
Chapter 6

Friction, Ageostrophic Flow, and Oceans

In this chapter we complete our treatment of shallow water �ow and apply the lessons we
have learned to ocean circulations.

6.1 Ageostrophic �ow

So far in our treatment of nearly balanced �ows, we have assumed that the geostrophic
velocity is a su�ciently accurate representation of the actual velocity. An examination of
this approximation applied to the linearized continuity equation on an f -plane

∂η

∂t
+∇ · v = 0 (6.1)

is enough to disprove this idea. Substituting the geostrophic velocity
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into this equation and realizing that the Coriolis parameter f is constant on an f -plane, we
get
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= 0, (6.3)

i. e., the density �eld does not change with time!
Clearly this is incorrect. The continuity equation itself can be used to solve this problem.

Let us assume that the actual velocity is the sum of geostrophic and ageostrophic parts,
v = vg +va. In mathematical terms, the geostrophic wind is solenoidal, i. e., the divergence
of the geostrophic wind is zero.

Any vector �eld can be split into solenoidal and irrotational parts. The divergence of the
solenoidal part is (by de�nition) zero, while the curl of the irrotational part is zero. In order
to satisfy the continuity equation, we postulate that the ageostrophic �ow is irrotational but
not solenoidal. Given this assumption, the ageostrophic part of the �ow can be represented
as the gradient of a potential:

va = −∇χ (6.4)

The potential χ is called the velocity potential.
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Substitution of equation (6.4) into equation (6.1) results in a diagnostic equation for χ:

∇2χ =
∂η

∂t
. (6.5)

At �rst this equation appears less than useful, since the time derivative of the thickness
perturbation is needed to solve for χ. However, recall that the time history of η is known
from the repeated application of potential vorticity inversion at successive time steps. The
thickness perturbation can therefore be approximated by a backward di�erence,

∂η

∂t
≈ η(t)− η(t−∆t)

∆t
. (6.6)

Knowledge of the η �eld at the current and previous time steps is then su�cient to approx-
imate ∂η/∂t. This approximation becomes exact as ∆t→ 0.

Solution of the quasi-balanced problem then proceeds conceptually in three rather than
two steps:

1. Given the potential vorticity distribution at some time t, invert to obtain the thickness
perturbation �eld and from this compute the geostrophic velocity.

2. Given the thickness perturbation at times t and t−∆t, approximate ∂η/∂t by equation
(6.6) and solve for χ using equation (6.5). From χ compute the ageostrophic wind.

3. Use the sum of the geostrophic and ageostrophic �ows to advect the potential vorticity
distribution to the next time step. Repeat.

6.1.1 Simple ageostrophic �ow example

We now apply this theory to a simple example, which is an extension of a problem previously
studied. We postulate a potential vorticity perturbation on an f -plane of the form q′ =
q0Ktδ(x) where q0 = f/h0 and K is a constant. This corresponds to strong strip of potential
vorticity along the y axis which increases in magnitude with time. Inversion to obtain the
thickness perturbation yields

η = − Kt

2LR

exp(−|x|/LR). (6.7)

The geostrophic wind in this case is

vgx = 0 vgy =
fKtx

2|x|
exp(−|x|/LR) (6.8)

Since ∂2χ/∂y2 = 0 by symmetry in this case, vax = −∂χ/∂x can be obtained by direct
integration of equation (6.5). Since η is symmetric in x, vax is antisymmetric, which means
that vax = 0 at x = 0. Thus, we �nd

vax =
Kx

2|x|
[1− exp(−|x|/LR)] vay = 0. (6.9)
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Figure 6.1: Flow pattern due to a vertical stripe of potential vorticity which is increasing
with time. The vertical arrows represent the geostrophic �ow while the horizontal arrows
show the ageostrophic �ow.

Note that since the ageostrophic wind is zero at x = 0 and the geostrophic wind is to
the north and south, the pattern of potential vorticity does not change with time, and the
potential vorticity evolution step is therefore trivial.

Figure 6.1 shows the geostrophic and ageostrophic �ow resulting from the intensifying
vertical strip of potential vorticity. Physically, as the potential vorticity increases, the thick-
ness within about a Rossby radius of the potential vorticity strip decreases. The excess �uid
has to go somewhere, so it oozes out to the left and the right like toothpaste in a tube open
at both ends which is being squeezed in the center.

