
Chapter 1

Waves in Two and Three

Dimensions

In this chapter we extend the ideas of the previous chapter to the case of
waves in more than one dimension. The extension of the sine wave to higher
dimensions is the plane wave. Wave packets in two and three dimensions
arise when plane waves moving in different directions are superimposed.

Diffraction results from the disruption of a wave which is impingent upon
an object. Those parts of the wave front hitting the object are scattered,
modified, or destroyed. The resulting diffraction pattern comes from the
subsequent interference of the various pieces of the modified wave. A knowl-
edge of diffraction is necessary to understand the behavior and limitations of
optical instruments such as telescopes.

Diffraction and interference in two and three dimensions can be manipu-
lated to produce useful devices such as the diffraction grating .

1.1 Math Tutorial — Vectors

Before we can proceed further we need to explore the idea of a vector . A
vector is a quantity which expresses both magnitude and direction. Graph-
ically we represent a vector as an arrow. In typeset notation a vector is
represented by a boldface character, while in handwriting an arrow is drawn
over the character representing the vector.

Figure 1.1 shows some examples of displacement vectors , i. e., vectors
which represent the displacement of one object from another, and introduces
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Figure 1.1: Displacement vectors in a plane. Vector A represents the dis-
placement of George from Mary, while vector B represents the displacement
of Paul from George. Vector C represents the displacement of Paul from
Mary and C = A+B. The quantities Ax, Ay, etc., represent the Cartesian
components of the vectors.
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Figure 1.2: Definition sketch for the angle θ representing the orientation of
a two dimensional vector.
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the idea of vector addition. The tail of vector B is collocated with the head
of vector A, and the vector which stretches from the tail of A to the head of
B is the sum of A and B, called C in figure 1.1.

The quantities Ax, Ay, etc., represent the Cartesian components of the
vectors in figure 1.1. A vector can be represented either by its Cartesian
components, which are just the projections of the vector onto the Cartesian
coordinate axes, or by its direction and magnitude. The direction of a vector
in two dimensions is generally represented by the counterclockwise angle of
the vector relative to the x axis, as shown in figure 1.2. Conversion from one
form to the other is given by the equations

A = (A2

x + A2

y)
1/2 θ = tan−1(Ay/Ax), (1.1)

Ax = A cos(θ) Ay = A sin(θ), (1.2)

where A is the magnitude of the vector. A vector magnitude is sometimes
represented by absolute value notation: A ≡ |A|.

Notice that the inverse tangent gives a result which is ambiguous relative
to adding or subtracting integer multiples of π. Thus the quadrant in which
the angle lies must be resolved by independently examining the signs of Ax

and Ay and choosing the appropriate value of θ.
To add two vectors, A and B, it is easiest to convert them to Cartesian

component form. The components of the sum C = A+B are then just the
sums of the components:

Cx = Ax +Bx Cy = Ay +By. (1.3)

Subtraction of vectors is done similarly, e. g., if A = C−B, then

Ax = Cx − Bx Ay = Cy − By. (1.4)

A unit vector is a vector of unit length. One can always construct a
unit vector from an ordinary vector by dividing the vector by its length:
n = A/|A|. This division operation is carried out by dividing each of the
vector components by the number in the denominator. Alternatively, if the
vector is expressed in terms of length and direction, the magnitude of the
vector is divided by the denominator and the direction is unchanged.

Unit vectors can be used to define a Cartesian coordinate system. Conven-
tionally, i, j, and k indicate the x, y, and z axes of such a system. Note that i,
j, and k are mutually perpendicular. Any vector can be represented in terms
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Figure 1.3: Definition sketch for dot product.

of unit vectors and its Cartesian components: A = Axi+Ayj+Azk. An alter-
nate way to represent a vector is as a list of components: A = (Ax, Ay, Az).
We tend to use the latter representation since it is somewhat more economical
notation.

There are two ways to multiply two vectors, yielding respectively what
are known as the dot product and the cross product . The cross product yields
another vector while the dot product yields a number. Here we will discuss
only the dot product. The cross product will be presented later when it is
needed.

Given vectors A and B, the dot product of the two is defined as

A ·B ≡ |A||B| cos θ, (1.5)

where θ is the angle between the two vectors. In two dimensions an alternate
expression for the dot product exists in terms of the Cartesian components
of the vectors:

A ·B = AxBx + AyBy. (1.6)

It is easy to show that this is equivalent to the cosine form of the dot product
when the x axis lies along one of the vectors, as in figure 1.3. Notice in
particular that Ax = |A| cos θ, while Bx = |B| and By = 0. Thus, A · B =
|A| cos θ|B| in this case, which is identical to the form given in equation (1.5).

