
Chapter 1

Harmonic Oscillator

Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring
system. A mass M is attached to one end of a spring. The other end of
the spring is attached to something rigid such as a wall. The spring exerts a
restoring force F = −kx on the mass when it is stretched by an amount x,
i. e., it acts to return the mass to its initial position. This is called Hooke’s

law and k is called the spring constant.

1.1 Energy Analysis

The potential energy of the mass-spring system is

U(x) = kx2/2 (1.1)

k

M

xF = − kx

Figure 1.1: Illustration of a mass-spring system.
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Figure 1.2: Potential, kinetic, and total energy of a harmonic oscillator plot-
ted as a function of spring displacement x.

which may be verified by noting that the Hooke’s law force is derived from
this potential energy: F = −d(kx2/2)/dx = −kx. This is shown in figure
1.2. Since a potential energy exists, the total energy E = K+U is conserved,
i. e., is constant in time. If the total energy is known, this provides a useful
tool for determining how the kinetic energy varies with the position x of the
mass M : K(x) = E − U(x). Since the kinetic energy is expressed (non-
relativistically) in terms of the velocity u as K = Mu2/2, the velocity at any
point on the graph in figure 1.2 is

u = ±

(

2(E − U)

M

)1/2

. (1.2)

Given all this, it is fairly evident how the mass moves. From Hooke’s
law, the mass is always accelerating toward the equilibrium position, x = 0.
However, at any point the velocity can be either to the left or the right. At
the points where U(x) = E, the kinetic energy is zero. This occurs at the
turning points

xTP = ±

(

2E

k

)1/2

. (1.3)

If the mass is moving to the left, it slows down as it approaches the left
turning point. It stops when it reaches this point and begins to move to
the right. It accelerates until it passes the equilibrium position and then
begins to decelerate, stopping at the right turning point, accelerating toward
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the left, etc. The mass thus oscillates between the left and right turning
points. (Note that equations (1.2) and (1.3) are only true for the harmonic
oscillator.)

How does the period of the oscillation depend on the total energy of the
system? Notice that from equation (1.2) the maximum speed of the mass (i.
e., the speed at x = 0) is equal to umax = (2E/M)1/2. The average speed
must be some fraction of this maximum value. Let us guess here that it is
half the maximum speed:

uaverage ≈
umax

2
=
(

E

2M

)1/2

(approximate). (1.4)

However, the distance d the mass has to travel for one full oscillation is
twice the distance between turning points, or d = 4(2E/k)1/2. Therefore,
the period of oscillation must be approximately

T =
d

uaverage

≈ 4
(

2E

k

)1/2 (2M

E

)1/2

= 8
(

M

k

)1/2

(approximate). (1.5)

1.2 Analysis Using Newton’s Laws

The acceleration of the mass at any time is given by Newton’s second law:

a =
d2x

dt2
=

F

M
= −

kx

M
. (1.6)

An equation of this type is known as a differential equation since it involves
a derivative of the dependent variable x. Equations of this type are generally
more difficult to solve than algebraic equations, as there are no universal
techniques for solving all forms of such equations. In fact, it is fair to say
that the solutions of most differential equations were originally obtained by
guessing!

We already have the basis on which to make an intelligent guess for the
solution to equation (1.6) since we know that the mass oscillates back and
forth with a period that is independent of the amplitude of the oscillation. A
function which might fill the bill is the cosine function. Let us try substituting
x = cos(ωt), where ω is a constant, into this equation. The second derivative
of x with respect to t is −ω2 cos(ωt), so performing this substitution results
in

−ω2 cos(ωt) = −
k

M
cos(ωt). (1.7)
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Notice that the cosine function cancels out, leaving us with −ω2 = −k/M .
The guess thus works if we set

ω =

(

k

M

)1/2

. (1.8)

The constant ω is the angular oscillation frequency for the oscillator,
from which we infer the period of oscillation to be T = 2π(M/k)1/2. This
agrees with the earlier approximate result of equation (1.5), except that the
approximation has a numerical factor of 8 rather than 2π ≈ 6. Thus, the
earlier guess is only off by about 30%!

It is easy to show that x = B cos(ωt) is also a solution of equation (1.6),
where B is any constant and ω = (k/M)1/2. This confirms that the oscillation
frequency and period are independent of amplitude. Furthermore, the sine
function is equally valid as a solution: x = A sin(ωt), where A is another
constant. In fact, the most general possible solution is just a combination of
these two, i. e.,

x = A sin(ωt) +B cos(ωt) = C cos(ωt− φ). (1.9)

The values of A and B depend on the position and velocity of the mass at
time t = 0. The right side of equation (1.9) shows an alternate way of writing
the general harmonic oscillator solution that uses a cosine function with a
phase factor φ.

