
Physics 222 – Test 3 – Spring 2012

One-page reminder sheet allowed. Constants: $c = 3 \times 10^8 \text{ m s}^{-1}$; $\hbar = 1.06 \times 10^{-34} \text{ J s}$; $e = 1.6 \times 10^{-19} \text{ C}$; $m_{electron} = 9.11 \times 10^{-31} \text{ kg} = 0.511 \text{ MeV}$; $m_{muon} = 106 \text{ MeV}$; $m_{\pm pion} = 140 \text{ MeV}$; $m_{proton} = 1.672648 \times 10^{-27} \text{ kg} = 938.280 \text{ MeV}$; $m_{neutron} = 1.674954 \times 10^{-27} \text{ kg} = 939.573 \text{ MeV}$. Show all work – no credit given if work not shown!

- 1. If the electron had spin 3/2, determine what the atomic numbers Z of the first two elements with closed electron shells would be. Explain how you got your result.
- 2. Determine the Bohr radius and binding energy of muonic hydrogen, where the electron is replaced by a muon, in terms of the Bohr radius and binding energy for ordinary hydrogen, $a_0 = 5.29 \times 10^{-11}$ m and $E_B = 13.6$ eV. Hint: You may wish to solve this by proportions.
- 3. The Δ^- particle is made up of three *d* quarks and has a rest energy of 1232 MeV. A potential decay process is into a neutron (*udd*) and a π^- ($\overline{u}d$).
 - (a) Determine whether this reaction is energetically possible, and if so, determine how much kinetic energy is released.
 - (b) Draw a Feynman diagram showing the detailed the processes involving quarks in this decay. Is this a strong, weak, or electromagnetic decay?
- 4. Determine which of the vertices below is legal, taking into account the quark composition of hadrons as needed. Particles may be virtual, so energy and momentum conservation aren't issues. If a vertex is legal, determine the type of force acting. If it is illegal, state why.

- 5. Natural uranium at the present day has abundances of 99.28% for U-238 and 0.72% for U-235. Both isotopes are unstable; the half life of U-238 is 4.54×10^9 yr and that of U-235 is 7.04×10^8 yr. The best scientific estimate of the age of the earth is 4.54×10^9 yr.
 - (a) Suppose you currently have 6 kg of natural uranium. Compute how much U-235 and U-238 you have.
 - (b) Compute how much U-235 and U-238 there was in this sample of uranium at the time the earth was formed, according to the above estimate for the age of the earth.
 - (c) Compute the percentage abundances of U-235 and U-238 at this earlier time.
- 6. Tritium, consisting of one proton and two neutrons, has a binding energy of 8.38 Mev and decays into helium-3, consisting of two protons and one neutron, and two other particles. The binding energy of helium-3 is 7.72 MeV.
 - (a) Determine the other two particles released in the decay.
 - (b) Determine the kinetic energy (in MeV) released by the decay.