Chapter 1

Relativistic kinematics

1.1 Spacetime Pythagorean theorem

We first review what we know about the spacetime Pythagorean theorem. Assuming for simplicity that the speed of light $c=1$, then referring to the triangles in figure 1.1.1, we know that

$$
x^{2}-t^{2}=I^{2}
$$

for a spacelike hypotenuse and

$$
t^{2}-x^{2}=\tau^{2}
$$

for a timelike hypotenuse. The quantity I is the spacetime interval and τ is the proper time. They are clearly related by $I^{2}=-\tau^{2}$, so defining both is just a convenience so that the spacelike and timelike cases can be considered separately.

Figure 1.1.1: Triangles for spacetime Pythagorean theorem.
The Pythagorean theorem in ordinary space is just

$$
r^{2}=x^{2}+y^{2}
$$

where r is the hypotenuse. Note that we can turn this into the spacetime Pythagorean theorem by setting $y=i t$, where $i=(-1)^{1 / 2}$, which results in $y^{2}=-t^{2}$. Don't try to interpret this physically, it is just a mathematical trick, albeit a useful one, as we shall see!

Figure 1.2.1: Illustration of vector \boldsymbol{r} resolved into components in two reference frames.

1.2 Rotations in two space dimensions

Changing reference systems in spacetime is somewhat like transforming to a rotated coodinate system in ordinary space. Let's first review the latter in order to get hints as to how to do the former in a systematic way.

Suppose we have a position vector \boldsymbol{r} with components (x, y) in the unrotated frame and $\left(x^{\prime}, y^{\prime}\right)$ in a frame rotated by an angle θ in the counterclockwise direction, as shown in figure 1.2.1. This vector can be resolved into components in the primed and unprimed reference frame:

$$
\begin{equation*}
\boldsymbol{r}=x^{\prime} \hat{\boldsymbol{i}}^{\prime}+y^{\prime} \hat{\boldsymbol{j}}^{\prime}=x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}} . \tag{1.2.1}
\end{equation*}
$$

Dotting with $\hat{\boldsymbol{i}}^{\prime}$ and $\hat{\boldsymbol{j}}^{\prime}$ results in two scalar equations

$$
\begin{align*}
x^{\prime} & =x \cos \theta+y \sin \theta \\
y^{\prime} & =-x \sin \theta+y \cos \theta \tag{1.2.2}
\end{align*}
$$

that tell us how to get $\left(x^{\prime}, y^{\prime}\right)$ from (x, y) and the rotation angle θ. It is easy to show that $\hat{\boldsymbol{i}}^{\prime} \cdot \hat{\boldsymbol{i}}=\cos \theta, \hat{\boldsymbol{i}}^{\prime} \cdot \hat{\boldsymbol{j}}=\sin \theta$, etc.

1.3 Lorentz transformation

Let's now use the insight that spacetime is equivalent to a Euclidean space in which one component (the time component) is imaginary. Setting $y=i t$, the above equations become

$$
\begin{align*}
x^{\prime} & =x \cos \theta+t(i \sin \theta) \\
t^{\prime} & =x(i \sin \theta)+t \cos \theta . \tag{1.3.1}
\end{align*}
$$

(Note the change in sign of the first term in the second equation.)

Figure 1.3.1: Test triangle in spacetime.

The only problem is that (x, t) and the primed counterparts are real, which means that both $\cos \theta$ and $i \sin \theta$ must be real also. Let's write the sine and cosine in terms of exponentials using Euler's theorem and see what this reality condition does to θ :

$$
\begin{equation*}
\cos \theta=\frac{\exp (i \theta)+\exp (-i \theta)}{2} \quad i \sin \theta=\frac{\exp (i \theta)-\exp (-i \theta)}{2} \tag{1.3.2}
\end{equation*}
$$

These terms may be made real by making θ imaginary. Setting $\theta=i \phi$, where ϕ is real, results in

$$
\begin{equation*}
\cos \theta=\frac{\exp (\phi)+\exp (-\phi)}{2} \equiv \cosh \phi \tag{1.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
i \sin \theta=-\frac{\exp (\phi)-\exp (-\phi)}{2} \equiv-\sinh \phi \tag{1.3.4}
\end{equation*}
$$

Substituting these expressions results in

$$
\begin{align*}
x^{\prime} & =x \cosh \phi-t \sinh \phi \\
t^{\prime} & =-x \sinh \phi+t \cosh \phi . \tag{1.3.5}
\end{align*}
$$

