
Chapter 7

Atmospheric Models

An accurate model of the atmosphere requires the representation of continuous vertical pro-
�les, leading to a fully three-dimensional treatment. However, many aspects of atmospheric
�ow can be represented qualitatively by a small number of layers. In this chapter we consider
single and two layer models of the atmosphere.

7.1 Atmospheric structure

Figure 7.1 shows a highly schematic pro�le of the potential temperature in the earth's at-
mosphere. Typically, a boundary layer exists next to the earth's surface which has nearly
constant potential temperature through its depth. Above the tropopause in the stratosphere
the potential temperature increases strongly with height. The free troposphere between the
top of the boundary layer and the tropopause exhibits a less strong increase in potential
temperature with height than the stratosphere. The boundary layer thickness ranges typi-
cally from 500 m over the ocean to 2 − 3 km over land, while the tropopause ranges from
8 km above sea level in polar regions to 16 km in the tropics.

7.2 Single layer model of atmosphere

Recall that the hydrostatic equation in terms of potential temperature and Exner function
is

θ
∂Π

∂z
= −g (7.1)

where g is the acceleration of gravity. This is useful for layer models of the atmosphere
in which the potential temperature is constant in each layer, since the layer thickness h is
proportional to the change in Exner function across the layer:

h = −θ∆Π/g. (7.2)

Though of limited applicability, we could in principle de�ne a single layer model of the
earth's atmosphere with a uniformly constant potential temperature equal to the average
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Figure 7.1: Schematic pro�le of potential temperature as a function of height in the earth's
atmosphere.

potential temperature θ of the atmosphere. From the hydrostatic equation (7.1) the Exner
function as a function of height would be

Π =
g(h+ d− z)

θ
(7.3)

where d(x, y) is the terrain height. In the atmospheric momentum equation we replace
ρ−1∇p with θ∇Π. The horizontal pressure gradient term in this case is θ∇Π = g∇h, and
the momentum equation is therefore

dv

dt
+ g∇(h+ d) + f ẑ× v = F (7.4)

where F is an externally applied force, typically surface friction. Notice that this equation
is identical to the momentum equation for the shallow water �ow of an incompressible �uid.

The mass per unit area in a layer of �uid of thickness h is ρh where ρ is the vertical
average of the density over the layer. The mass continuity equation thus becomes

∂ρh

∂t
+ ∇ · (ρhv) = ρM (7.5)

where a mass source term ρM has been added to this equation.
For a nearly incompressible �uid of almost uniform density such as ocean water, the

average density ρ can be accurately approximated by a constant value, which as we saw
earlier can then be extracted from the space and time derivatives. A similar approximation is
sometimes used for the atmosphere. This has the e�ect of making the atmospheric governing
equations identical to those for the ocean, but is less justi�ed in the case of the atmosphere
than it is in the ocean. In this approximation we equate ρ to the mean density of the
atmospheric layer in its unperturbed state, ρm. This could be obtained by dividing the mass
per unit area in the layer ∆p0/g by the layer thickness:

ρm =
∆p0
gh

. (7.6)
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The quantity ∆p0 is the constant pressure thickness of the layer in the reference state.
Since the density is now taken to be constant, the mass continuity equation can then be
approximated by

∂h

∂t
+ ∇ · (hv) = M, (7.7)

which is identical to the mass continuity equation for an incompressible �uid.

7.2.1 Geostrophic wind

As in the oceanic case, one can de�ne a geostrophic wind, which results from a balance
between the pressure gradient and Coriolis forces in the case of no terrain:

vgx = − g
f

∂h

∂y
vgy =

g

f

∂h

∂x
. (7.8)

7.2.2 Surface friction

Recall that the force per unit area of the atmosphere on the ocean is given by the so-called
bulk �ux formula. By Newton's third law, the force of the ocean on the atmosphere is equal
and opposite to the force of the atmosphere on the ocean resulting in a frictional force per
unit area on the atmosphere of

T = −ρCD|v|v (7.9)

where ρ is the atmospheric density at the surface, v is the atmospheric surface wind (actually
the wind minus the surface ocean current), and CD ≈ 1− 2× 10−3 is the drag coe�cient.