6.1.2 Geostrophic adjustment

At this point we note that while the balanced �ow resulting from a given potential vorticity
distribution and associated boundary conditions is unique, there are actually many unbal-

anced �ows which result in the given potential vorticity distribution. This arises from the
fact that the potential vorticity is determined by a combination of the vorticity distribu-
tion and the layer thickness distribution. Thus, any given potential vorticity pattern can
be produced totally by the vorticity �eld or totally by the thickness �eld. An example of
an unbalanced �ow which results in the potential vorticity distribution discussed in the last
section is shown in �gure 6.2. The thickness is uniform and the vorticity is only non-zero in a
strip along the y axis. The balance condition is actually a relationship between the thickness
distribution and the velocity distribution, which in combination with the way thickness and
vorticity produce potential vorticity, results in unique thickness and velocity �elds.

As seen in the last section, when the potential vorticity pattern is evolving in time,
the �ow pattern is not quite balanced, but has a signi�cant unbalanced or ageostrophic
component. A snapshot of this process is shown in �gure 6.3. The unbalanced Coriolis
force acting on the �ow on the right side of �gure 6.2 tends to rotate the velocity vector
clockwise, as illustrated in �gure 6.3. The resulting �ow away from the potential vorticity
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Figure 6.2: Unbalanced �ow which produces a strip of potential vorticity along y axis equiv-
alent to that shown in �gure 6.1.
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Figure 6.3: Evolving velocity, Coriolis force, and pressure gradient force to the right of the
line of potential vorticity in �gure 6.2.
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strip evacuates �uid from the vicinity of the strip, reducing the layer thickness there. This
produces a pressure gradient force back toward the strip, as shown in �gure 6.3. Meanwhile,
the y component of the Coriolis force tends to reduce the y velocity component at the same
time that the pressure gradient force reduces the x component of the velocity. Eventually the
mutual evolution of the velocity and thickness �elds results in a steady, balanced �ow pattern
when the potential vorticity anomaly is constant in time. If the potential vorticity pattern
is itself evolving, then this balanced state is never quite reached. However, the tendency of
the ageostrophic �ow in this case is to try to bring the overall �ow into geostrophic balance.
Often the di�erence between the actual �ow and the balanced �ow is relatively small.

6.2 E�ects of friction

The e�ects of friction, and in particular the frictional drag imposed by the atmosphere, are
key to understanding ocean circulation. We therefore incorporate friction our treatment of
potential vorticity.

6.2.1 Forces on ocean surface layer

The primary driving force on the surface layer of the ocean is the atmospheric wind stress,
expressed as a horizontal force per unit area of ocean surface, T. This vector takes the
approximate form

T = ρaCD|V|V (6.10)

where ρa is the air density, CD ≈ 1− 2× 10−3 is the dimensionless drag coe�cient, and V is
the air velocity near the surface minus the ocean velocity, generally approximated as just the
air velocity, since the ocean velocity is typically so much smaller. This formula has empirical
origins, and CD is generally a weak function of the wind speed.

Turbulent eddies distribute the e�ect of the surface stress through the depth of the surface
layer in the ocean, and the e�ective force per unit mass is

F =
T

ρwh
, (6.11)

where h is the depth of the surface layer.
Internal drag forces also operate between the ocean surface layer and deep water. These

forces turn out to be quite important, but models for them are less well formulated than the
atmospheric stress on the ocean surface.

6.2.2 Friction and potential vorticity

We previously discovered that the circulation theorem in a �uid of constant density in the
presence of an external force F becomes

dΓ

dt
=
∮

F · dl =
∫
∇× F · n̂dA = ∇× F · n̂A (6.12)
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where we have in addition applied Stokes' theorem and assumed that the resulting surface
integral can be approximated by a constant integrand value times the area bounded by the
circulation loop.

Applying the circulation theorem to a horizontal loop in a shallow water �ow allows us to
replace the unit normal n̂ to the loop by the vertical unit vector ẑ. Recall that the potential
vorticity q = ζa/h = Γ/V where ζa is the vertical component of the absolute vorticity, h is
the depth of the �uid, and V = hA is the volume of the �uid element. The time derivative
of the potential vorticity of a parcel under these conditions is

dq

dt
=

d

dt

(
Γ

V

)
=

1

V

dΓ

dt
− Γ

V 2

dV

dt
=
∇× F · ẑ

h
. (6.13)

The potential vorticity evolution equation thus becomes

∂q

∂t
+ v · ∇q =

∇× F · ẑ
h

. (6.14)

Equation (6.14) tells us that the potential vorticity of a parcel is increased if the z
component of the curl of the applied force is positive. Clearly conservative forces, which
have zero curl, have no e�ect on the potential vorticity distribution.

