
Chapter 1

Oscillations

It has been said that the progress of theoretical physics is marked by more and more so-
phisticated ways of solving the harmonic oscillator problem! There is no question that the
harmonic oscillator plays a key role in both theoretical physics and in applications.

1.1 Prototypical oscillator – the simple pendulum

As we have shown, the simple pendulum with a mass on the bottom of a rod of negligible
mass obeys the equation

d2φ

dt2
+
g

l
sinφ = 0 (1.1)

where the length of the pendulum rod is l, φ is the angle of the rod from the vertical, and g is
the gravitational field strength. We choose this rather than the mass-spring system because
the pendulum exhibits a characteristic of many oscillating systems – the oscillation is only
simple harmonic for small amplitudes. In the case of the pendulum, the oscillation period
increases with amplitude, as we now show.

We demonstrate this using the energy equation. The total energy of the pendulum is

E =
1

2
ml2φ̇2 −mgl cosφ = −mgl cosα (1.2)

where α is the maximum value of φ (at which point φ̇ = 0) for the given energy. Solving for
φ̇ yields

dφ

dt
=

(
2g

l

)1/2

(cosφ− cosα)1/2. (1.3)

We rewrite this as
dφ

(cosφ− cosα)1/2
=

(
2g

l

)1/2

dt (1.4)

and integrate over a quarter period T/4, during which time φ goes from zero to α:∫ α

0

dφ

(cosφ− cosα)1/2
=

(
2g

l

)1/2
T

4
=
( g

8l

)1/2
T. (1.5)

1
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No closed form solution for the above integral exists. However, if we approximate cosφ =
1− φ2/2 and cosα = 1− α2/2, the integral can be performed:∫ α

0

dφ

(cosφ− cosα)1/2
≈
∫ α

0

dφ

(α2/2− φ2/2)1/2

=
21/2

α

∫ α

0

dφ

(1− φ2/α2)1/2

=21/2

∫ 1

0

dx

(1− x2)1/2

=21/2 × (π/2), (1.6)

from which we find the period to be

T =

(
8l

g

)1/2

× 21/2 × (π/2) = 2π

(
l

g

)1/2

, (1.7)

which is the classical period for small amplitude oscillations.

The next order of approximation is obtained by setting cosx ≈ 1 − x2/2 + x4/24, in which
case we have∫ α

0

dφ

(cosφ− cosα)1/2
≈
∫ α

0

dφ

(α2/2− φ2/2− α4/24 + φ4/24)1/2

=21/2

∫ 1

0

dx

[1− x2 − (α2/12)(1− x4)]1/2

=21/2

∫ 1

0

dx

(1− x2)1/2 [1− (α2/12)(1 + x2)]1/2
(1.8)

where we have used the fact that 1−x4 = (1−x2)(1 +x2). The term in square brackets can
be further approximated to order α2 as follows:[

1− (α2/12)(1 + x2)
]−1/2 ≈ 1 + (α2/24)(1 + x2). (1.9)

The integral ∫ 1

0

(1 + x2)dx

(1− x2)1/2
=

3π

4
,

so we finally get the period in this approximation

T = 2π

(
l

g

)1/2(
1 +

α2

16

)
, (1.10)

which shows that the period increases with amplitude α is stated above.
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1.2 Linearization of simple pendulum

Most oscillating systems in the real world are like the simple pendulum – they only oscillate
harmonically (i.e., with frequency independent of amplitude) when the amplitude of the
oscillation is small. It is useful to explore the small amplitude behavior of such oscillators.
In this section we present the procedure for doing so.

The first step in this analysis is to find the steady state behavior of the system. In the case of
the pendulum, this occurs when the angular acceleration d2φ/dt2 = 0. From equation (1.1),
we see that this results in sinφ = 0. There are two angles that satisfy this condition, φ0 =
0, π. Let us examine small amplitude motions about each of these equilibrium points. We
do this by making a Taylor series expansion of sinφ about the equilibrium point. Assuming
that φ = φ0 + φ′, we find that

sin(φ0 + φ′) ≈ sin(φ0) +
d sinφ

dφ

∣∣∣∣
φ0

φ′ = sinφ0 + cosφ0φ
′ (1.11)

where we have kept only the zeroth and first order terms in the expansion.