The atmosphere generally has a turbulent, neutrally strati�ed layer next to the surface
known as the boundary layer in which surface friction is thought to be distributed more
or less uniformly. The force per unit mass acting on the air in the boundary layer is thus
F = T/(ρh) where h is the thickness of the boundary layer. As noted above, in the free
atmosphere above the boundary layer we often approximate the �ow by the geostrophic
wind, which is a result of geostrophic balance, i. e., a balance between the pressure gradient
force and the Coriolis force. In the boundary layer a better approximation is a three-way
balance between the pressure gradient force, the Coriolis force, and surface friction. This
balance is called Ekman balance, and as with geostrophic balance, it is obtained by ignoring
parcel accelerations.

In a single layer model we can write the two components of the momentum equation
absent the acceleration terms as

g
∂h

∂x
− fvy + (CDv/h)vx = 0 (7.10)

g
∂h

∂y
+ fvx + (CDv/h)vy = 0 (7.11)

where v = (v2x + v2y)1/2.
Let us specialize to the case in which ∂h/∂x = 0, which constitutes no loss of generality

since we can orient the coordinate axes any way we like. We divide equations (7.10) and
(7.11) by f and recognize −(g/f)(∂h/∂y) as the geostrophic wind in the x direction, vgx.
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Figure 7.2: Illustration of geostrophic wind and Ekman balance wind in the atmospheric
boundary layer.

Further de�ning ε = CD/(hf) as a measure of the strength of friction, (7.10) and (7.11)
simplify to

εvvx − vy = 0 (7.12)

vx + εvvy = vgx (7.13)

with the resulting solutions

vx =
vgx

1 + ε2v2
vy =

εvvgx
1 + ε2v2

. (7.14)

These solutions are not completely explicit, because v remains undetermined. However,
squaring and adding the equations for vx and vy results in a quadratic equation for v2 which
has the solution

v2 =
(1 + 4ε2v2gx)1/2 − 1

2ε2
. (7.15)

A not very accurate approximation to equation (7.14) is to assume that v is constant, pre-
sumably taking on a value determined by the mean geostrophic wind in equation (7.15).
This linear Ekman balance approximation is used when a linear relationship between the
boundary layer wind and the geostrophic wind is needed to simplify computations.

Figure 7.2 provides a schematic illustration of the boundary layer wind resulting from
Ekman balance. In this �gure the thickness decreases to the north, resulting in the illustrated
geostrophic wind (assuming f > 0). The Ekman balance wind is smaller in magnitude and
is rotated in direction down the thickness or pressure gradient.

The single layer model of the boundary layer ignores the e�ect of the overlying atmo-
sphere, which is a major approximation. If the free troposphere is approximated as the upper
layer in a two-layer model, the �ow in the boundary layer responds to the thickness gradient
in this layer as well as in the boundary layer.

7.2.3 Potential vorticity in single layer model

The treatment of potential vorticity q in our constant layer density atmospheric model is
identical to that in the single layer shallow water model studied earlier with the exception
that the mass source M must be accounted for in the potential vorticity evolution and
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ageostrophic velocity equations. We earlier derived the expression for potential vorticity
evolution

dq

dt
=

1

V

dΓ

dt
− Γ

V 2

dV

dt
(7.16)

where Γ = Aζa is the circulation around a test volume V = Ah and the potential vorticity is
q = ζa/h, where ζa is the absolute vorticity. The �rst term on the right side of this equation
equals ∇ × F · ẑ/h by the circulation theorem. Previously we set dV/dt to zero. However,
with a mass source M in the continuity equation this is no longer true; more properly, M
is a volume source per unit area, which means that dV/dt = MA. Thus, equation (7.16)
becomes

dq

dt
=

∇× F · ẑ
h

− qM

h
. (7.17)

The linearized potential vorticity inversion equation takes the form

c2

f
∇ ·

[
1

f
∇ (η + d/h0)

]
− η = q′/q0 (7.18)

where we have retained the possibility of a Coriolis parameter f(y) which varies with latitude.
The thickness has been written h = h0(1 + η) as usual and the reference potential vorticity
q0 = f/h0 also varies with latitude. The Rossby radius as previously de�ned is not a constant,
so we do not the above equation in terms of this quantity. Instead, we write gh0 = c2, the
square of the gravity wave speed.

