
Chapter 2

Entropy, Water Vapor, and Precipitation

2.1 Basic equations
We assume the ideal gas law

p

ρ
=

RT

m
(2.1)

where p is the pressure, ρ is the density, T is the absolute temperature, m is the molecular
weight of the gas, and R is the universal gas constant. We also assume that the speci�c
entropy s, or entropy per unit mass, of an ideal gas is

s = Cp ln(T/TR)− (R/m) ln(p/pR) + sR (2.2)

where Cp is the speci�c heat at constant pressure, TR and pR are constant reference temper-
ature and pressure, and where sR is a constant reference entropy. These results come from
basic thermodynamics and are demonstrated in basic texts on thermodynamics.

For a mixture of ideal gases which don't interact, the total pressure equals the sum of
the partial pressures of the individual components pi, with a similar relation holding for the
partial densities ρi:

p =
∑

pi (2.3)

ρ =
∑

ρi. (2.4)
Solving equation (2.1) for the pressure and adding the pressures of all the partial components
together gives us the ideal gas law for a mixture

p =
RTρ

m
(2.5)

where the mean molecular weight is de�ned
1

m
=

1

ρ

∑ ρi

mi

. (2.6)

Mixing ratios are ratios of densities of various water phases in the atmosphere to the
density of dry air. Thus, the water vapor mixing ratio is

rv = ρv/ρd (2.7)
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where ρv and ρd are the densities of water vapor and dry air, and the liquid mixing ratio is

rl = ρl/ρd (2.8)

where ρl is the density of condensed water. Mixing ratios are conserved in parcel expansions
and contractions as long as no phase changes or liquid sedimentation (i. e., precipitation)
occur.

2.2 Rain
Normally condensation of water vapor in the atmosphere yields many small particles with
a typical diameter of ≈ 10−5 m. These cloud droplets tend to be carried along with the
air. The total water mixing ratio thus is conserved by parcels under these circumstances.
Expansion and cooling converts vapor to cloud droplets, whereas compression and warming
simply reverses this process.

Under the right conditions cloud droplets coalesce into larger drizzle and rain drops,
which fall relative to the air. The total water mixing ratio in a parcel therefore decreases
when cloud droplets convert to drizzle and rain and falls out. The reverse process can happen
as well. If rain falls through air which is unsaturated, evaporation occurs and the total water
mixing ratio of this air increases.

2.3 Entropy of moist air
The entropy is a useful variable in atmospheric dynamics because processes in the atmo-
sphere are generally slow in a thermodynamic sense. Entropy is therefore nearly conserved
in parcel expansions and compressions, even those in which evaporation, condensation, and
precipitation take place. Entropy increases primarily in irreversible mixing processes. For
a dry atmosphere, the entropy as de�ned by equation (2.2) is satisfactory. However, when
moisture is present, especially in condensed form, the entropy becomes somewhat more com-
plex. In this section we derive a formula for the entropy in the presence of both water vapor
and liquid water and then de�ne an approximate form useful in the study of atmospheric
dynamics. For complete �delity to the atmosphere, one must also introduce frozen conden-
sate. However that analysis is beyond the scope of this course. This treatment is based on
that of Emanuel (1994).

In the earth's atmosphere the speci�c entropy of the mixture of air, water vapor, and
condensed water is generally de�ned as the total entropy per unit mass of dry air. The
speci�c entropies of these three parts are

sd = Cpd ln(T/TR)−Rd ln(pd/pR) + sRd

sv = Cpv ln(T/TR)−Rv ln(pv/pR) + sRv

sl = Cl ln(T/TR) + sRl (2.9)

where as above the subscripted d, v, and l indicate dry air, water vapor, and liquid water,
and where Rd = R/md and Rv = R/mv. In terms of the mixing ratios for vapor and liquid,
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the total entropy per unit mass of dry air is

s = sd + rvsv + rlsl

= (Cpd + rvCpv + rlCl) ln(T/TR)−Rd ln(pd/pR)− rvRv ln(pv/pR)

+sRd + rvsRv + rlsRl (2.10)

De�ning the total water mixing ratio rt = rv + rl we can eliminate rl from this equation.
The vapor and liquid water mixing ratios vary as an air parcel undergoes condensation,
but the total water mixing ratio stays constant as long as no precipitation is formed or
evaporated. We can also rewrite pv/pR = Hes/pR where es is the saturation vapor pressure
for water vapor and H ≡ pv/es is the relative humidity. Equation (2.10) thus becomes

s = (Cpd + rtCl) ln(T/TR)−Rd ln(pd/pR)− rvRv ln(H)

−rv[(Cl − Cpv) ln(T/TR) + Rv ln(es/pR)− (sRv − sRl)]

+sRd + rtsRl, (2.11)

where Cpd = 1005 J K−1 kg−1, Cpv = 1850 J K−1 kg−1, Cl = 4218 J K−1 kg−1, Rd =
287 J K−1 kg−1, and Rv = 461 J K−1 kg−1.