6.2.3 Simple example extended

We now hypothesize a simple force pattern of the form

F =
F0x

|x|
ŷ, (6.15)

i. e., the force points in the y direction and changes sign at x = 0. The curl of the force is
∇× F = 2F0δ(x)ẑ and potential vorticity evolution equation therefore takes the form

dq

dt
=

2F0δ(x)

h
. (6.16)

Assuming a uniform value of potential vorticity q0 = f/h0 everywhere but at x = 0, we �nd
that

q′ = q − q0 =
2F0tδ(x)

h
, (6.17)

where we anticipate that the resulting �uid �ow will simply advect potential vorticity along
the y axis, which allows us to ignore the advection term v ·∇q, since ∂q/∂y = 0 in this case.

Comparison with the assumptions of section 6.1.1 shows us that we have precisely the
same potential vorticity distribution in that case if we take 2F0/h = q0K. Further assuming
that h undergoes only small fractional changes allows us to approximate h by h0 in this
equation, resulting in K = 2F0/f . From equation (6.9) we see that the ageostrophic velocity
resulting in this situation can be written in terms of the force as

vax =
F0x

f |x|
[1− exp(−|x|/LR)] vay = 0, (6.18)

or in other words, vax = ±Fy/f more than a few Rossby radii from the y axis, where η, and
hence h, varies with position.
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Figure 6.4: Idealized ocean basin with sinusoidal east-west wind stress.

6.3 Ocean currents

We now explore several examples of real phenomena in the oceans, and how our newly
developed tools can be used to understand them.

6.3.1 Wind stress and ocean gyres � f-plane

Let us consider a highly idealized model of an ocean basin with a zonal (east-west) atmo-
spheric wind stress acting on it, as illustrated in �gure 6.4. The wind stress pattern is
meant to represent approximately that actually found in the northern hemisphere, with sur-
face westerly winds (i. e., from the west according to meteorological convection) north of
about 30◦ N and easterly winds south of this latitude. We represent this stress by the cosine
function

T = −T0 cos(πy/w)x̂, (6.19)

where T0 is a constant. Assuming that the depth of the surface layer of the ocean is h =
h0(1 + η) where |η| � 1 as usual, we approximate the force per unit mass in the surface
layer due to the wind stress as F = T/(ρwh0). The z component of the curl of this force is
∇× F = −[πT0/(ρwwh0)] sin(πy/w), and so the potential vorticity evolution equation is

∂q∗

∂t
+ v · ∇q∗ = − πT0

ρwwh20
sin(πy/w). (6.20)

where q = q0 + q∗, with q0 = f0/h0 as usual.
The perturbation potential vorticity contains a planetary part due to the variation of

Coriolis parameter with latitude, and a part due to the motion of the system. Let us
initially assume an f -plane, so that the latitudinal variability of the planetary part of the
potential vorticity is suppressed. This is highly unrealistic, but the solution to this problem
sets the stage for the more complex beta plane case. In this situation the advection term
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v · ∇q∗ is nonlinear in quantities having to do with the �ow of the ocean, and can therefore
be neglected in the initial small-amplitude evolution of the ocean circulation which occurs
shortly after the surface stress is turned on. In this case we have

q∗ = − πT0t

ρwwh20
sin(πy/w), (6.21)

i. e., the potential vorticity initially just decreases in place due to the pattern of wind stress.
The inversion equation for the thickness perturbation is

L2
R∇2η − η =

q∗

q0
= − πT0t

ρwwh0f0
sin(πy/w) ≡ −ε sin(πy/w), (6.22)

where we have encapsulated the expression multiplying the sine function into the single
variable ε. The solution to equation (6.22) can be divided into inhomogeneous and homo-
geneous parts, η = ηI + ηH . The inhomogeneous part can be written ηI = ηI0 sin(πy/w),
where ηI0 = ε/(1 + π2L2

R/w
2).