The addition of a mass source term to the mass continuity equation (7.7) results in an
additional term in the linearized ageostrophic wind equation as well:

∇2χ =
∂η

∂t
− M

h0
, (7.19)

where we recall that the velocity potential χ provides the ageostrophic wind va = −∇χ.

7.3 Two-layer model

The single layer model of the atmosphere is of limited validity, and as in the ocean, a two
layer model describes a much wider range of observed phenomena. Figure 7.3 shows a model
of the atmosphere containing two homogeneous layers with constant potential temperature
θ. The upper layer has potential temperature θ1 and thickness h1, while θ2 and h2 represent
the corresponding variables for the lower layer.

We compute the Exner function in layer 1 to be

Π1 =
g

θ1
(h1 + h2 + d− z), (7.20)

where we have assumed that Π = 0 at the top of layer 1. The Exner function at the interface
between the layers is

ΠI =
g

θ1
h1 (7.21)
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Figure 7.3: Two layer model of the atmosphere. The e�ect of terrain is represented by the
terrain height d(x, y).

and in layer 2 is

Π2 = ΠI +
g

θ2
(h2 + d− z) = g[h1/θ1 + (h2 + d− z)/θ2]. (7.22)

The surface Exner function (z = d) is thus

ΠS = g(h1/θ1 + h2/θ2). (7.23)

Proceeding as in the single layer model, the momentum equations for the two layers are
therefore

dv1

dt
+ g∇(h1 + h2 + d) + f ẑ× v1 = F1, (7.24)

dv2

dt
+ g∇(ν2h1 + h2 + d) + f ẑ× v2 = F2 (7.25)

where ν2 = θ2/θ1. These look a lot like the corresponding momentum equations for the two
layer ocean, the only di�erence being the replacement of ρ1/ρ2 by ν

2 = θ2/θ1. For generality
an arbitrary external force per unit mass is included for each level.

The mass continuity equations for the constant layer density approximation are derived
as in the single layer case, resulting in

∂h1
∂t

+∇ · (h1v1) = M1 (7.26)

∂h2
∂t

+∇ · (h2v2) = M2, (7.27)

where as in the single layer case we have added source terms M1 and M2. The quantities
ρm1M1 and ρm2M2 represent the mass of air per unit area added to each layer as a result of
heating or cooling associated with convection or radiation. The quantities ρm1 and ρm2 are
the (constant) mean densities in each layer in analogy with ρm de�ned above for the single
layer model. Conservation of mass implies that mass lost in one layer reappears in the other
layer, i. e.,

ρm1M1 + ρm2M2 = 0. (7.28)
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Figure 7.4: Sketch of the potential temperature as a function of pressure in the two layer
model (thick lines) and the constant gradient pro�le it is assumed to approximate (slanted
thin lines).

We think of the two layer model as approximating an atmosphere with a constant gradient
in potential temperature with respect to pressure, as illustrated in �gure 7.4. The level
separating the upper and lower layers is adjusted so that the average potential temperature
in each layer of the actual atmosphere is the same as the potential temperature of the layer.
In this way an atmosphere with horizontal variability in mass-weighted average potential
temperature (but no variation in vertical structure) can be represented approximately by
the two-layer model. The mean potential temperature of the atmosphere in this model is
given by

θm =
ρm1h1θ1 + ρm2h2θ2
ρm1h1 + ρm2h2

. (7.29)

The surface potential temperature is sometimes needed for calculating surface heat �uxes.
Examination of �gure 7.4 shows that the actual surface potential temperature, as opposed
to θ2 the potential temperature of the lower layer, is given by

θS = θm − (θ1 − θ2). (7.30)

A similar equation gives us the temperature at the tropopause:

θT = θm + (θ1 − θ2). (7.31)

We sometimes need the surface and tropopause winds as well. Assuming constant shear
through the troposphere, similar reasoning yields

vS = vm − (v1 − v2) vT = vm + (v1 − v2) (7.32)

where vm is the mass-weighted mean of the upper and lower layer winds.

