymond
et al., 2004). Note how η diminishes above 350 K. This decrease represents the tropopause,
with the troposphere below and the stratosphere above. The isentropic density η increases
dramatically at the lowest levels due to the fact that the atmosphere tends to be near-
neutrally stable there, which means that ∂θ/∂z = ρ/η is small. The atmosphere has small
static stability just below the tropopause as well, i. e., near θ = 345 K in the tropics.

7.3 Geostrophic wind

Geostrophic balance comes from setting the acceleration term and the external force to zero
in the momentum equation, as in the shallow water case, resulting in

(vgx, vgy) =

(
− 1

f

∂M

∂y
,

1

f

∂M

∂x

)
(7.30)

which is similar to the shallow water results except that gh is replaced by the Montgomery
potential M .

For the atmosphere we get the so called thermal wind equations by taking the θ derivative
of the geostrophic balance equations and using equation (7.26):(

∂vgx
∂θ

,
∂vgy
∂θ

)
=

(
− 1

f

∂Π

∂y
,

1

f

∂Π

∂x

)
. (7.31)

Thus, the westerly wind increases with height in the northern hemisphere if surfaces of
constant Exner function (or pressure) tilt down toward the north in isentropic coordinates,
such that ∂Π/∂y < 0. Similar relations exist in the ocean.

7.4 Potential vorticity

The circulation theorem leads us to the potential vorticity in both the oceanic and atmo-
spheric cases. In the case of no friction or heating, the circulation theorem in three dimensions
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Figure 7.2: Typical tropical oceanic sounding in isentropic coordinates. Isentropic density η,
Exner function Π, geopotential Φ, and Montgomery potential M as a function of potential
temperature θ.
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Figure 7.3: Cylindrical pillbox with ends of area A separated by distance ∆z. The ends
coincide with constant potential temperature surfaces, so that the circulation loop Γ is
con�ned to a constant potential temperature surface as well.

gives us
dΓ

dt
= −

∮ dp

ρ
= −

∮
θdΠ (7.32)

where we recall that Π is the Exner function. The �rst form applies to the ocean, the second
to the atmosphere. If the circulation loop is con�ned to a layer of constant density (ocean) or
potential temperature (atmosphere) then we have closed line integrals of perfect di�erentials
and we are left in both cases with

dΓ

dt
= 0. (7.33)

Using arguments similar to those made for shallow water �ow, this equation reduces to

dq

dt
= 0 (7.34)

where the potential vorticity is de�ned

q =
ζa
η

(7.35)

for both isopycnal and isentropic coordinates, where

ζa = f +
∂vy
∂x
− ∂vx

∂y
(7.36)

is the absolute vorticity.

7.4.1 Potential vorticity evolution

We now derive the potential vorticity evolution equation in isentropic coordinates for the
case with frictional forces and heating. We begin with the identity

ζzẑ× v = v ·∇v −∇(v2/2), (7.37)

where ζz is the vertical component of relative vorticity, from which we rewrite the momentum
equation (7.21) as

∂v

∂t
+ ∇(M + v2/2) + Sθ

∂v

∂θ
+ ζaẑ× v = F. (7.38)
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Taking the vertical component of the curl of this equation results in the �ux form of the
vorticity equation

∂ζa
∂t

+ ∇ · (ζav + Z) = 0 (7.39)

where

Z =

(
Sθ
∂vy
∂θ
− Fy,−Sθ

∂vx
∂θ

+ Fx

)
. (7.40)

This equation shows that the vorticity tendency equals minus the horizontal divergence of
the advective �ux of vorticity ζzv and a non-advective �ux Z, which only occurs when there
is friction or heating in vertical shear of the horizontal wind.

Substitution of ζa = ηq (see equation (7.35)) results in the �ux form of the potential
vorticity equation

∂ηq

∂t
+ ∇ · (ηqv + Z) = 0, (7.41)

which in combination with the mass continuity equation (7.24) can be reduced to an advective
form:

dq

dt
= ζa

∂(ηSθ)

∂θ
+

ẑ ·∇× Z

η
. (7.42)

Haynes and McIntyre (1990) make an analogy between the potential vorticity q and the
mixing ratio of some substance such as water vapor. In this analogy ηq = ζa is the density of
potential vorticity substance just as ηr is the density of water substance (r is the mixing ratio
of water vapor). Integration of equation (7.41) over a volume in isentropic space bounded
by two isentropic surfaces shows that ∫

ηqdV = 0, (7.43)

i. e., the amount of potential vorticity substance between these two layers never changes.
(The integral is assumed to be carried out horizontally to a point where the horizontal �ux
of potential vorticity is zero.) This is called the impermeability theorem. In reality, it is just
a di�erent way of looking at the circulation theorem.

