Chapter 1

Relativistic kinematics

1.1 Spacetime Pythagorean theorem

We first review what we know about the spacetime Pythagorean theorem. Assuming for
simplicity that the speed of light ¢ = 1, then referring to the triangles in figure 1.1.1, we
know that

-2 =1

for a spacelike hypotenuse and

42 _ 2 — 2

for a timelike hypotenuse. The quantity [ is the spacetime interval and 7 is the proper time.

They are clearly related by I? = —72, so defining both is just a convenience so that the

spacelike and timelike cases can be considered separately.

X
Figure 1.1.1: Triangles for spacetime Pythagorean theorem.

The Pythagorean theorem in ordinary space is just

P2 = g2 4oy
where r is the hypotenuse. Note that we can turn this into the spacetime Pythagorean
theorem by setting y = it, where i = (—1)"/2, which results in 4> = —t2. Don’t try to
interpret this physically, it is just a mathematical trick, albeit a useful one, as we shall see!
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Figure 1.2.1: Mlustration of vector r resolved into components in two reference frames.

1.2 Rotations in two space dimensions

Changing reference systems in spacetime is somewhat like transforming to a rotated coodi-
nate system in ordinary space. Let’s first review the latter in order to get hints as to how
to do the former in a systematic way.

Suppose we have a position vector r with components (z,y) in the unrotated frame and
(', 9y') in a frame rotated by an angle ¢ in the counterclockwise direction, as shown in figure
1.2.1. This vector can be resolved into components in the primed and unprimed reference
frame:

r= x/fz/—i—y'j, =2t 4 yj. (1.2.1)

Dotting with i and j/results in two scalar equations

¥’ = xcosfh+ ysinb
y' = —xsinf + ycosb (1.2.2)

that tell us how to get (2/,4') from (z,y) and the rotation angle 6. It is easy to show that
! A ~/ ~

t -t =cosf, 1 -3 =sinf, etc.

1.3 Lorentz transformation

Let’s now use the insight that spacetime is equivalent to a Euclidean space in which one
component (the time component) is imaginary. Setting y = it, the above equations become

x' =z cosf + t(isinf)
t' = x(isinf) +tcosh. (1.3.1)

(Note the change in sign of the first term in the second equation.)
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Figure 1.3.1: Test triangle in spacetime.

The only problem is that (z,¢) and the primed counterparts are real, which means that both
cos and 7sinf must be real also. Let’s write the sine and cosine in terms of exponentials
using Euler’s theorem and see what this reality condition does to 6:

exp(i6) + exp(—i0) ising — exp(if) — exp(—i@)‘ (1.3.2)

2 2

cosf =

These terms may be made real by making 6 imaginary. Setting # = i¢, where ¢ is real,

results in
exp(¢) + exp(—¢)

cosf = 5 = cosh ¢ (1.3.3)
and
ising = — <20) _;’Xp(_@ = _sinh ¢, (1.3.4)
Substituting these expressions results in
2’ = wcosh ¢ — tsinh ¢
t' = —xsinh ¢ + ¢ cosh ¢. (1.3.5)

Things are weird in relativity as usual; a change in velocity reference frame is equivalent to
a rotation through an imaginary angle!

Figure 1.3.1 illustrates a test point P, which has spacetime coordinates (z,t) in the unprimed

coordinate system and the coordinates (0, 7) in the primed system — the = coordinate in the

primed frame is zero because P lies on the primed time axis. The slope of a world line
parallel to the t’ axis is

t

slope = — = — 1.3.6

pe=_=73 (1.3.6)

where § = v/c = v is the non-dimensional velocity of the object represented by the world

line. Since the point P is on the ' axis, ' = 0, which from the first line of equation (1.3.5)

tells us that )
g T _ sinh ¢
~t  cosh¢

= tanh ¢. (1.3.7)

To make further progress, we need the identity

cosh? ¢ — sinh? ¢ = 1. (1.3.8)
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world
line

Figure 1.4.1: Definition sketch for the addition of velocities in relativity.

Using equation (1.3.7), we easily find that sinh# = cosh § and with the above identity we
get

cosh ¢ = = =7 (1.3.9)
and
sinh ¢ = f. (1.3.10)
From these and equations (1.3.5) we find what is called the Lorentz transformation:
v’ =yx — pt
t' = —pByx + . (1.3.11)

We have derived the Lorentz transformation for the space and time components of a position
4-vector. However, the derivation is equally valid for any 4-vector, such as a displacement
in spacetime, a wave 4-vector, or the energy-momentum 4-vector.

1.4 Addition of velocities

The Lorentz transformations make it easy to derive the relativistic velocity addition for-
mula. Referring to figure 1.4.1, we imagine an object (like a space ship) moving to the right
with (non-dimensional) velocity v relative to the unprimed reference frame. The energy-
momentum 4-vector (p, E) is parallel to the world line, which means that

p
v=—. 1.4.1
. (141)
The primed frame is moving to the left with speed 3, which means that its velocity is —f.
The components of the energy-momentum vector in the primed frame (p/, E’) are given by

the Lorentz transformations, where we replace (x,t) by (p, E):

p =yp+ BVE
E' =Bp ++E. (1.4.2)
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Realizing that the velocity of the spaceship in the primed frame is v' = p’/E’, we see that

/
E
E' pBp+E 14pv

where we have divided the numerator and denominator by E in the last step. Equation
(1.4.3) is just the velocity addition formula.

1.5 Problems

1. Explain where the minus sign comes from in the second line of equation (1.2.2).

2. Prove the identity given in equation (1.3.8). Hint: Write the cosh and sinh in terms of
exponentials.

3. Invert the Lorentz transformation to get (x,t) in terms of (2/,t').
4. Use the Lorentz transformation to compute 7 in terms of £ and £ in figure 1.3.1.
5. Use the Lorentz transformation to derive the Lorentz contraction.

6. A particle of mass m at rest has energy-momentum 4-vector (0,m) (recall that we
are setting ¢ = 1). Use the Lorentz transformation to find its energy and momentum
moving to the left with velocity —3 (5 > 0).

7. How do you think the Lorentz transformation generalizes to 3 space dimensions as-
suming that the velocity is still in the = direction?