7.3.1 External and internal modes

As with the two-layer ocean model, external and internal modes exist in this model. Here we
develop independent governing equations for these two modes in the special case in which the
mean thicknesses of the two layers are the same, h. This case is particularly easy to analyze.
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Assuming that h1 = h(1 + η1) and h2 = h(1 + η2), we �rst investigate free, non-rotating
gravity waves on a horizontally homogeneous environment at rest. The linearized governing
equations are for waves moving in the x direction are

∂v1
∂t

+ gh
∂

∂x
(η1 + η2) = 0 (7.33)

∂v2
∂t

+ gh
∂

∂x

(
ν2η1 + η2

)
= 0 (7.34)

∂η1
∂t

+
∂v1
∂x

= 0 (7.35)

∂η2
∂t

+
∂v2
∂x

= 0 (7.36)

where v1 and v2 are the x components of the velocity. Assuming waves of the form exp[i(kx−
ωt)] and de�ning the phase velocity as c = ω/k, we note that v1 = cη1 and v2 = cη2. The
result is the set of homogeneous equations represented in matrix form as(

−c2 + gh gh
ν2gh −c2 + gh

)(
η1
η2

)
= 0 (7.37)

which has the secular equation

c4 − 2c2gh+ (1− ν2)g2h2 = 0. (7.38)

This equation has two solutions, the external mode with c2 = c2X = gh(1 + ν) and
polarization relation η2 = νη1, and the internal mode with c2 = c2I = gh(1−ν) and η2 = −νη1.
Given these polarization relations, we can de�ne external and internal fractional thickness
variations

ηX =
νη1 + η2

2
ηI =

νη1 − η2
2

(7.39)

and corresponding external and internal velocity variations

vX =
νv1 + v2

2
= cXηX vI =

νv1 − v2
2

= cIηI . (7.40)

Inverting these, we see that

η1 = (ηX + ηI)/ν η2 = ηX − ηI , (7.41)

etc. For a pure external mode, the internal mode dependent variables are zero, which means
that velocities and thickness perturbations in the two layers are related by η2 = νη1 and
v2 = νv1. Similarly a purely internal mode has η2 = −νη1 and v2 = −νv1. In other words, in
an approximate sense, the two layers vary in phase for the external mode and out of phase
for the internal mode.

The non-rotating gravity wave case we analyzed above is a very special case. However,
Linearizing the full governing equations (7.24)-(7.27) about a state of rest and combining
them in a manner to be described results in explicit equations for the external

∂vX

∂t
+ c2X∇(ηX + d/2h) + f ẑ× vX = FX (7.42)
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∂ηX
∂t

+ ∇ · vX =
MX

h
(7.43)

and internal
∂vI

∂t
+ c2I∇(ηI + d/2h) + f ẑ× vI = FI (7.44)

∂ηI
∂t

+ ∇ · vI =
MI

h
(7.45)

modes. These equations are obtained respectively for the external and internal modes by
adding and subtracting the layer 2 equations from ν times the corresponding layer 1 equations
and dividing by 2. Thus, FX = (νF1 + F2)/2, FI = (νF1 − F2)/2, MX = (νM1 + M2)/2,
and MI = (νM1 − M2)/2. Inverting to get the layer velocities and fractional thickness
perturbations results in

v1 = (vX + vI)/ν v2 = vX − vI (7.46)

and
η1 = (ηX + ηI)/ν η2 = ηX − ηI . (7.47)

This superposition process only works for the linearized equations. If the advection or source
terms in the momentum equations are important, the superposition process does not provide
a clean separation between the internal and external modes. However, the decomposition
of two-layer motions into these modes can be useful even in the presence of inhomogeneous
terms.