For φ0 = 0, sin(φ0 + φ′) ≈ φ′ whereas for φ = π, sin(φ0 + φ′) ≈ −φ′. In the first case the
governing equation (1.1) becomes

d2φ′

dt2
+
g

l
φ′ = 0, φ0 = 0, (1.12)

whereas in the second case
d2φ′

dt2
− g

l
φ′ = 0, φ0 = π. (1.13)

These solutions have markedly different behavior. Rather than using sines and cosines, we
solve these equations with an exponential function as a trial solution: φ′ = exp(σt) where
σ is a constant to be determined. For the φ0 = 0 case, substitution of this solution and
cancellation of the exponential function results in the condition

σ = ±i
(g
l

)1/2
≡ ±iω φ0 = 0 (1.14)

so that we have in general a superposition of complex exponential solutions

φ′ = A exp(iωt) +B exp(−iωt) (1.15)

where A and B are (possibly complex) constants. Using Euler’s equations, this can be
rewritten in terms of sines and cosines

φ′ = C cos(ωt) +D sin(ωt). (1.16)

which means that the solution is oscillatory.

For φ0 = π, we have

σ = ±
(g
l

)1/2
φ0 = π (1.17)



CHAPTER 1. OSCILLATIONS 4

m

z

x

Rφ

g

Figure 1.1: Huygens pendulum, consisting of a light ring with an attached mass which rolls
on the underside of a flat surface.

and the solutions are real exponentials

φ′ = A exp(σt) +B exp(−σt). (1.18)

One of these solutions decays away with time and the other grows indefinitely. Thus, the
perturbation angle increases without bound, or at least until the linearization assumption
fails. This system is unstable, whereas the previous case is stable and oscillatory.

The reasons for this behavior in the simple pendulum are obvious; if the mass starts out
on top, minor deviations from the vertical orientation of the pendulum rod amplify with
time under the influence of gravity, whereas if it starts on the bottom, these deviations will
be opposed by gravity. This case forms a useful prototype for investigating the behavior of
more complex systems.

1.3 The Huygens pendulum

At this point we can’t pass up a description of the Huygens or cycloidal pendulum, which
is presented in Sommerfeld. This pendulum, which was invented by Christian Huygens in
1673, causes the mass to move along a cycloidal curve rather than a circular arc. The actual
mechanism used by Huygens to effect this behavior is described in Sommerfeld. However,
Sommerfeld presents an alternative mechanism, illustrated in figure 1.1, that is easier to
analyze, though harder to implement in hardware.

The pendulum consists of a lightweight ring of radius R with a mass m attached at one
point on the ring, which is somehow (perhaps with a magnetic force) made to roll on the
underside of a flat surface under the influence of gravity. The coordinates of the mass are
readily determined to be

x = R(φ− sinφ) z = −R(1− cosφ) (1.19)

where φ is the rotation angle of the ring, with the mass at the top for φ = 0. The velocity
components of the mass are obtained by differentiating equations (1.19) with respect to time,

ẋ = R(1− cosφ)φ̇ ż = −R sinφφ̇, (1.20)
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from which the kinetic energy may be computed:

T =
1

2
m
(
ẋ2 + ż2

)
=

1

2
mR2

[
(1− cosφ)2 + sin2 φ

]
φ̇2 = mR2 (1− cosφ) φ̇2. (1.21)

The potential energy is just

V = mgz = −mgR(1− cosφ). (1.22)

The angle φ turns out not to be the most useful generalized coordinate in this case. In order
to discover this coordinate, we invoke the trig identity

