Chapter 1

Principle of virtual work

1.1 Constraints and degrees of freedom

The number of degrees of freedom of a system is equal to the number of variables required
to describe the state of the system. For instance:

e A particle constrained to move along the x axis has one degree of freedom, the position
2 on this axis.

e A particle constrained to the surface of the earth has two degrees of freedom, longitude
and latitude.

e A wheel rotating on a fixed axle has one degree of freedom, the angle of rotation.

e A solid body in free space has six degrees of freedom: a particular atom in the body can
move in three dimensions, which accounts for three degrees of freedom; another atom
can move on a sphere with the first particle at its center for two additional degrees of
freedom; any other atom can move in a circle about the line passing through the first
two atoms. No other independent motion of the body is possible.

e N atoms moving freely in three-dimensional space collectively have 3N degrees of
freedom.

1.1.1 Holonomic constraints

Suppose a mass is constrained to move in a circle of radius R in the z-y plane. Without this
constraint it could move freely over this plane. Such a constraint could be expressed by the
equation for a circle, 2 + y*> = R?. A better way to represent this constraint is

F(z,y) =2 +y* -~ R*=0. (1.1.1)
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As we shall see, this constraint may be useful when expressed in differential form:

oF oF
dF = —dz + —dy = 2xdx + 2ydy = 0. (1.1.2)
ox y
A constraint that can be represented by setting to zero a function of the variables representing
the configuration of a system (e.g., the x and y locations of a mass moving in a plane) is
called holonomic.

In a more complex system, there may be more than one constraint. For instance, if the mass
in the above case is moving in z-y-z space, but in addition is constrained to remain on a
horizontal surface at elevation a, the additional constraint

G(z)=2z—a=0 (1.1.3)

would apply.

1.1.2 Non-holonomic constraints

Sometimes a constraint on the motion of an object cannot be represented in holonomic form.
For instance, imagine a car moving on a horizontal plane. The car would normally have three
degrees of freedom, two translational represented by the car’s position (z,y) and a rotational
degree of freedom about the vertical axis, represented by an angle ¢ counterclockwise from
the = axis. (We neglect the possibility of the car overturning!) However, if the car is not
skidding, it is constrained at a particular instant to move in the direction it is pointing,
which can be represented by the differential relation

sin ¢dx — cos ¢pdy = 0. (1.1.4)

This constraint cannot be integrated to the form F(x,y) = 0, because ¢ can change as the
car moves due to the driver turning the steering wheel. It thus depends on more than x and
y. Thus, for infinitesimal motions, the car can only move along a particular line in the x-y
plane as represented by equation (1.1.4), whereas with driver input, the car can reach any
point in this plane with any rotational orientation, but only through finite motions. (This is
what makes parallel parking so complicated!) Thus a car exhibits only one degree of freedom
in infinitesimal motion, but three degrees of freedom in finite motion.

A constraint of this type is called non-holonomic. In general, non-holonomic constraints are
more difficult to deal with than holonomic constraints.

1.2 Internal and external forces on a system

In mechanics, the definition of what constitutes a system is arbitrary; the choice is completely
up to us, and is based on what we are trying to accomplish. A system consisting of many
atoms is in principle very complicated, because one must consider not only external forces
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Figure 1.3.1: The balance beam.

acting on the system, but internal forces acting between each pair of atoms within the system.
However, Newton’s third law says that the force of atom A on atom B is equal and opposite
to the force of atom B on atom A. Thus, the net force on the system due to atoms within
the system acting on each other is zero. This result is related to the conservation of linear
momentum in isolated systems. Thus, in considering the overall motion of a system, only
external forces need be considered.

1.3 Principle of virtual work

The modern approach to a statics problem is to apply the two conditions that the total force
and the total torque acting the system of interest each sum to zero. Sommerfeld invokes an
older method of handling such problems called the principle of virtual work. This method
has the advantage that forces of constraint, i.e., forces that keep the system from moving,
may be neglected, thus potentially simplifying the analysis. Only forces, not torques, need
to be considered, as the locations at which the forces are applied are used in the analysis.
Since the action of a torque is really the action of a force applied at a particular location,
the consideration of torques becomes less important.

1.3.1 Uneven balance beam

A simple example is the uneven balance beam, illustrated in figure 1.3.1. The modern
approach sets the total force and torque on the beam to zero:

Q—F,—F=0 (1.3.1)
aF, —bF, = 0. (1.3.2)
Solving the first equation tells us that the upward force of the pivot on the beam just balances
the two downward forces at the opposite ends of the beam:
Q=F,+ F,. (1.3.3)
The second equation gives us the ratio of the two end forces:

F, b
e 1.3.4
B a (1.3.4)
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These forces can also be obtained in terms of the beam dimensions and Q:

_hQ _a@
Fo=—% h=—% (1.3.5)

The principle of virtual work can be used to obtain the same results. The idea is that if
the beam tilts by a small angle d¢ in the clockwise direction, then the forces F, and F;
respectively do work —F,ad¢ and Fybd¢. This is because the left end of the beam moves
a distance ad¢ in a direction opposite that of the force whereas the right end of the beam
moves a distance bd¢ in the same direction as the force. The force of the pivot on the beam
does no work, as the pivot is assumed not to move, so the total work done is

SW = (=F,a + Fyb)5¢. (1.3.6)

This work increment is zero as a result of the torque balance expressed by equation (1.3.2).
Thus, assuming that the work increment is zero in a small displacement of the system is
equivalent to the condition of zero net torque.