We now make the Boussinesq approximation, which sets the densities equal in the two
layers:

ρm1 = ρm2 ≡ ρm. (7.48)

This choice in conjunction with equation (7.28) simpli�es the the relationship between mean
potential temperature and fractional thickness perturbations. In linearized form we have

θm = θm0 + (η1 − η2)(θ1 − θ2)/4
= θm0 + θmXηx + θmIηI . (7.49)

where θm0 = (θ1 + θ2)/2 is the average of the potential temperature in the two layers under
unperturbed conditions, θmX = (1− ν)(θ1 − θ2)/(4ν), and θmI = (1 + ν)(θ1 − θ2)/(4ν). The
internal mode contributes much more strongly to mean temperature changes than does the
external mode.

Starting from equation (7.32), we approximate the mean wind as the external mode wind
and the di�erence between the upper and lower layer winds as twice the internal mode wind
in order to make estimates of the surface and tropopause winds under our internal-external
mode model:

vS ≈ vX − 2vI vT ≈ vX + 2vI . (7.50)
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7.3.2 Geostrophic balance

As with the single layer model, we can de�ne geostrophic winds in the two layer model.
The most fruitful way to represent these winds is in the context of the external and internal
modes. For the two modes we have

vXg =
c2X
f

(
−∂ηX
∂y

,
∂ηX
∂x

)
vIg =

c2I
f

(
−∂ηI
∂y

,
∂ηI
∂x

)
. (7.51)

Given that θmX � θmI , ∇θm ≈ θmI∇ηI

∇θm ≈ θmI∇ηI = −(θmIf/c
2
I)ẑ× vIg. (7.52)

This is called the thermal wind, since the magnitude of the internal mode wind is proportional
to the horizontal temperature gradient. This �wind� actually represents nearly opposing
winds in the upper and lower layers.

7.3.3 E�ect of heating

In our two-layer model, heating increases the mean temperature of the atmospheric column,
not by increasing θ1 or θ2 , but by transferring mass from the lower layer to the upper layer.
This is accomplished in the model by assigning a positive value ofM1 and a negative value of
M2, with the ratio of the two source terms adjusted to satisfy equation (7.28). We continue
to assume the Boussinesq approximation here, so that ρm1 = ρm2 = ρm, which means that
M2 = −M1.

If ∆Q is the heat added to the atmosphere per unit area in time interval ∆t, we can
relate ∆Q to M1:

∆Q = ρmCp∆T∆h1 = ρmΠm∆θM1∆t (7.53)

where ∆T = T1 − T2 is the temperature di�erence between the layers at the layer interface
and ∆θ = θ2 − θ1. Assuming that the Exner function at the interface is Πm, we have used
Cp∆T = Πm∆θ and further assume that Πm is constant.

dQ

dt
= ρmΠm∆θM1, (7.54)

from which we can infer M1 and M2 = −M1.

7.4 Global atmospheric circulation

In this section we apply what we have learned to the global circulation of the atmosphere.

7.4.1 Equatorial tropospheric structure

The potential temperature pro�le in the deep tropics is determined by moist convective pro-
cesses, which maintain it near a moist adiabat. The equivalent potential temperature of this
pro�le is approximately that of 80% relative humidity air (typical value over warm tropical
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oceans) at the sea surface temperature and pressure. Taking these as 300 K and 1000 hPa
respectively, the equivalent potential temperature is roughly 350 K. At the tropopause the
mixing ratio is so small that the potential temperature is essentially the same as the equiv-
alent potential temperature there.

This result suggests that the two-layer model developed above should have θ1 = 337.5 K
and θ2 = 312.5 K(mid-points of the upper and lower halves of the troposphere respectively;
we neglect the stratosphere). Thus ν = (θ2/θ1)

1/2 = 0.962. A reasonable value for h =
8000 m, or half the tropopause height and a plausible approximation for the density is
ρm2 = 0.57 kg m−3, which is the average density of the air from the surface to 100 hPa.
The value of Πm ≈ 700 J kg−1 K−1. Internal and external gravity wave speeds are cI =
[(1− ν)gh]1/2 ≈ 55 m s−1 and cX = [(1 + ν)gh]1/2 ≈ 390 m s−1.

