Special problem 1 for chapter 21.

- 1. Isotope A decays into isotope B with decay rate λ_A , which decays into isotope C with decay rate λ_B .
 - (a) If A, B, and C are the respective numbers of nuclei of these three isotopes, show that the governing equations for these quantities are

$$\frac{dA}{dt} = -\lambda_A A \qquad \frac{dB}{dt} = \lambda_A A - \lambda_B B \qquad \frac{dC}{dt} = \lambda_B B.$$

- (b) If A_0 is A at zero time, derive an equation for A(t). Hint: Try a solution of the form $A \propto \exp(ct)$ where c is a constant to be determined.
- (c) If B = 0 at zero time, derive an equation for B(t). Hint: Try a solution of the form $B = a \exp(-\lambda_A t) + b \exp(-\lambda_B t)$ and determine the constants a and b in terms of A_0 , B_0 , λ_A , and λ_B .
- (d) If $\lambda_B \gg \lambda_A$, determine the ratio B/A for large times ($\lambda_B t \gg 1$).
- (e) Show that A + B + C doesn't change with time.
- (f) If C = 0 at zero time, determine C(t) using the above results.
- 2. An isotope has a nuclear gamma decay mode with half-life of 10^{-10} sec in which the emitted photon has energy 1 MeV.
 - (a) From this half-life, compute the uncertainty in the energy of the emitted photon.
 - (b) From the above result, compute the uncertainty in the frequency.
 - (c) Compute the Doppler shift velocity that results in a frequency shift equal to the above uncertainty in the frequency. Hint: This velocity is small, justifying the approximation that $\omega' = \omega(1 + v/c)$.