1− cosφ = 2 sin2 φ

2
, (1.23)

resulting in

T = 2mR2 sin2 φ

2
φ̇2 = 8mR2

(
d

dt
cos

φ

2

)2

(1.24)

and
V = −2mgR sin2 φ

2
= −2mgR

(
1− cos2

φ

2

)
. (1.25)

It is now obvious that u ≡ cos(φ/2) is the appropriate coordinate, from which we infer that
the Langrangian is

L = 8mR2u̇2 + 2mgR(1− u2). (1.26)

Substitution into Lagrange’s equation thus results in

d2u

dt2
+

g

4R
u = 0. (1.27)

This is just the harmonic oscillator equation with oscillation frequency ω = (g/4R)1/2 and
generalized coordinate u ≡ cos(φ/2).

1.4 Spherical pendulum

One of the problems in the chapter on Lagrange’s equations derived the governing equations
for the spherical pendulum, which is a mass m attached to a light rod of length l which is
free to pivot in all directions at the end opposite the mass. The governing equations are

ml2
(
d2θ

dt2
− sin θ cos θφ̇2

)
+mgl sin θ = 0 (1.28)

and
dpφ
dt

=
d

dt

(
ml2 sin2 θφ̇

)
= 0 (1.29)

where φ is the azimuthal angle of the mass relative to its rest position in the horizontal
plane, θ is the angle between the rod and the vertical, and

pφ = ml2 sin2 θφ̇ = constant (1.30)
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is the conserved generalized momentum associated with the generalized coordinate φ, in
reality the vertical component of the angular momentum of the mass.

Eliminating φ̇ in favor of pφ in equation (1.28) results in

d2θ

dt2
− cos θ

sin3 θ

( pφ
ml2

)2
+
g

l
sin θ = 0. (1.31)

If the angular momentum is zero, the spherical pendulum just oscillates like a normal pen-
dulum. However, if it is non-zero, then there is an equilibrium state in which the mass
moves in a horizontally oriented circle of radius l sin θ, centered on the vertical line passing
through the pivot point. Setting d2θ/dt2 = 0 in equation (1.31) gives us a relation between
the angular momentum and the angle θ. Solving this for θ is impractical, as the equilibrium
equation is quartic in cos θ. However, we are free to specify the equilibrium value of θ = θ0
and solve for the angular momentum required to produce this value:

pφ =

(
m2l3g sin4 θ0

cos θ0

)1/2

. (1.32)

From equation (1.30) we find that azimuthal angular velocity of this rotation is

ω ≡ φ̇ =

(
g

l cos θ0

)1/2

, (1.33)

which we have renamed ω. Notice that for small amplitude, cos θ0 ≈ 1 and ω becomes the
classical oscillation frequency of a simple pendulum. The circular motion may be considered
to be a superposition of linear oscillations in the two orthogonal horizontal directions that
are out of phase by 90◦, so it is no surprise that the frequency of circular motion is the same
as that for linear oscillations in the small amplitude limit. It is interesting that the angular
frequency for circular oscillations increases with amplitude, whereas the frequency for linear
oscillations decreases with amplitude.

We now investigate small oscillations in θ about this state of circular motion by setting
θ = θ0 +θ′ and linearizing equation (1.31) in θ′ while retaining the constancy of pφ. To do so
we must make first order Taylor series expansions of − cos θ/ sin3 θ and sin θ about θ0. The
results are

− cos θ

sin3 θ
≈ − cos θ0

sin3 θ0
+

(
1 + 2 cos2 θ0

sin4 θ0

)
θ′ (1.34)

and
sin θ ≈ sin θ0 + cos θ0θ

′ (1.35)

which yields [
d2θ0
dt2
− cos θ0

sin3 θ0

( pφ
ml2

)2
+
g

l
sin θ0

]
+[

d2

dt2
+

1 + 2 cos2 θ0
sin4 θ0

( pφ
ml2

)2
+
g

l
cos θ0

]
θ′ ≈ 0 (1.36)
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Figure 1.2: Harmonic oscillator that is forced by a periodic motion on the left end of the
spring and damped by a dashpot (shock absorber) in parallel with the spring.

upon substitution into equation (1.31). Since θ0 is a constant, time second time derivative
of θ0 vanishes and the quantity in the first set of brackets in equation (1.36) is zero by virtue
of the value of pφ in equation (1.32).