We now need to choose a homogeneous solution, i. e., one with ε set to zero in equation
(6.22), which together with the inhomogeneous solution satis�es the boundary conditions
of no �ow through the side walls of the ocean basin. Technically, we need to arrange for
the normal component of the sum of the geostrophic and ageostrophic �ows to be zero on
each side wall. However, since the ageostrophic part of the �ow is generally small compared
with the geostrophic part, we settle for the technically less demanding condition that the
component of the geostrophic velocity normal to the boundary be zero there. This condition
is satis�ed by requiring that η = 0 everywhere on the boundary.

A solution satisfying this condition is

ηH = ηH0{exp[−σ(x+ d/2)] + exp[σ(x− d/2)]} sin(πy/w), (6.23)

where
ηH0 = − ε

(1 + π2L2
R/w

2)[1 + exp(−σd)]
(6.24)

and where

σ =

(
π2

w2
+

1

L2
R

)1/2

. (6.25)

Recall that the oceanic Rossby radius for the internal mode is of order 50 km, whereas
typical ocean basin dimensions (d and w) are thousands of kilometers. This leads to the
simpli�cations that ηH0 ≈ −εw2/(πLR)2 and σ ≈ 1/LR.

Contours of constant η are shown in �gure 6.4, with arrows showing the �ow pattern.
The surface layer is thicker in the center of the ocean, consonant with the negative potential
vorticity perturbation there. Arrows show the resulting geostrophic �ow, which in the interior
of the ocean basin tends to follow the pattern of surface stress. However, within a few Rossby
radii of the east and west coasts the regime is quite di�erent, with strong thickness gradients
and correspondingly strong coastal jets, moving southward on the eastern boundary and
northward on the western boundary in the northern hemisphere. The circulation in the
southern hemisphere has the opposite sense due to the negative value of f0 there.
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Figure 6.5: E�ect of eastern and western boundary currents on potential vorticity distribu-
tion. The potential vorticity contours have q4 > q3 > q2 > q1, so that the advection due to
the boundary currents causes a positive potential vorticity anomaly in the eastern boundary
current and a negative anomaly in the western current.

As indicated, this solution is only valid for small amplitudes. As the circulation builds
up under continuing wind stress, nonlinear e�ects eventually begin to modify the solution.
Ultimately dissipation must begin to counteract the continual buildup of energy in the ocean
circulation.

6.3.2 Wind stress and ocean gyres � beta-plane

The initial solution for the case of latitudinally varying Coriolis parameter is identical to
the f -plane case. The beta e�ect only enters when advection of potential vorticity becomes
signi�cant. Nonlinear e�ects enter much earlier in the beta-plane case than for an f -plane,
and following the detailed evolution of the �ow becomes di�cult or impossible. However, it
is possible to make signi�cant inferences about the �nal, equilibrium state of the �ow.

In order to get at least a qualitative picture of how the �ow evolves in the presence of
the beta e�ect, notice how the eastern and western boundary currents advect the potential
vorticity, resulting in a positive potential vorticity anomaly in the eastern current and a
negative anomaly in the western current. Both currents have anticyclonic relative vorticity.
In the eastern boundary current the positive potential vorticity anomaly creates a positive
relative vorticity anomaly, which opposes the relative vorticity anomaly in the jet, reducing
the jet strength. Eventually the positive anomaly increases su�ciently to cancel the negative
anomaly completely, and the eastern boundary current comes to a halt. On the other
hand, the negative potential vorticity anomaly in the western boundary current produces
a negative relative vorticity anomaly which reinforces the anomaly pre-existing in the jet.
This strengthens the jet, which increases the potential vorticity anomaly, which further
strengthens the jet, etc., resulting in a runaway situation.

The kinks in the potential vorticity contours produced in the eastern boundary current
propagate to the west as Rossby waves. Rossby wave adjustment continues until the contours
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Figure 6.6: Idealized ocean circulation with the illustrated stress. Sverdrup �ow occurs in the
interior and eastern boundary, whereas western boundary current dynamics applies within
a few Rossby radii of the western boundary.

become aligned perfectly east-west everywhere except for the western boundary region, where
the very strong jet there does not allow equilibration to occur.

