Physics 221 – Test 4 – Fall 2010

One-page reminder sheet allowed. Show all work – no credit given if work not shown! Numerical calculations should be evaluated, suggesting that you ought to have a calculator.

- 1. Suppose that some type of particle obeys the dispersion relation $E = A B\cos(Cp)$ where E is its energy, p is its momentum, and A, B, and C are constants. If this particle is placed in a one-dimensional box of size a, determine the allowed energies of the particle.
- 2. A stationary particle of mass m absorbs a photon of energy E, producing a single, moving particle. (Recall that a photon is massless. This is a relativistic problem.)
 - (a) Compute the momentum and total energy of the new particle.
 - (b) Compute the mass of the new particle.
 - (c) Compute the velocity of the new particle.
- 3. Atwood's machine: Two masses $m_1 > m_2$ are connected by a string which passes over a pully as shown below. Ignore the mass of the string and the moment of inertia of the pully.
 - (a) Draw vectors showing the forces on each mass (including gravity).
 - (b) Write down Newton's second law for each of the masses, including the appropriate forces.
 - (c) Solve for the forces of the string on m_1 and m_2 , using Newton's third law as appropriate.
 - (d) Solve for the acceleration of the masses, indicating which direction of movement you consider positive.

- 4. Suppose water comes out of a fire hose 3 cm in diameter at a speed of $V = 30 \text{ m s}^{-1}$. The density of water is 1000 kg m⁻³.
 - (a) Compute the mass per unit time R flowing out of the fire hose.
 - (b) Suppose that the fire hose is directed at a wall, which splashes water sideways as shown. Given R and V, compute the force that needs to be exerted on the wall to keep it in place.

- 5. The earth has mass $M = 5.98 \times 10^{24}$ kg and the moon's mass is $m = 7.36 \times 10^{22}$ kg. Their separation is $d = 3.82 \times 10^8$ m and the earth and moon move around each other once every 28 days.
 - (a) Compute how far the center of mass of the earth-moon system is from the center of the earth and from the center of the moon.
 - (b) Compute the speed of the earth and that of the moon in the center of mass reference frame.
 - (c) Compute the ratio of the earth's to the moon's angular momentum in the reference frame of the center of mass. (Ignore the rotation of these bodies about their axes.)
 - (d) Compute similarly the ratio of the earth's to the moon's kinetic energy. (Again, ignore rotation.)
- 6. You are keeping a cylinder of radius R and mass M from rolling under the influence of gravity down a ramp tilted at an angle θ by pulling on a rope wrapped around the cylinder as shown. Compute the force T you exert on the cylinder via the rope and the force F that the ramp exerts on the cylinder.