Eliminating pφ in the second set of brackets using equation (1.32) and simplfying results in

d2θ′

dt2
+

[
1 + 3 cos2 θ0

cos θ0

(g
l

)]
θ′ = 0 (1.37)

which we identify as a harmonic oscillator equation for oscillations in the θ direction with
frequency

Ω =

[
1 + 3 cos2 θ0

cos θ0

(g
l

)]1/2
= (1 + 3 cos2 θ0)

1/2ω. (1.38)

Note that for small circles in which cos θ0 ≈ 1, we have Ω ≈ 2ω. Thus, there are two maxima
and two minima in θ for every revolution of the mass about the vertical axis. Another way
of looking at this case is as a superposition of orthogonal linear oscillations with one of these
having greater amplitude than the other, resulting in an elliptical rather than a circular
motion in the horizontal plane.

As θ0 increases, the cosine function becomes smaller, the ratio of Ω to ω becomes less than 2,
and the major axis of the ellipse precesses in the direction of rotation. Sommerfeld illustrates
this effect in his book.

1.5 Forced dissipative oscillators

So far we have considered only oscillators that are free and undamped. Figure 1.2 shows a
forced mass-spring system with a shock absorber that resists the motion of the mass with
a force proportional to the mass’s velocity, F = −bẋ, where b is a constant. The forcing is
provided by periodically varying the position of the left end of the spring (but not the shock
absorber) by an amount equal to a = a0 cos(ωF t), where a0 is the amplitude of the forcing
and ωF is its frequency. The damping force is non-conservative, so it must appear on the
right side of Lagrange’s equation. The Lagrangian is relatively simple and is just

L =
1

2
mẋ2 − 1

2
k(x− a)2 (1.39)



CHAPTER 1. OSCILLATIONS 8

and the equation of motion is

m
d2x

dt2
+ bx+ kx = ka = ka0 cos(ωF t). (1.40)

In order to solve this equation, let us first consider the alternative equation

m
d2z

dt2
+ bz + kz = ka = ka0 exp(iωF t). (1.41)

If x is the real part of the complex variable z, then, since ωF , m, b, k, and a0 are real, then
it is clear that equation (1.40) is just the real part of equation (1.41). One way to solve
equation (1.40) is therefore to solve equation (1.41) and take the real part of the solution.
The advantage to this procedure is that the solution to equation (1.40) is a complicated sum
of sines and cosines, whereas the solution to equation (1.41) is a single exponential function.

Equation (1.41) is linear and inhomogeneous in z. The general solution is the superposition
of any solution to the full, inhomogeneous equation plus the general solution to the homoge-
neous equation with the right side set to zero. Considering the homogeneous case first, let
us assume that z ∝ exp(iωt) where ω is to be determined. Substituting this into equation
(1.41) with the right side zero results in

ω2 − ib

m
ω − k

m
= 0. (1.42)

Solving this quadratic equation for ω gives us

ω =
1

2

[
ib

m
±
(
− b2

m2
+

4k

m

)1/2
]

= ±
(
k

m
− b2

4m2

)1/2

+
ib

m
, (1.43)

from which we find

z = z0 exp

{[
±i
(
k

m
− b2

4m2

)1/2

− b

m

]
t− iφ

}
(1.44)

where z0 is a real constant and φ is a phase factor needed to make this solution general.

Taking the real part gives us the physical homogeneous solution

xH = z0 exp

(
− bt
m

)
cos

[(
k

m
− b2

4m2

)1/2

t− φ

]
(1.45)

which is in the form of a decaying exponential function modulated by an oscillating cosine
function of time.