7.4.2 Potential vorticity inversion

Approximating velocities in the de�nition of potential vorticity given by equation (7.35) by
geostrophic velocities and eliminating η with equation (7.27) results in the potential vorticity
inversion equation

f +
∂

∂x

(
1

f

∂M

∂x

)
+

∂

∂y

(
1

f

∂M

∂y

)
+ q

∂

∂θ

pR
g

(
1

Cp

∂M

∂θ

)1/κ
 = 0. (7.44)

Given the potential vorticity distribution q(x, y, θ, t), this equation may in principle be solved
for the Montgomery potential, from which the isentropic density (7.27), Exner function
(7.26), geopotential (7.28), and geostrophic wind (7.30) may be derived. A similar equation
exists for isopycnal coordinates. However, note that whereas the isopycnal coordinate inver-
sion equation is linear, the isentropic equivalent is nonlinear, and thus more di�cult to solve
exactly.
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7.4.3 Ageostrophic �ow

Once the isentropic density η and the geostrophic �ow vg are diagnosed from the Montgomery
potential, the mass continuity equation can be used to determine the ageostrophic �ow.
Since the geostrophic �ow is primarily rotational, we assume that the ageostrophic �ow
is irrotational and divergent, and thus derivable from a velocity potential χ, va = −∇χ.
Substituting into the mass continuity equation (7.24) and realizing that ∇ · vg = −βvgy/f
where β = df/dy results in a diagnostic equation for χ:

η∇2χ+ ∇η ·∇χ =
∂η

∂t
+ vg · ∇η +

∂ηSθ
∂θ
− ηβvgy

f
. (7.45)

This is in the form of a modi�ed Poisson equation, with everything on the right side known.
The time derivative can be approximated by backward di�erencing in this case.

7.5 Boundary conditions

As long as the Coriolis parameter f and the potential vorticity q are of the same sign, equation
(7.44) is elliptic, with solutions in the interior of the domain governed by conditions on the
boundary. Of the boundary conditions, the most important are those at the upper and
lower surfaces. At the lower surface, g times the surface elevation d(x, y) must equal the
geopotential at the potential temperature of the air in contact with the surface θB(x, y, t):

gd(x, y) = Φ(θB). (7.46)

The potential temperature at the lower surface θB is simply advected along the surface
unless there is a surface potential temperature source SθB:

∂θB
∂t

+ vB ·∇θB = SθB, (7.47)

where vB is the �ow velocity at the lower boundary.
We assume that the pressure, and hence the Exner function, are zero at the upper bound-

ary. If the potential temperature θT is known there, then

Π(θT ) =

(
∂M

∂θ

)
T

= 0. (7.48)

Often it is su�cient to assume that θT is a constant independent of space and time at the
upper boundary. Otherwise θT obeys an equation analogous to equation (7.47).

7.6 Linearization in isentropic coordinates

Equations (7.44), (7.45), and (7.46) are nonlinear, and therefore di�cult to solve. Lineariza-
tion allows small amplitude solutions to be obtained. Let us assume that M = M0(θ) +M ′

whereM0(θ) is a reference pro�le of Montgomery potential, and de�ne similar splits in other
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dependent variables. Reference pro�les of geopotential Φ0(θ), Exner function Π0(θ), tem-
perature T0(θ), and isentropic density η0(θ) consistent with M0(θ) are obtained by using
equations (7.28), (7.26), (7.29), and (7.27) respectively. We also split the potential vorticity
into a reference pro�le plus a perturbation, q = q0(θ) + q′ where q0 = f/η0.

The linearizations used here leave the momentum equation (7.21) unchanged. However,
the mass continuity equation (7.24) becomes

∂η′

∂t
+ v ·∇η′ + η0∇ · v +

∂η0Sθ
∂θ

= 0 (7.49)

on the assumption that the isentropic vertical velocity Sθ is also a small perturbation quan-
tity.

The split of isentropic density into reference and linear perturbation parts is particularly
important to the linearized potential vorticity inversion equation. Linearization of equation
(7.27) results in a relation between the perturbation density and Montgomery potential

η′ = − ∂

∂θ

(
a0
∂M ′

∂θ

)
(7.50)

where

a0(θ) =
pR
gR

(
Π0(θ)

Cp

)1/κ−1

=
pR
gR

(
T0(θ)

θ

)1/κ−1

=
pR
gR

(
p

pR

)1−κ

. (7.51)

Analogous perturbation relations exist for geopotential

Φ′ = θ2
∂

∂θ

(
M ′

θ

)
(7.52)

and Exner function

Π′ =
∂M ′

∂θ
. (7.53)

The linearized form of the potential vorticity inversion equation (7.44) is thus

∂

∂x

(
1

f

∂M ′

∂x

)
+

∂

∂y

(
1

f

∂M ′

∂y

)
+ q0

∂

∂θ

(
a0
∂M ′

∂θ

)
= η0q

′ (7.54)

This is a generalized three-dimensional Poisson equation for M ′ in terms of q′ with poten-
tially variable coe�cients. The velocity potential equation derives from equation (7.49) and
simpli�es to a two-dimensional Poisson equation

η0∇2χ =
∂η′

∂t
+
∂η0Sθ
∂θ

− η0βvgy
f

. (7.55)

The lower boundary condition (7.46) is also nonlinear. In linearizing this equation we
de�ne θR as a constant reference potential temperature obeying the implicit equation