Things are weird in relativity as usual; a change in velocity reference frame is equivalent to a rotation through an imaginary angle!
Figure 1.3.1 illustrates a test point P , which has spacetime coordinates (x, t) in the unprimed coordinate system and the coordinates $(0, \tau)$ in the primed system - the x coordinate in the primed frame is zero because P lies on the primed time axis. The slope of a world line parallel to the t^{\prime} axis is

$$
\begin{equation*}
\text { slope }=\frac{t}{x}=\frac{1}{\beta} \tag{1.3.6}
\end{equation*}
$$

where $\beta=v / c=v$ is the non-dimensional velocity of the object represented by the world line. Since the point P is on the t^{\prime} axis, $x^{\prime}=0$, which from the first line of equation (1.3.5) tells us that

$$
\begin{equation*}
\beta=\frac{x}{t}=\frac{\sinh \phi}{\cosh \phi}=\tanh \phi . \tag{1.3.7}
\end{equation*}
$$

To make further progress, we need the identity

$$
\begin{equation*}
\cosh ^{2} \phi-\sinh ^{2} \phi=1 \tag{1.3.8}
\end{equation*}
$$

Figure 1.4.1: Definition sketch for the addition of velocities in relativity.

Using equation (1.3.7), we easily find that $\sinh \theta=\beta \cosh \theta$ and with the above identity we get

$$
\begin{equation*}
\cosh \phi=\frac{1}{\left(1-\beta^{2}\right)^{1 / 2}} \equiv \gamma \tag{1.3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sinh \phi=\beta \gamma \tag{1.3.10}
\end{equation*}
$$

From these and equations (1.3.5) we find what is called the Lorentz transformation:

$$
\begin{align*}
x^{\prime} & =\gamma x-\beta \gamma t \\
t^{\prime} & =-\beta \gamma x+\gamma t . \tag{1.3.11}
\end{align*}
$$

We have derived the Lorentz transformation for the space and time components of a position 4 -vector. However, the derivation is equally valid for any 4 -vector, such as a displacement in spacetime, a wave 4 -vector, or the energy-momentum 4 -vector.

1.4 Addition of velocities

The Lorentz transformations make it easy to derive the relativistic velocity addition formula. Referring to figure 1.4.1, we imagine an object (like a space ship) moving to the right with (non-dimensional) velocity v relative to the unprimed reference frame. The energymomentum 4 -vector (p, E) is parallel to the world line, which means that

$$
\begin{equation*}
v=\frac{p}{E} . \tag{1.4.1}
\end{equation*}
$$

The primed frame is moving to the left with speed β, which means that its velocity is $-\beta$. The components of the energy-momentum vector in the primed frame (p^{\prime}, E^{\prime}) are given by the Lorentz transformations, where we replace (x, t) by (p, E) :

$$
\begin{align*}
p^{\prime} & =\gamma p+\beta \gamma E \\
E^{\prime} & =\beta \gamma p+\gamma E . \tag{1.4.2}
\end{align*}
$$

Realizing that the velocity of the spaceship in the primed frame is $v^{\prime}=p^{\prime} / E^{\prime}$, we see that

$$
\begin{equation*}
v^{\prime}=\frac{p^{\prime}}{E^{\prime}}=\frac{p+\beta E}{\beta p+E}=\frac{v+\beta}{1+\beta v} \tag{1.4.3}
\end{equation*}
$$

where we have divided the numerator and denominator by E in the last step. Equation (1.4.3) is just the velocity addition formula.

1.5 Problems

1. Explain where the minus sign comes from in the second line of equation (1.2.2).
2. Prove the identity given in equation (1.3.8). Hint: Write the cosh and sinh in terms of exponentials.
3. Invert the Lorentz transformation to get (x, t) in terms of $\left(x^{\prime}, t^{\prime}\right)$.
4. Use the Lorentz transformation to compute τ in terms of t and β in figure 1.3.1.
5. Use the Lorentz transformation to derive the Lorentz contraction.
6. A particle of mass m at rest has energy-momentum 4 -vector $(0, m)$ (recall that we are setting $c=1$). Use the Lorentz transformation to find its energy and momentum moving to the left with velocity $-\beta(\beta>0)$.
7. How do you think the Lorentz transformation generalizes to 3 space dimensions assuming that the velocity is still in the x direction?
