Physics 222 – Test 3 – Spring 2011

One-page reminder sheet allowed. Constants: speed of light 3×10^8 m s⁻¹; Planck's constant 1.06×10^{-34} J s; mass of proton 1.67×10^{-27} kg; mass of electron 9.11×10^{-31} kg; mass of moon 7.36×10^{22} kg; fine structure constant $\alpha = 1/137$; quark charges u = c = t = 2/3, d = s = b = -1/3. Also, 1 eV = 1.60×10^{-19} J. Show all work – no credit given if work not shown!

- 1. What does the existence of "high momentum transfer" scattering events tell you about
 - (a) photons scattered by atmospheric water droplets,
 - (b) the Geiger-Marsden experiment (scattering of alpha particles off of gold atoms), and
 - (c) high energy proton-antiproton collisions?
- 2. Protonium:
 - (a) Calculate the "Bohr radius" and the binding energy (in electron volts) for an "atom" consisting of an anti-proton orbiting around a proton. Hint: The Bohr radius and binding energy for a normal hydrogen atom are 5.29×10^{-11} m and 13.6 eV. (Since the two particles have equal mass, they actually orbit around a common center of mass half way between them, but ignore this detail here.)
 - (b) Are the two particles close enough for strong forces to act? Recall that the internucleon strong force becomes small for separations exceeding about 10^{-14} m.
- 3. A common decay mode of the Λ^0 particle (quarks: uds) is to a proton (uud) and a negative pion ($\overline{u}d$).
 - (a) Does this decay occur by the strong, weak, or electromagnetic interaction? Explain.
 - (b) Draw a diagram showing the details of this decay at the quark level.
- 4. The easiest fusion reaction to induce is between deuterium (Z = 1, A = 2) and tritium (Z = 1, A = 3) nuclei, resulting in a helium-4 nucleus and a neutron.
 - (a) Are any leptons produced by weak processes in this interaction? Explain.
 - (b) Compute the energy released in this reaction. (The binding energy of deuterium is 2.22 MeV, tritium is 8.48 MeV, and helium-4 is 28.30 MeV.)