Physics 222 – Test 2 – Spring 2009

One-page reminder sheet allowed. Show all work - no credit given if work not shown!

1. Imagine a hollow cavity inside a conducting block. Show that the net charge inside the cavity, including charge on the cavity wall, is zero. Hint: Apply Gauss's law to a Gaussian surface containing the cavity but completely embedded in the conductor.

- 2. The scalar and vector potential for an electromagnetic wave in a vacuum are assumed to be $\phi = 0$ and $\mathbf{A} = (A, 0, 0) \sin(kz \omega t)$ where A is a constant.
 - (a) Verify that the scalar and vector potentials together satisfy the Lorentz condition.
 - (b) What do you know about the ratio ω/k ?
 - (c) Compute the electric and magnetic field vectors and show that these fields are perpendicular to the direction of wave propagation and to each other.
 - (d) Show that the ratio of the magnitudes of the electric and magnetic fields equals the speed of light in this case.
- 3. Imagine a long, cylindrical conductor of radius R oriented perpendicular to the page as shown below. The magnitude of the magnetic field outside the conductor as a function of distance r from the axis of the conductor is B = C/r where C is a constant. The magnetic field lines circulate around the conductor as indicated by the circles. Inside the conductor the magnetic field is zero.
 - (a) Determine the current flowing in the conductor.
 - (b) Given the zero magnetic field inside the conductor, determine where in the conductor the current is located.

- 4. Compute the ratio of the electric and magnetic energy densities in an electromagnetic wave propagating in a vacuum. (Hint: You may find the results of problem 2d to be useful.)
- 5. Consider the circuit below where $V_a = 15$ V, $R_1 = 5$ ohms, $R_2 = 15$ ohms, and $R_3 = 30$ ohms.
 - (a) Compute the current i_a . (Hint: R_2 and R_3 are in parallel; R_1 and the combined R_2 , R_3 are in series.)
 - (b) Compute the voltage V_b .
 - (c) Compute the currents i_b and i_c

- 6. An electron with momentum of magnitude p scatters off a proton by exchanging a virtual photon with momentum of magnitude q and zero energy as illustrated below.
 - (a) Does the photon emission change the energy of the electron? Explain.
 - (b) What is the magnitude of the electron's momentum after the scattering event?
 - (c) What is the virtual mass of the photon?
 - (d) Estimate how close the electron had to come to the proton to make this scattering event possible. (Hint: Recall that the real mass of the photon is zero.)