The saturation vapor pressure of water vapor over a �at surface of pure water is to an
excellent approximation a function only of temperature:

eS(T ) = eSF

(
TF

T

)(Cl−Cpv)/Rv

exp
[
L0

Rv

(
1

TF

− 1

T

)]
, (2.12)

where TF = 273.15 K is the freezing point of water, eSF = 6.11 hPa is the saturation
vapor pressure at freezing, and L0 = 3.14 × 106 J kg−1 is the latent heat of condensation
extrapolated to 0 K without regard to changes in phase or the dependence of speci�c heats
on temperature. The latent heat of condensation L is not constant, but takes the form

L = LF − (Cl − Cpv)(T − TF ) (2.13)

where LF = 2.501 × 106 J kg−1 is a constant. Thus, L0 = LF + (Cl − Cpv)TF . The speci�c
entropy for a moist atmosphere thus becomes

s = (Cpd + rtCl) ln(T/TR)−Rd ln(pd/pR)− rvRv ln(H) + Lrv/T, (2.14)
where we have substituted equation (2.12) into equation (2.11) and have also taken the
liberty of setting sRd and sRl to zero. (See Emanuel, 1994.)

Equation (2.14) is too complex for our purposes. We simplify it by setting all mixing
ratios (which are small compared to unity in the earth's atmosphere) to zero except in the
latent heat term. This is justi�ed because the latent heat term is two orders of magnitude
larger than the other water vapor terms. In order to make this approximation consistent,
we also set T = TF in the latent heat term. This is necessary in order to make the total
entropy, the dry entropy, and the water vapor mixing ratio all constant in unsaturated parcel
expansions and contractions. We thus de�ne the approximate total entropy as

s ≈ sd + LF rv/TF (2.15)
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where
sd = Cpd ln(T/TR)−Rd ln(p/pR). (2.16)

Note that in this approximation we have also replaced pd by p.
A useful additional variable is the saturated entropy, obtained by replacing rv with its

saturated value rs and setting rl = 0:

ss = (Cpd + rsCl) ln(T/TR)−Rd ln(pd/pR) + Lrs/T. (2.17)

An approximate formula for the saturated entropy is obtained by making the same approx-
imations made above with respect to the moist entropy:

ss ≈ sd + LF rs/TF . (2.18)

Notice that whereas the total entropy is a function of temperature, pressure, vapor mixing
ratio, and in its exact form, liquid water mixing ratio, the saturated total entropy is a
function of just temperature and pressure. This is because

rs =
ρvs

ρd

=
mves(T )

mdpd

≈ εes(T )

p
(2.19)

where ε ≡ mv/ma, i. e., rs itself is a function only of temperature and pressure.

2.4 Potential temperatures
Meteorologists typically use potential temperatures more than entropies. A potential tem-
perature is the temperature a parcel would attain if it were compressed or expanded at
constant entropy (i. e., isentropically) to a standard pressure, which we take here as the
reference pressure pR. The usual choice for a standard pressure is 1000 hPa.

For the potential temperature θ the dry entropy is held constant, and θ is de�ned

θ = TR exp(sd/Cpd) = T (pR/p)Rd/Cpd . (2.20)

For an ideal diatomic gas (which closely approximates the actual properties of dry air),
γ ≡ Cpd/Cvd = 1.4, and since Cpd − Cvd = Rd, Rd/Cpd = (γ − 1)/γ = 0.286.

The equivalent potential temperature θe for our purposes can be taken as being analogous
to the potential temperature, but with the total entropy held constant:

θe = TR exp(s/Cpd) ≈ θ exp[LF rv/(CpdTF )]. (2.21)

The last expression in the above equation is the approximate form obtained from substitut-
ing equation (2.15) for the entropy. A word of warning: There are many di�erent ways to
de�ne equivalent potential temperature, involving many di�erent and incompatable approx-
imations. See Emanuel (1994) for further information.

The saturated equivalent potential temperature is obtained analogously from the satu-
rated entropy:

θes = TR exp(ss/Cpd) ≈ θ exp[LF rs/(CpdTF )]. (2.22)
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2.6 Problems
1. Di�erentiate the logrithm of equation (2.12) with respect to T to obtain a formula for

e−1
s des/dT . Note how this may be simpli�ed by writing it in terms of the temperature-
dependent latent heat of condensation L.

2. Determine how the temperature varies with pressure in the case of isentropic expansion
or compression in which there is water vapor but no condensation in the atmosphere.
In particular, if the temperature is T0 at the reference pressure, what is the temperature
for arbitrary pressure, assuming that entropy is conserved and no condensation occurs?
Hint: Eliminate pv in favor of rv, which is conserved in this case, in equation (2.10).

3. Derive an equation for the density of a mixture of dry air and water vapor as a function
of temperature T , pressure p, water vapor mixing ratio rv, and the constants Rd and
ε = mv/md.

(a) Compare to the corresponding expression for the density to that of the density
for dry air alone.

(b) De�ne a �virtual temperature� Tv, which makes the expression for the density of
a mixture of dry air and water vapor look like the density expression for dry air
alone when the the actual temperature is replaced by the virtual temperature.


