
Chapter 1

Planetary motion

1.1 Geometry of the ellipse

The canonical equation for an ellipse with semi-major axis a and semi-minor axis b is

x2

a2
+
y2

b2
= 1. (1.1.1)

This is illustrated in figure 1.1.1. The eccentricity of the ellipse is defined

ε = c/a (1.1.2)

where
c2 = a2 − b2 (1.1.3)

and φ is called the true anomaly by astronomers.

We need to derive the polar coordinate (r, φ) equation for an ellipse with the origin at the
left focal point. Noting that x = r cosφ− c and y = r sinφ, equation (1.1.1) becomes

r2
(
cos2 φ

a2
+

sin2 φ

b2

)
− 2r

(
c cosφ

a2

)
− b2 = 0 (1.1.4)

where we have used equation (1.1.3) to simplify the third term. Solving this quadratic
equation for r results in

r =

2c cosφ
a2
±
[
4c2 cos2 φ

a4
+ 4b2

a2

(
cos2 φ
a2

+ sin2 φ
b2

)]1/2
2
(

cos2 φ
a2

+ sin2 φ
b2

) . (1.1.5)

The term in square brackets simplifies to 4/a2 where we have used equation (1.1.3) and the
identity cos2 φ + sin2 φ = 1. Using this identity in the denominator to eliminate the sine
function and rearranging simplifies equation (1.1.5) to

r =
b2

a

(
ε cosφ± 1

1− ε2 cos2 φ

)
=
b2

a

ε cosφ± 1

(1− ε cosφ) (1 + ε cosφ)
. (1.1.6)
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Figure 1.1.1: Definition sketch for an ellipse with semi-major and semi-minor axes a and b.
The points marked F indicate the focal points of the ellipse.
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Figure 1.2.1: Sketch illustrating derivation of equal area law.

We now need to choose the sign in the numerator. The negative sign results in negative
values for r, which is unphysical. Therefore, we choose the plus sign. Cancelling terms in
the numerator and denominator and eliminating b in favor of a and ε results finally in

r =
a(1− ε2)
1− ε cosφ

. (1.1.7)

The area of an ellipse is given by
S = πab. (1.1.8)

1.2 Kepler’s second law

Kepler’s second law is really a statement of the conservation of angular momentum. Referring
to figure 1.2.1, we note that the area swept out by a planet in its motion around the sun in
time dt is

dS =
1

2
r2dφ (1.2.1)

where the little triangle on the right end of the area in figure 1.2.1 can be ignored for small
dφ. The quantity vn is the planetary velocity component normal to the radius vector of the
planet from the sun. Using rdφ = vdt and the fact that the angular momentum of the planet
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in its motion around the sun is L = mrvn where m is the mass of the planet, equation (1.2.1)
can be rewritten

dS

dt
=
r2

2

dφ

dt
=

L

2m
= constant (1.2.2)

due to the conservation of angular momentum. From this we write

dφ

dt
=

L

mr2
=
C

r2
(1.2.3)

where C = L/m is the constant orbital angular momentum of the planet per unit mass.

1.3 Kepler’s first law

Kepler’s first law states that planets follow elliptical orbits around the sun with the sun at
one focus. Defining (u, v) as the Cartesian components of the planet’s velocity in the plane
of its orbit, Newton’s second law tells us that

d

dt
(u, v) = −MG

r2
(cosφ, sinφ) (1.3.1)

where M is the mass of the sun and G is the universal gravitational constant. With the help
of equation (1.2.3), we find

d

dt
(u, v) =

d

dφ
(u, v)

dφ

dt
=
C

r2
d

dφ
(u, v) (1.3.2)

from which we get
d

dφ
(u, v) = −MG

C
(cosφ, sinφ). (1.3.3)

This integrates directly to

(u, v) =

(
−MG

C
sinφ+ A,

MG

C
cosφ+B

)
(1.3.4)

where A and B are arbitrary constants of integration.