When a steady situation is reached everywhere except near the western boundary, the
decrease in potential vorticity due to the wind stress curl is counterbalanced by a southward
�ow. This balance is called Sverdrup balance after the Norwegian oceanographer who devel-
oped the theory of this phenomenon. In terms of the potential vorticity advection equation,
the balance is expressed

vy
∂q

∂y
=

(
∂q∗

∂t

)
stress

= − πT0
ρwwh20

sin(πy/w) (6.26)

where q∗ is obtained from equation (6.21). Assuming that the thickness of the surface layer
does not change much over the ocean, we have q ≈ q0 + βy/h0, and the drift velocity is

vy = − πT0
ρwwh0β

sin(πy/w). (6.27)

Since the y component of the �ow is speci�ed everywhere, the x component can be
obtained from the continuity equation, again assuming that h ≈ h0. In this case the steady
state continuity equation is

∂vx
∂x

+
∂vy
∂y

= 0. (6.28)

This may be integrated in x to obtain

vx =
π2T0(x− d/2)

ρww2h0β
cos(πy/w), (6.29)
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where we have set the constant of integration (which is actually a function of y) so that
vx = 0 at the eastern boundary as de�ned in �gure 6.4. Notice that vx 6= 0 at the western
boundary. This is because the solution is not valid in the western boundary region itself. In
e�ect, the east-west velocity adjacent to the boundary current serves as a mass sink-source
for the current. The resulting circulation is illustrated in �gure 6.6.

Comparison with actual ocean circulations shows good agreement with Sverdrup �ow
and the implied western boundary current �ow from the subtropics north to near the axis
of the mid-latitude westerly winds. North of this nonlinear e�ects enter strongly, resulting
in a complex, time-dependent structure for the western boundary current.

The real signi�cance of western boundary currents from our point of view is that they
transport large quantities of warm water from the subtropics to high latitudes. They are thus
key elements in the redistribution of solar heating. The unit of transport volume transport
in the ocean is named after Sverdrup: 1 Sv = 106 m3 s−1. The Gulf Stream, which is a
western boundary current o� the east coast of the United States, transports approximately
25 Sv of water from the Gulf of Mexico into the north Atlantic. Further north the transport
is even greater.

6.4 Problems

1. Given the solution for a Rossby wave (LR = 1, f = 1) in a channel with tilted bottom,
η = −µy + η0 sin(πy/w) cos(kx − ωt), with ω = −µk/(1 + k2 + π2/w2), compute the
ageostrophic wind by taking the following steps:

(a) Compute the inhomogeneous solution to the velocity potential χ equation ∇2χ =
∂η/∂t. Hint: Assume that χ = F (y) sin(kx − ωt) where F (y) is a function of y
alone, so that ∂2χ/∂x2 = −k2χ, thus simplifying ∇2χ.

(b) Notice that the trial ageostrophic wind computed from the inhomogeneous part of
the velocity potential does not satisfy the boundary conditions vay = −∂χ/∂y = 0
at y = 0, w. Find the homogeneous solution to the velocity potential equation
which, when added to the inhomogeneous solution, results in an ageostrophic
wind which satis�es these boundary conditions. Hint: Note that the equation for
the homogeneous part of F is

d2F

dy2
− k2F = 0.

This has real exponentials as solutions. Given the symmetry of the problem, try
a solution of the form A exp[−ky] +B exp[k(y−w)] where A and B are constants
to be adjusted to satisfy the boundary conditions.

2. Sverdrup drift and the Gulf Stream:

(a) Putting in reasonable values for the dimensions of the Atlantic Ocean, the depth of
the upper oceanic layer (try 100 m), and the strength of the wind stress, estimate
mass of water per unit time drifting south at the latitude of maximum anticyclonic
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wind stress curl. This equals the northward mass transport in the Gulf Stream
at that latitude. Make a reasonable estimate for the maximum wind stress T0.

(b) Assuming that the Gulf Stream is one Rossby radius wide, what is the estimated
northward �ow velocity in the Gulf Stream? Note that the Rossby radius in this
case should be based on the equivalent depth rather than the actual depth of the
layer, since the entire oceanic gyre is an internal mode involving mainly motions
in the upper oceanic layer.

3. If the Gulf Stream is 10◦ C warmer than the main body of the upper ocean, use the
results of the above problem to estimate the net northward transport of heat due to
the ocean gyre, of which the Gulf Stream is the northward branch. Compare this
result to the actual meridional ocean transport of heat. Hint: This transport is equal
to the mass per unit time transported by the Gulf Stream times the di�erence in the
internal energy content per unit mass between the northward-�owing Gulf Stream and
the main body of the upper ocean.