The oscillation frequency is less than the classical undamped mass-spring system (k/m)1/2

and asymptotes to it as b→ 0. On the other hand, if the quantity inside the square root in
equation (1.45) is negative, the solution is a superposition of two exponential functions that
decay at different rates

xH = z1 exp

[
− bt
m

+

(
b2

4m2
− k

m

)1/2

t

]
+ z2 exp

[
− bt
m
−
(

b2

4m2
− k

m

)1/2

t

]
. (1.46)
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where z1 and z2 are arbitrary constants.

A special case arises when the quantity inside the square root is zero, so that

k

m
=

b2

4m2
. (1.47)

in this case the two terms in equation (1.46) are not independent and a second solution needs
to be sought. It is readily shown that the full solution in this case takes the form

x = (z0 + v0t) exp

(
− bt
m

)
(1.48)

where z0 and v0 are arbitrary constants.

We turn now to obtaining a particular solution to the full inhomogeneous equation (1.41).
The simplest assumption to make is that z = z0 exp(iωF t), where z0 is now possibly complex.
The resulting algebraic relation after cancellation of the exponential function is(

−mω2
F + ibωF + k

)
z0 = ka0. (1.49)

Unlike the homogeneous case, the frequency is the specified forcing frequency and the un-
known is z0. Solving for this quantity results in

z =
a0ω

2
0 exp(iωF t)

ω2
0 − ω2

F + iβω0ωF
(1.50)

where ω2
0 = k/m is the square of the undamped free oscillator and β = b/(mω0). The

complex denominator may be written in polar form as

ω2
0 − ω2

F + iβω0ωF =
[(
ω2
0 − ω2

F

)2
+ β2ω2

0ω
2
F

]1/2
exp(iφF ) (1.51)

where the phase angle is

φF = tan−1
(
βω0ωF
ω2
0 − ω2

F

)
. (1.52)

The solution (1.50) can therefore be written

z =
a0ω

2
0 exp [i (ωF t− φF )][

(ω2
0 − ω2

F )
2

+ β2ω2
0ω

2
F

]1/2 . (1.53)

Taking the real part gives us the physical solution to the inhomogeneous problem

xI =
a0ω

2
0 cos (ωF t− φF )[

(ω2
0 − ω2

F )
2

+ β2ω2
0ω

2
F

]1/2 . (1.54)

This expression may be simplified by introducing the dimensionless forcing frequency ΩF =
ωF/ω0, the dimensionless time τ = ω0t, and the dimensionless displacement χI :

χI =
cos(ΩF τ − φF )

[(1− Ω2
F )2 + β2]

1/2
φF = tan−1

(
β

1− Ω2
F

)
(1.55)
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Damped forced oscillator

Figure 1.3: Amplitude of oscillation relative to forcing (left) and the phase of the response
as a function of the dimensionless forcing frequency.

With similar scaling, the homogeneous solution (1.45) may be written

χH = χ0 exp(−βτ) cos
[(

1− β2/2
)1/2

τ − φ
]

(1.56)

where χ0 is an arbitrary dimensionless constant. Such non-dimensionalization de-clutters
equations and makes them easier to understand. Figure 1.3 shows the amplitude of the
response relative to the forcing of the damped oscillator (left panel) and the phase (right
panel), as expressed in equation (1.55).

The total solution is the sum of the homogeneous and inhomogeneous parts. In practice it is
often sufficient to consider only the inhomogeneous part of the solution, as the homogeneous
part decays with time and eventually dies out. However, both parts must be considered,
and the constants (z0, φ) or (z1, z2) adjusted appropriately, in the case of an initial value
problem.