7.4.2 Symmetric zonal �ow

As was indicated earlier, the earth's atmosphere transports about 1 PW of energy per unit
time northward out of the tropics to middle latitudes, and about 2 PW from middle latitudes
to higher northern latitudes. Similar transports exist in the southern hemisphere. These
transports depend on the existence of meridional (north-south) �ows of air, whose motions
actually carry the heat.

The simplest possible model of the atmosphere has no meridional �ows at all, only zonal
(east-west) �ows. In this axisymmetric �ow the zonal wind is in geostrophic balance with
meridional pressure gradients. We now explore this model and show why it is not tenable.
The arguments presented here follow in part those made by Lindzen (1990).

Our two-layer model of the atmosphere is su�cient to get across the essence of the argu-
ment, which assumes that each latitude belt exhibits local radiative-convective equilibrium
independent of other latitudes. During the equinoxes, when the sun is directly over the
equator, the local radiative temperature at latitude φ was shown earlier to be

Tloc =

[
Fs(1− A) cosφ

πσ

]1/4
(7.55)

in contrast to the global mean radiative equilibrium temperature

Trad =

[
Fs(1− A)

4σ

]1/4
. (7.56)

In these equations Fs is the solar energy �ux, A is the earth's albedo, and σ is the Stefan-
Boltzmann constant.

In local radiative equilibrium, the actual temperature of the atmosphere at the e�ective
level at which outward-going thermal radiation originates equals the radiative equilibrium
temperature. One might imagine that the vertically averaged potential temperature of the
atmosphere scales with this equilibrium radiative temperature under these conditions. In
our simpli�ed treatment we set the mean potential temperature of the atmosphere given
by equation (7.49) equal to the equilibrium potential temperature at the e�ective radiative
level, indicated by the Exner function at this level Πrad, θm = CpTloc/Πrad.
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In this analysis we are interested primarily in behavior in the equatorial regions where
|φ| � 1 is a reasonable approximation. In this case we can use cosφ ≈ 1 − φ2/2. De�ning
θeq = CpTloc(0)/Πrad and applying the small angle approximation for cosine, we �nd that

θm = θeq

(
1− φ2

8

)
= θeq

(
1− y2

8a2

)
(7.57)

where a is the radius of the earth. From the geostrophic wind analysis of the two-layer model
we note that

∂θm
∂y
≈ −θmIfvIgx

c2I
. (7.58)

We now apply the equatorial beta plane approximation, f = βy. As shown previously,
β = 2Ω/a, where Ω is the angular rotation rate of the earth. Putting in everything we know,
we �nd that

vIgx =
ν(1 + ν2)gh

4(1 + ν)2Ωa
≈ 20 m s−1. (7.59)

In steady zonal �ow, the surface wind is zero due to the e�ects of surface friction. Equa-
tion (7.50) shows us that vX = 2vI under these conditions, so that the tropopause wind
vTgx = (vXgx + 2vIgx) = 4vIgx = 80 m s−1. Thus, the meridional temperature gradient
results in zonal winds toward the east independent of latitude, at least in tropical regions
where |φ| � 1. On and some distance o� the equator the upper troposphere is in super

rotation, which means that it has speci�c angular momentum of rotation greater than that
of any part of the solid earth, or more particularly, the earth's surface at the equator.

Hide's theorem states that a planetary atmosphere in zonally symmetric motion cannot
exhibit super rotation. Zonal symmetry means that angular momentum cannot be trans-
mitted by parcel motions to a latitudinal ring of air. In the absence of frictional forces, the
angular momentum of such a ring is therefore conserved. A frictionless atmosphere starting
from rest and maintaining zonal symmetry will never be able to produce super rotation.
Furthermore, if there is friction between the atmosphere and the air, friction itself will not
produce super rotation of the air since it will always act to drive the speci�c angular momen-
tum of the air toward that of the underlying surface. Even if super rotation existed initially,
this decay toward a state without super rotation would occur.

