Additional problems for chapter 6

October 2, 2015

1. Approximate equation (6.26) for the case in which $X^{\prime 2} \ll L^{2}$. Note: You may have to use $(1+\epsilon)^{n} \approx 1+n \epsilon$ more than once to complete the approximation. Keep only terms proportional to X^{\prime} / L and drop any terms containing $\left(X^{\prime} / L\right)^{2}$ and higher.
2. A satellite is in low earth orbit, 200 km above the surface of the earth.
(a) From the perspective of the satellite, is a clock on the surface of the earth running faster or slower than a clock on the satellite? (Ignore the normal Doppler shift due to the velocity of the satellite.)
(b) Compute the fractional frequency difference $\delta \equiv\left(\omega_{\text {sat }}-\omega_{\text {earth }}\right) / \omega_{\text {sat }}$ between the satellite and the earth in this case. Note: To carry out the calculation, you may need to use the approximate equation derived in the previous problem. Recall that $L=c^{2} / a$ where the acceleration a is equated to the earth's gravitational field g.