1.6 Coupled oscillators

In the previous chapter’s problems, we considered the response of a system consisting of two
masses and two springs in series to sinusoidal forcing. Changing the notation slightly, the
governing equations are

1

ω2
0

d2x

dt2
+ 2x− y =a0 exp(iωF t)

1

ω2
0

d2y

dt2
+ y − x =0 (1.57)
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where x and y are the deviations of the masses from their equilibrium conditions with the
forcing turned off, i.e., with a0 = 0. The quantity ω0 = (k/m)1/2 is the frequency of oscillation
of a single mass-spring system in isolation. We have put the equations in complex form such
that taking the real parts brings us back to the original equations. Since the equations are
linear, this is a legitimate process, and the solutions are easier to obtain.

We now write equations (1.57) in matrix form with the additional change of variables ω0t = τ ,
(x/a0, y/a0) = (X, Y ):

d2

dτ 2

(
X
Y

)
+

(
2 −1
−1 1

)(
X
Y

)
=

(
1
0

)
exp(iΩF τ) (1.58)

where ΩF = ωF/ω0. The solution to this equation is composed of two parts, a particular
inhomogeneous solution plus the general solution to the homogeneous problem, i.e., with the
right side set to zero. Let us consider the latter solution first. Assuming that (X, Y ) are
proportional to exp(iΩτ) where Ω is a dimensionless frequency scaled by ω0, this becomes
the eigenvalue problem (

2− Ω2 −1
−1 1− Ω2

)(
X
Y

)
= 0. (1.59)

The equation has non-trivial solutions only when the determinant of the matrix equals zero:

Ω4 − 3Ω2 + 1 = 0. (1.60)

The roots of this equation are the eigenvalues

Ω2
1 =

3 + 51/2

2
= 2.6180 Ω2

2 =
3− 51/2

2
= 0.3820 (1.61)

with corresponding eigenvector components determined by

(2− Ω2
1,2)X1,2 − Y1,2 = 0. (1.62)

The normalized eigenvectors are

(X1,2, Y1,2) =
(1, 2− Ω2

1,2)[
1 + (2− Ω2

1,2)
2
]1/2 (1.63)

and the orthogonal transformation that diagonalizes the matrix

D =

(
2 −1
−1 1

)
(1.64)

in equation (1.58) is

U =

(
X1 Y1
X2 Y2

)
=

(
0.8507 −0.5257
0.5257 0.8587

)
. (1.65)

Thus
UDUT =

(
Ω2

1 0
0 Ω2

2

)
(1.66)
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Figure 1.4: Response of mass-spring system with 2 degrees of freedom to oscillatory forcing.

where UT is the transpose of U .

We now use these results to solve the inhomogeneous problem by multiplying equation (1.58)
by U and inserting UTU just to the right of the matrix D. This is legal because UTU is just
the identity matrix. Defining

U

(
X
Y

)
=

(
A
B

)
, (1.67)

equation (1.58) becomes

d2

dτ 2

(
A
B

)
+

(
Ω2

1 0
0 Ω2

2

)(
A
B

)
=

(
X1

Y1

)
exp(iΩF τ). (1.68)

The importance of this method is that by working in terms of the amplitudes A and B of
the eigenmodes of the unforced system instead of X and Y , the coupling between the two
degrees of freedom of the system disappears. Dropping the matrix notation, equation (1.68)
just becomes

d2A

dτ 2
+ Ω2

1A =X1 exp(iΩF τ)

d2B

dτ 2
+ Ω2

2B =Y1 exp(iΩF τ) (1.69)

i.e., we have two separate forced oscillator equations, each of which can be solved by the
methods of the previous section. Once the solution is obtained, the original displacements
of each mass can be obtained by inverting equation (1.67):(

X
Y

)
= UT

(
A
B

)
. (1.70)

Figure 1.4 shows X and Y as a function of the square of the dimensionless forcing frequency,
Ω2
F .
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Figure 1.5: Coupled oscillator consisting of three springs connected to two masses.