1.3 Forced Oscillator

If we wiggle the left end of the spring by the amount d = d0 cos(ωF t), as
in figure 1.3, rather than rigidly fixing it as in figure 1.1, we have a forced

harmonic oscillator. The constant d0 is the amplitude of the imposed wiggling
motion. The forcing frequency ωF is not necessarily equal to the natural or
resonant frequency ω = (k/M)1/2 of the mass-spring system. Very different
behavior occurs depending on whether ωF is less than, equal to, or greater
than ω.

Given the above wiggling, the force of the spring on the mass becomes
F = −k(x − d) = −k[x − d0 cos(ωF t)] since the length of the spring is the
difference between the positions of the left and right ends. Proceeding as for
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d = d   sin ω0 F t

k

M

x
F = − k (x − d)

Figure 1.3: Illustration of a forced mass-spring oscillator. The left end of
the spring is wiggled back and forth with an angular frequency ωF and a
maximum amplitude d0.

the unforced mass-spring system, we arrive at the differential equation

d2x

dt2
+

kx

M
=

kd0
M

cos(ωF t). (1.10)

The solution to this equation turns out to be the sum of a forced part in
which x is proportional to cos(ωF t) and a free part which is the same as the
solution to the unforced equation (1.9). We are primarily interested in the
forced part of the solution, so let us set x = x0 cos(ωF t) and substitute this
into equation (1.10):

−ω2

Fx0 cos(ωF t) +
kx0

M
cos(ωF t) =

kd0
M

cos(ωF t). (1.11)

Again the cosine factor cancels and we are left with an algebraic equation
for x0, the amplitude of the oscillatory motion of the mass.

Solving for the ratio of the oscillation amplitude of the mass to the am-
plitude of the wiggling motion, x0/d0, we find

x0

d0
=

1

1− ω2

F/ω
2
, (1.12)

where we have recognized that k/M = ω2, the square of the frequency of the
free oscillation. This function is plotted in figure 1.4.

Notice that if ωF < ω, the motion of the mass is in phase with the wig-
gling motion and the amplitude of the mass oscillation is greater than the
amplitude of the wiggling. As the forcing frequency approaches the natu-
ral frequency of the oscillator, the response of the mass grows in amplitude.
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Figure 1.4: Plot of the ratio of response to forcing vs. the ratio of forced to
free oscillator frequency for the mass-spring system.

When the forcing is at the resonant frequency, the response is technically
infinite, though practical limits on the amplitude of the oscillation will in-
tervene in this case — for instance, the spring cannot stretch or shrink an
infinite amount. In many cases friction will act to limit the response of the
mass to forcing near the resonant frequency. When the forcing frequency is
greater than the natural frequency, the mass actually moves in the opposite
direction of the wiggling motion — i. e., the response is out of phase with
the forcing. The amplitude of the response decreases as the forcing frequency
increases above the resonant frequency.

Forced and free harmonic oscillators form an important part of many
physical systems. For instance, any elastic material body such as a bridge
or an airplane wing has harmonic oscillatory modes. A common engineering
problem is to ensure that such modes are damped by friction or some other
physical mechanism when there is a possibility of exitation of these modes
by naturally occurring processes. A number of disasters can be traced to a
failure to properly account for oscillatory forcing in engineered structures.
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1.4 Complex Exponential Solutions

Complex exponential functions of the form x = exp(±iωt) also constitute
solutions to the free harmonic oscillator governed by equation (1.6). This
makes sense, as the complex exponential is the sum of sines and cosines.
However, for the frictionless harmonic oscillator, the exponential solutions
provide no particular advantage over sines and cosines. Furthermore, oscil-
lator displacements are real, not complex quantities.

The superposition principle solves the problem of complex versus real
solutions. For an equation like (1.6) which has real coefficients, if exp(iωt) is
a solution, then so is exp(−iωt), so the superposition of these two solutions
is also a solution. Furthermore

exp(iωt) + exp(−iωt) = 2 cos(ωt) = 2real[exp(iωt)]. (1.13)

This shows a shortcut for getting the physical part of a complex exponential
solution to equations like the harmonic oscillator equation; simply take the
real part.