If instead of tilting the beam, the pivot and beam are lifted vertically by a small distance
0z, the work done by the three forces in this case would be

SW =(Q — F, — F)bz, (1.3.7)

which according to equation (1.3.1) is also zero. Setting W = 0 in this equation allows us
to obtain the pivot support force (). Thus, setting the work done in small displacements of
the system to zero allows us to determine all of the relevant forces via computing the work
done by these forces. The work is called virtual, because no real motion of the system is
envisioned, with the corresponding complications resulting from generation of kinetic energy.

In this example, there is little computational advantage in using the principle of virtual work
over the method of zero forces and torques. However, its virtues become more evident as
the problem becomes more complex.

1.3.2 Ladder

Let’s now consider the ladder problem illustrated in figure 1.3.2. A person of mass M is
standing part way up a ladder leaning against a frictionless wall. The ladder is kept in place
by frictional force I’ acting on the bottom of the ladder as illustrated. This is a problem with
one degree of freedom, reflected by potential changes in the angle ¢ of the ladder relative to
the wall. Two forces do work when a small displacement is made in the tilt of the ladder,
gravity on the person standing on the ladder and the frictional force holding the ladder in
place. (The mass of the ladder itself is assumed to be negligible.)

The person is a height z = bcos ¢ above the floor, so a change in ¢ results in a change in
height 0z = —bsin ¢d¢. The work done by gravity on the person-ladder system with such a
change is therefore 0W, = gMbsin ¢d¢. The distance of the base of the ladder from the wall is
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Figure 1.3.2: Ladder problem.

x = asin ¢, so the work done by the frictional force F' is 6Wp = —Fd(asin ¢) = —Fa cos ¢pd¢.
Setting the total work to zero results in

(gMbsinp — Facos ¢)dp = 0. (1.3.8)
Thus,
F= M. (1.3.9)

Both of the above examples illustrate an important aspect of the method of virtual work.
Forces of constraint acting on the system that do no work need not be considered. These
include the support force of the pivot in the uneven balance beam and the normal forces of
the floor and the wall on the ladder. However, these forces can be determined by making
small virtual displacements of the system that cause the forces of constraint to do work, as
illustrated in the determination of the pivot force in the balance beam problem.

1.3.3 Motion of piston and crankshaft

We now consider a problem with somewhat more complex geometry, namely the transmission
of the force on a piston due to the combustion of a fuel-air mixture to the crankshaft of a
reciprocating engine such as exists in most automobiles. We take this as a statics problem
on the system that includes the piston and the connecting rod of length L. The hot gas
exerts a total pressure force P on the face of the piston. The piston exerts a force on the
connecting rod, but the force of the connecting rod on the piston is equal and opposite, so
no net work is done by these forces. However, the crankshaft arm is outside the system, so
the component of the force normal to the arm F' that the arm exerts on the connecting rod
does work on the system. However, the component of this force parallel to the arm does not.

The geometry of the triangle with the three small circles as vertices in figure 1.3.3 must be
analyzed. By the law of sines,

sin ¢ = %sin@, (1.3.10)
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Figure 1.3.3: Motion of a piston and crankshaft in an automobile engine.

SO

Rcosd
0p = . 1.3.11
¢ L cos ¢ ( )
The x position of the face of the piston is given by
x = Rcosf + L cos ¢ + constant (1.3.12)

where the value of the constant is immaterial, since we now take the differential of this
equation:
dx = —Rsin 000 — L sin ¢pd¢. (1.3.13)

Using equations (1.3.10) and (1.3.11), this becomes

Rcosfsinf

or = —
(R? — L2sin® )"/

sin 6 +

R60. (1.3.14)

The work done on the system (i.e., the piston and connecting rod) by the pressure on the
piston in a small displacement dx is 6Wp = — Pdx, whereas the work done by the crankshaft
on the connecting rod with a small crankshaft rotation 66 is dWyo = —FR0f. Combining
these and eliminating dx in favor of 46 results in total work on the system of

OW =6We + 0Wp = —F R0 — Pox

:{—F—i— Rcosfsinf

(R2 — L2sin? 9)
which is zero by the principle of virtual work. Thus, the force of the crankshaft arm on the
connecting rod is

sin 6 +

1/2

P} R66O =0, (1.3.15)

Rcosfsinf
(R2 — L2sin? 9) 1/2

By Newton’s third law, the force of the connecting rod on the crankshaft arm in the sense
of positive 96 is also F', and the torque on the crankshaft is F'R.

F = |sinf +

(1.3.16)
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Figure 1.4.1: The pulley on the left is frictionless and the wheel on the right rolls up or down
the ramp. The string wraps around the wheel on the ramp.

Figure 1.4.2: Mass hanging from clothes line.

1.4 Problems

1. Use the principle of virtual work to determine the ratio M/m that results in static
equilibrium in figure 1.4.1.

2. Use the principle of virtual work to determine the tensions in the clothes line from
which a mass M is hung, as illustrated in figure 1.4.2. Note that you will need to apply
the principle twice, once for small virtual displacements of the point P horizontally
and again for small vertical displacements. The tensions 7T, and 7}, are kept constant
in these displacements.