1.7 Problems

1. Linearize the governing equation for the disk rolling around the inside of the cylinder
introduced in problem 3 of the chapter on Lagrange’s equations and find the small
amplitude behavior of the system about the two equilibrium points. (Assume that the
disk somehow sticks to the inside of the cylinder even when it is at the top.) The
governing equation is

3

2
M(b− a)2

d2θ

dt2
+Mg(b− a) sin θ = 0.

2. Three spring problem:

(a) Find the Lagrangian for two masses m connected to two walls by three springs
with spring constants k. The variables x and y are the deviations of the positions
of the masses from their equilibrium points. The spacing of the walls is such
that all springs are their unstretched or compressed lengths at equilibrium. The
masses are constrained to move back and forth in only the horizontal direction.

(b) Find the governing equations by the usual means and non-dimensionalize them
using ω0t = τ where ω0 is the oscillation frequency of a single mass-spring system
with the values given.

(c) Write your equations in matrix form.

(d) Seek oscillating solutions to the system by assuming that x, y ∝ exp(iΩτ) and
find the eigenvalues (Ω2) and eigenvectors of the system.

(e) Using the normalized eigenvectors to create an orthogonal transformation matrix,
transform the matrix equations to a form in which the two oscillation modes are
decoupled.

(f) Describe physically the oscillation modes that occur in this system.

3. Generalized Kepler problem:

(a) Derive the Lagrangian expressed in cylindrical coordinates (r, φ) and from this,
the governing equations for a mass m orbiting around mass M � m under the
influence of a potential of the form V (r) = −Ar−n, where A and n are constants
with n > 0. Show that the angular momentum pφ is conserved and eliminate φ̇
in the r equation in favor of pφ.
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(b) Find a relationship between pφ, A, and the radius of the circular orbit r0 for the
case in which d2r/dt2 = 0.

(c) Set r = r0 + r′ and linearize the r equation about r0, keeping pφ fixed. Once
linearized, use the results of (b) to eliminate the A term in favor of pφ. Finally,
eliminate pφ in favor of r0 and the angular frequency of revolution φ̇ ≡ ω. From
the resulting equation, find the angular frequency of radial oscillations of the mass
m as it revolves about mass M .

(d) Does the above result make qualitative sense in light of Kepler’s second law for
the case of gravitation?

(e) Are there values of n for which the circular orbit is unstable to small radial
perturbations?

4. Parametric oscillator:

(a) Write down the Lagrangian for a simple pendulum in which the length l of the
string supporting the mass m varies with time where this variation is externally
imposed. Show that the governing equation in terms of deflection angle φ for
small φ is

d2φ

dt2
+ ω2φ = −2l̇φ̇

l

where ω2 = g/l.
(b) Derive the energy equation for this system by multiplying the above equation by

φ̇ and rearranging so that
dε

dt
= −2l̇φ̇2

l

where the "energy" (actually the energy divided by ml2) is

ε =
φ̇2 + ω2φ2

2
.

(c) If |l̇/l| � 1, the motion of the pendulum is nearly harmonic with a slowly changing
amplitude, so that we can write φ = φ0 sin(ωt) to a good approximation. Show
that φ2 = φ2

0[1− cos(2ωt)]/2 and φ̇2 = ω2φ2
0[1 + cos(2ωt)]/2. From this find ε in

terms of φ0 and ω and show that the energy equation can be written

1

ε

dε

dt
=
d ln ε

dt
= −2l̇

l
[1 + cos(2ωt)]

with integral

ln(ε/ε0) = −
∫ t

0

2l̇

l
[1 + cos(2ωt′)]dt′.

(d) Given the above results, during which part of the oscillation should l̇ be positive
and which negative for ε to increase with time? Explain. To test your ideas, try
integrating this equation over one full period of the pendulum oscillation with
(where η is a constant)
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i. l̇/l = −η sin(ωt);

ii. l̇/l = −η cos(ωt);

iii. l̇/l = −η sin(2ωt);

iv. l̇/l = −η cos(2ωt).