Φ0(θR) = 0. (7.56)
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We split the lower surface temperature into reference and perturbation parts θB(x, y, t) =
θR + θ′B(x, y, t), substitute this into equation (7.46), and use a Taylor series expansion to
approximate quantities at θ = θB in terms of quantities at θ = θR, e. g.,

X(θB) ≈ X(θR) +

(
∂X

∂θ

)
R

θ′B, (7.57)

to get

gd =

(
dΦ0

dθ

)
R

θ′B + Φ′(θR). (7.58)

Two terms are omitted in this linearization. The term Φ0(θR) is zero by virtue of equation
(7.56) and the term involving Φ′ and θ′B is nonlinear and therefore dropped. This lower
boundary condition is valid for small amplitude unbalanced solutions as well as for potential
vorticity inversions.

7.7 Boussinesq approximation

Under the so-called Boussinesq approximation the oceanic and atmospheric equations are
simpli�ed so as to make them tractable for analytic work. The degree of simpli�cation is
much more severe in the atmospheric case.

7.7.1 Atmosphere

The Boussinesq approximation in the atmospheric case is a simpli�cation of the linearized
isentropic equations which assumes that potential temperature and pressure variations small
compared to the actual potential temperature and pressure values. As a result we can assume
that a0 = aR is constant, resulting in

η′ = −aR
∂2M ′

∂θ2
. (7.59)

In addition, we simplify the geopotential perturbation equation to

Φ′ = −θR
∂M ′

∂θ
, (7.60)

which means that the Exner function perturbation di�ers from the geopotential perturbation
only by a constant factor:

Π′ =
∂M ′

∂θ
= −Φ′

θR
. (7.61)

The perturbation isentropic density can also be written in terms of the geopotential and
Exner function perturbations as

η′ = −aR
∂Π′

∂θ
=
aR
θR

∂Φ′

∂θ
.
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The potential vorticity inversion equation also simpli�es to

∂

∂x

(
1

f

∂M ′

∂x

)
+

∂

∂y

(
1

f

∂M ′

∂y

)
+ q0aR

∂2M ′

∂θ2
= η0q

′. (7.62)

The momentum equation (7.21) and the linearized mass continuity equation (7.49) are un-
changed. The only reference pro�le which survives this approximation is that of the isentropic
density η0(θ). The Boussinesq approximation is only quantitatively valid for small vertical
scales in the atmosphere, but the qualitative character of the solutions is in many cases
representative of the exact solutions in deep atmospheric layers.

7.7.2 Ocean

In the ocean we simply set the ordinary density to a constant reference density ρR in per-
turbation equations where this amounts to a very minor approximation. Thus the isopycnal
density equation (7.12) becomes

η′ = −ρR
g

∂Φ′

∂ρ
, (7.63)

and the geopotential equation (7.16) simpli�es to

Φ′ = ρR
∂M ′

∂ρ
, (7.64)

which means that the relationship between isopycnal density and Montgomery potential
becomes

η′ = −ρ
2
R

g

∂2M ′

∂ρ2
. (7.65)
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7.9 Laboratory

1. Convert a zonally averaged GFS run into isentropic coordinates and plot contours of
the zonal wind and Montgomery potential. Then plot contours of zonal wind shear
(∂vx/∂θ) and Exner function. Plot also contours of isentropic density and potential
vorticity. Finally, plot contours of geopotential.
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7.10 Problems

1. Suppose that the density in the ocean goes as ρ(z) = ρ0−∆ρ exp(z/d), assuming that
the ocean surface occurs at z = 0, with negative z downward.

(a) Determine the geopotential as a function of density.

(b) Determine the Montgomery potential as a function of density, assuming that the
pressure (and hence the Montgomery potential) is zero at the surface.

(c) Determine the pressure as a function of density.

(d) If ρ0 = 1037 kg m−3, ∆ρ = 8 kg m−3, d = 100 m, and the ocean is 4000 m deep,
determine the geometrical depth which corresponds to a depth equal to half the
depth of the ocean in isopycnal coordinates.

2. Consider an atmosphere with an isothermal reference pro�le T0(θ) = 300 K.

(a) From this compute the reference pro�le of Exner function and Montgomery po-
tential. Assume that the potential temperature equals the temperature at the
surface where the geopotential is also zero.

(b) Compute the reference pro�le of isentropic density.

(c) From the pro�le of Montgomery potential compute the reference pro�le of geopo-
tential.

(d) Compare your pro�les with those in the tropical pro�les shown in �gure 7.2 and
explain the di�erences.

3. Gravity waves in isentropic coordinates:

(a) Linearize the Boussinesq isentropic momentum and mass continuity equations
about a state of rest with a constant value of η0.

(b) Assume that vx and η′ are proportional to exp[i(kx + mθ − ωt)] and obtain the
dispersion relation ω(k,m, t).

(c) Compute the horizontal trace velocity utx = ω/k and determine how this depends
on the vertical wavenumber m.

(d) Compute the vertical group velocity of the resulting waves, ugθ = ∂ω/∂m, and
compare with the vertical trace velocity utθ = ω/m.