Complex exponential solutions come into their own for more complicated
equations. For instance, suppose the force on the mass in the mass-spring
system takes the form

F = −kx− b
dx

dt
. (1.14)

The term containing b represents a frictional damping effect on the harmonic
oscillator and the governing differential equation becomes

d2x

dt2
+

b

M

dx

dt
+

k

M
x = 0. (1.15)

Trying the exponential function exp(σt) in this equation results in

σ =
1

2



−
b

M
±

(

b2

M2
−

4k

M

)1/2


 = −β ± i(ω2

0
− β2)1/2 (1.16)

where we have set

β =
b

2M
ω0 =

(

k

M

)1/2

. (1.17)

The quantity ω ≡ (ω2

0
− β2)1/2 is the actual frequency of oscillation of the

damped oscillator, which one can see is less than the oscillation frequency
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ω0 that occurs with the damping turned off. The physical solution to the
damped oscillator is thus

x(t) = real[exp(σt)] = real[exp(iωt) exp(−βt)] = cos(ωt) exp(−βt) (1.18)

as long as ω2

0
> β2. Notice that this solution is in the form of an oscillation

cos(ωt) multiplied by a decaying exponential exp(−βt). This confirms that
the b term decreases the amplitude of the oscillation with time.

1.5 Quantum Mechanical Harmonic Oscilla-

tor

The quantum mechanical harmonic oscillator shares the characteristic of
other quantum mechanical bound state problems in that the total energy can
take on only discrete values. Calculation of these values is too difficult for
this book, but the problem is sufficiently important to warrant reporting the
results here. The energies accessible to a quantum mechanical mass-spring
system are given by the formula

En = (n+ 1/2)h̄(k/M)1/2, n = 0, 1, 2, . . . . (1.19)

In other words, the energy difference between successive quantum mechan-
ical energy levels in this case is constant and equals the classical resonant
frequency for the oscillator, ω = (k/M)1/2, times h̄.

1.6 Problems

1. An oscillator (non-harmonic) has the potential energy function U(x) =
Cx4, where C is a constant. How does the oscillation frequency depend
on energy? Explain your reasoning.

2. Show that C cos(ωt − φ) is an alternate way of writing A sin(ωt) +
B cos(ωt) by finding the values of A and B in terms of the constants C
and φ. Hint: Expand cos(ωt − φ) by using the trigonometric identity
for the cosine of the sum of two angles.

3. If a mass-spring harmonic oscillator has displacement x = 0 and veloc-
ity dx/dt = V at time t = 0, determine the values of A and B as well
as those of C and φ in equation (1.9).
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Figure 1.5: The pendulum as a harmonic oscillator.

4. A mass M is suspended against gravity by a spring of spring constant
k. The unstretched length of the spring is x0 and under the influence
of gravity the spring is stretched to a resting length x1 > x0.

(a) Compute the length of the spring x1 in the steady, resting case.

(b) Set up the equation of motion for the mass moving under the
influence of the two forces, gravity and spring. Solve the equation
for the frequency of the oscillation and the position of the spring
as a function of time x(t). Does the oscillation frequency change
from the case without gravity?

5. Determine the two real solutions to the damped harmonic oscillator
problem in the case in which ω2

0
< β2.

6. Consider the pendulum in figure 1.5. The mass M moves along an arc
with x denoting the distance along the arc from the equilibrium point.

(a) Find the component of the gravitational force tangent to the arc
(and thus in the direction of motion of the mass) as a function
of the angle θ. Use the small angle approximation on sin(θ) to
simplify this answer.

(b) Get the force in terms of x rather than θ. (Recall that θ = x/L.)
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(c) Use Newton’s second law for motion in the x direction (i. e., along
the arc followed by the mass) to get the equation of motion for
the mass.

(d) Solve the equation of motion using the solution to the mass-spring
problem as a guide.

7. Forced damped oscillator:

(a) Add a damping term to the forced harmonic oscillator equation
(1.10) and solve for the forced part of the solution using complex
exponential methods. Hint: Change the cosine on the right side
of this equation to exp(iωF t) to convert the equation to complex
form and then try the solution x = x0 exp(iωF t) where x0 will
depend on ωF . Also, write the equation in terms of β = b/(2M)
and ω2 = k/M .

(b) Find the physical part of this solution by taking the real part of
x(t). Hint: While taking the real part of x, it may be helpful
to recall that the inverse of any complex number can be written
1/(a+ ib) = (a− ib)/(a2 + b2).

(c) Determine how x0 differs from that in the undamped case when
ωF is near the resonant frequency of the unforced oscillator. In
particular, show how the phase and amplitude of the oscillation
change as the forcing frequency changes from less than to greater
than the resonant frequency.

8. A massless particle is confined to a box of length a. (Think of a photon
between two mirrors.) Treating the particle classically, compute the
period of one round trip from one end of the box to the other and back
again. From this compute an angular frequency for the oscillation of
this particle in the box. Does this frequency depend on the particle’s
energy?

9. Compute the ground state energy Eground of a massless particle in a
box of length a using quantum mechanics. Compare Eground/h̄ with
the angular frequency computed in the previous problem.