We now invoke Sommerfeld’s trick to eliminate time dependence and get the radius r solely
as a function of the true anomaly φ. We first note that

u =
dx

dt
=

d

dt
(r cosφ) =

dr

dt
cosφ− r sinφdφ

dt

v =
dy

dt
=

d

dt
(r sinφ) =

dr

dt
sinφ+ r cosφ

dφ

dt
. (1.3.5)

We eliminate dr/dt from the above equations by computing

−u sinφ+ v cosφ =r sin2 φ
dφ

dt
+ r cos2 φ

dφ

dt
= r

dφ

dt

=
MG

C
sin2 φ− A sinφ+

MG

C
cos2 φ+B cosφ (1.3.6)



CHAPTER 1. PLANETARY MOTION 4

where the second line comes from equation (1.3.4). Simplifying yields

r
dφ

dt
=
MG

C
− A sinφ+B cosφ. (1.3.7)

We now invoke equation (2), which gives us

r
C

r2
=
C

r
=
MG

C
− A sinφ+B cosφ. (1.3.8)

Solving for r, we arrange the results to allow direct comparison with our equation for an
ellipse in polar coordinates (1.1.7):

r =
C2/(MG)

1 + C(−A sinφ+B cosφ)/(MG)
. (1.3.9)

These equations are consistent if we set

A = 0 B = −εMG/C C2 = a(1− ε2)MG. (1.3.10)

From equation (1.2.3) we therefore relate the planetary orbital angular momentum to the
orbital parameters a and ε

L2 = m2[a(1− ε2)MG] (1.3.11)

and compete the proof of Kepler’s first law.

1.4 Kepler’s third law

Kepler’s third law states that the square of the period of revolution of a planet is proportional
to the cube of the semi-major axis. Integrating equation (1.2.2) over the revolution period
T results in ∫ T

0

dS

dt
dt = S =

∫ T

0

L

2m
dt =

LT

2m
(1.4.1)

where S = πab is the area of the ellipse bounded by the planetary orbit. Substituting the
area and L/m from equation (1.3.11), squaring, and using the fact that 1− ε2 = 1− c2/a2 =
(a2 − c2)/a2 = b2/a2 results in

a3 =
MGT 2

4π2
, (1.4.2)

which proves Kepler’s third law.

1.5 Solar motion included

The above analysis assumes that the sun is stationary. While not a bad approximation given
the relative masses of the Sun and the planets, it is possible to include the sun’s motion in
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Figure 1.5.1: Sketch for including the motion of the Sun in Kepler problem.

the idealization in which there is only one planet. In this case the sun and the single planet
revolve about a common center of mass.
Following Sommerfeld and referring to figure 1.5.1, Newton’s third law states that the force
of the Sun on the planet is equal and opposite to the force of the planet on the sun,

F S = −F P =
mMGd̂

d2
, (1.5.1)

where d̂ is a unit vector pointing from the Sun to the planet. From this we see that

F S + F P = 0, (1.5.2)

which shows that the net force on the Sun-planet system is zero, and as a consequence the
center of mass of the two systems, as defined in figure 1.5.1 is either stationary or moves
with constant velocity, depending on one’s (inertial) reference frame.
Using

F S =M
d2xS
dt2

F P = m
d2xP
dt2

(1.5.3)

where xS and xP are respectively the positions of the Sun and the planet, we easily show
that

F P

m
− F S

M
=
d2d

dt2
= −(m+M)Gd̂

d2
(1.5.4)

where d = xP − xS = dd̂. The Kepler’s first and third law analyses can thus be made to
include the motion of the Sun by replacing M → m +M and r → d in equation (1.3.1).
Kepler’s second law remains unchanged.
An alternate way to write equation (1.5.4) is to multiply it by mM/(m+M), resulting in

mM

m+M

d2d

dt2
= −mMGd̂

d2
= F P . (1.5.5)

The ratio of masses on the left side can be written
mM

m+M
=

(
1

M
+

1

m

)−1

≡ µ, (1.5.6)

where µ is called the reduced mass. Given this definition, equation (1.5.5) can be written

µ
d2d

dt2
= F P . (1.5.7)