The speci�c angular momentum of a ring of air moving toward the east with speed vx at
latitude φ is

m = Ωa2 cos2 φ+ vxa cosφ, (7.60)

whereas the maximum speci�c zonal angular momentum of the earth's surface at the equator
is me = Ωa2. Hide's theorem is thus violated if m > me, i. e., if

vx > Ωaφ2 (7.61)

to �rst order in φ2. Given a zonal wind value of vx = 42 m s, the maximum latitude for
which this occurs is

φhide ≈
( vx

Ωa

)1/2

≈ 24◦. (7.62)

We conclude that a zonally symmetric zonal �ow is not an allowable solution for the general
circulation of the atmosphere, at least in the tropics.
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Figure 7.5: Hadley circulation in two-layer model.

7.4.3 Hadley circulation

If the wind shear between the upper and lower layers is reduced or eliminated from the value
required to balance the meridional temperature gradient, then equations (7.44) and (7.52)
tell us that there is a tendency to generate a meridional circulation, i. e.,

∂vIy
∂t

= −gh∂ηI
∂y

= − gh

θmI

∂θm
∂y

(7.63)

which is positive in the northern hemisphere and negative in the summer hemisphere, i. e.,
away from the equator. Recall that the �ow in the upper layer is in the same direction as vI

while the lower layer �ow is in the opposite direction. Thus, a circulation tends to develop
as illustrated in �gure 7.5, with rising motion over the equator where the temperature is
the greatest. This rising motion occurs exclusively in moist atmospheric convection and is
therefore accompanied by latent heat release and precipitation.

This circulation, which is called the Hadley circulation, continues poleward as far as is
needed to compensate for the lack of meridional balance implied by Hide's theorem. Though
�gure 7.5 shows the circulation cutting o� abruptly at latitude φhide, the cuto� is more
gradual than this. The intensity of the circulation is governed by the strength of the sub-
sidence from layer 1 to layer 2, which in turn is governed by the radiative cooling rate of
the atmosphere. Since solar radiation is deposited primarily in the underlying ocean, this
vertically integrated radiative cooling results primarily from the emission of thermal radia-
tion. We approximate this as the black body radiation at the global radiative temperature
Trad = 255 K, i. e., σT 4

rad ≈ 240 W m−2. This heat source (actually a sink) results in a
negative mass source in the upper layer

M1 = − σT 4
rad

ρmΠm∆θ
≈ 0.024 m s−1 (7.64)

and a corresponding source in the lower layer M2 = −M1.
The linearized, zonally symmetric, time independent mass continuity equation in the

lower layer is

h
∂v2y
∂y

= M2, (7.65)

which integrates to

v2y(φ) =
aM2(φ− φhide)

h
. (7.66)
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Figure 7.6: Layer thickness h(y) and zonal wind vx(y) resulting from a step increase in
potential vorticity equal to ∆q = 2εq0 at y = 0.

At the equator we get v2y(0) ≈ −8 m s−1. A balancing poleward �ow exists in the upper
layer, as indicated in �gure 7.5.

7.4.4 Origin of jet stream

The Coriolis force on the equatorward �ux of air in the lower layer of the Hadley circulation
accelerates this air toward the west. However, surface friction counters this westward accel-
eration, resulting in a moderate westward velocity component in the lower layer. This �ow
in the northern hemisphere is called the northeasterly trade winds, whereas in the southern
hemisphere it is called the southeasterly trades.

There is much less frictional resistence to the �ow in the upper layer, which means that
the eastward acceleration due to the Coriolis force in this layer is essentially unrestrained. In
the limit of zero friction, the angular momentum of this poleward-moving air is conserved. If
this air starts out with the speci�c angular momentum of the earth's surface at the equator,
then its zonal velocity will vary with latitude according to equation (7.61).

Equation (7.17) shows that a mass source in a layer tends to reduce the potential vorticity
of the layer. Since our model of the Hadley circulation has the mass source on or near
the equator, the planetary vorticity is small or zero. Furthermore, north-south symmetry
indicates that the initial relative vorticity should also be small in this region. Thus, air
exiting from equatorial deep convection will have very small potential vorticity. This small
potential vorticity will be maintained as the air moves poleward in the upper layer.

At the termination of the poleward �ow at upper levels, the Hadley circulation air im-
pinges on mid-latitude air with much larger potential vorticity. The result is a sharp merid-
ional potential vorticity gradient in the upper troposphere.

In order to understand the implications of this potential vorticity gradient, we now exam-
ine such a meridional gradient in a single layer f -plane model illustrated in �gure 7.6. The
potential vorticity perturbation for y < 0 is q′ = −εq0 where ε is a constant and q0 = f/h0
is the planetary potential vorticity. For y > 0, q′ = +εq0. Solving the potential vorticity



CHAPTER 7. ATMOSPHERIC MODELS 85

inversion equation

L2
R

∂2η

∂y2
− η =

q′

q0
(7.67)

results in
η(y) = −ε [1− exp (−|y|/LR)] sgn(y) (7.68)

for the fractional thickness perturbation, where LR = (gh0)
1/2/f is the Rossby radius. The

zonal wind takes the form
vx(y) = εc exp (−|y|/LR) (7.69)

where c = (gh0)
1/2 is the speed of gravity waves. Thus, the layer thickness decreases from

south to north crossing the potential vorticity discontinuity. The distance over which the
layer thickness changes, scales with the Rossby radius. The geostrophic wind associated with
this thickness gradient maximizes at the latitude of the potential vorticity discontinuity and
scales in magnitude with εc.

Though the actual situation in the atmosphere is more complex, with a strong potential
vorticity gradient in the upper troposphere but not in the lower part, as well as latitudinal
variation of the Coriolis parameter, this simple model gets at the fundamental mechanism of
upper tropospheric jet streams in the atmosphere. The jet originating on the poleward limit
of the Hadley circulation is called the subtropical jet. Sometimes there are other jets closer
to the poles as well. The decreasing layer thickness across the jet corresponds to a decrease
in tropopause height across real atmospheric jet streams.

7.4.5 Mid-latitude eddies

Under construction.
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7.6 Laboratory

Under construction.

7.7 Problems

1. Consider the unbalanced internal mode response of a two-layer model with rotation
but no friction to a mass source periodic in space and time:

(a) Linearize and solve for the fractional thickness perturbation and �uid velocity in
response to the internal mode mass source

MI = M0 cos(kx) sin(ωt)

where M0, k, and ω are externally speci�ed constants. Hint: Try solutions of the
form vIx ∝ sin(kx) sin(ωt), vIy ∝ sin(kx) cos(ωt), and ηI ∝ cos(kx) cos(ωt).

(b) For �xed k, determine how the layer thickness and the wind components respond
to the mass forcing as a function of ω. Note particularly the value of ω for which
the solution blows up. Give a physical interpretation of this blowup.

2. Repeat the above problem except consider the balanced response to the mass forcing.
In particular:

(a) Use the linearized potential vorticity advection equation to obtain q∗I from MI .

(b) Invert the linearized potential vorticity perturbation q∗I equation to obtain the
fractional thickness perturbation ηI .

(c) From ηI obtain the geostrophic wind.

(d) Also from ηI , obtain the ageostrophic wind. Combine with the geostrophic wind
to obtain the total wind.

(e) Determine the range of ω values for which the linearized balanced response is in
reasonable agreement with the linearized full response.

3. Given the Hadley circulation model presented above, compute the global poleward �ux
of heat as a function of latitude in the Hadley circulation. Compare with the observed
poleward �ux of heat at low latitudes.

4. Show that air in a zonally symmetric �ow with zero zonal wind at the equator and
constant speci�c angular momentum as a function of latitude has zero potential vor-
ticity.