All that remains to be proven for equation (1.6) to hold in general is to
show that it yields the same answer regardless of how the Cartesian coor-
dinate system is oriented relative to the vectors. To do this, we must show
that AxBx + AyBy = A′

xB
′

x + A′

yB
′

y, where the primes indicate components
in a coordinate system rotated from the original coordinate system.
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Figure 1.4: Definition figure for rotated coordinate system. The vector R has
components X and Y in the unprimed coordinate system and components
X ′ and Y ′ in the primed coordinate system.

Figure 1.4 shows the vector R resolved in two coordinate systems rotated
with respect to each other. From this figure it is clear that X ′ = a + b.
Focusing on the shaded triangles, we see that a = X cos θ and b = Y sin θ.
Thus, we find X ′ = X cos θ + Y sin θ. Similar reasoning shows that Y ′ =
−X sin θ + Y cos θ. Substituting these and using the trigonometric identity
cos2 θ + sin2 θ = 1 results in

A′

xB
′

x + A′

yB
′

y = (Ax cos θ + Ay sin θ)(Bx cos θ +By sin θ)

+ (−Ax sin θ + Ay cos θ)(−Bx sin θ +By cos θ)

= AxBx + AyBy (1.7)

thus proving the complete equivalence of the two forms of the dot product
as given by equations (1.5) and (1.6). Multiply out the above expression to
verify this.

A numerical quantity that doesn’t depend on which coordinate system
is being used is called a scalar . The dot product of two vectors is a scalar.
However, the components of a vector, taken individually, are not scalars,
since the components change as the coordinate system changes. Since the
laws of physics cannot depend on the choice of coordinate system being used,
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Figure 1.5: Definition sketch for a plane sine wave in two dimensions. The
wave fronts are constant phase surfaces separated by one wavelength. The
wave vector is normal to the wave fronts and its length is the wavenumber.

we insist that physical laws be expressed in terms of scalars and vectors, but
not in terms of the components of vectors.

In three dimensions the cosine form of the dot product remains the same,
while the component form is

A ·B = AxBx + AyBy + AzBz. (1.8)

1.2 Plane Waves

A plane wave in two or three dimensions is like a sine wave in one dimension
except that crests and troughs aren’t points, but form lines (2-D) or planes
(3-D) perpendicular to the direction of wave propagation. Figure 1.5 shows
a plane sine wave in two dimensions. The large arrow is a vector called
the wave vector , which defines (1) the direction of wave propagation by its
orientation perpendicular to the wave fronts, and (2) the wavenumber by its
length. We can think of a wave front as a line along the crest of the wave.
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The equation for the displacement associated with a plane sine wave in three
dimensions at some instant in time is

h(x, y, z) = sin(k · x) = sin(kxx+ kyy + kzz). (1.9)

Since wave fronts are lines or surfaces of constant phase, the equation defining
a wave front is simply k · x = const.

In the two dimensional case we simply set kz = 0. Therefore, a wave front,
or line of constant phase φ in two dimensions is defined by the equation

k · x = kxx+ kyy = φ (two dimensions). (1.10)

This can be easily solved for y to obtain the slope and intercept of the wave
front in two dimensions.

As for one dimensional waves, the time evolution of the wave is obtained
by adding a term −ωt to the phase of the wave. In three dimensions the
wave displacement as a function of both space and time is given by

h(x, y, z, t) = sin(kxx+ kyy + kzz − ωt). (1.11)

The frequency depends in general on all three components of the wave vector.
The form of this function, ω = ω(kx, ky, kz), which as in the one dimensional
case is called the dispersion relation, contains information about the physical
behavior of the wave.

Some examples of dispersion relations for waves in two dimensions are as
follows:

• Light waves in a vacuum in two dimensions obey

ω = c(k2

x + k2

y)
1/2 (light), (1.12)

where c is the speed of light in a vacuum.

• Deep water ocean waves in two dimensions obey

ω = g1/2(k2

x + k2

y)
1/4 (ocean waves), (1.13)

where g is the strength of the Earth’s gravitational field as before.
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Figure 1.6: Contour plots of the dispersion relations for three kinds of waves
in two dimensions. In the upper panels the curves show lines or contours
along which the frequency ω takes on constant values. Contours are drawn
for equally spaced values of ω. For light and ocean waves the frequency
depends only on the magnitude of the wave vector, whereas for gravity waves
it depends only on the wave vector’s direction, as defined by the angle θ in
the upper right panel. These dependences for each wave type are illustrated
in the lower panels.

• Certain kinds of atmospheric waves confined to a vertical x − z plane
called gravity waves (not to be confused with the gravitational waves
of general relativity)1 obey

ω =
Nkx
kz

(gravity waves), (1.14)

where N is a constant with the dimensions of inverse time called the

1Gravity waves in the atmosphere are vertical or slantwise oscillations of air parcels

produced by buoyancy forces which push parcels back toward their original elevation after

a vertical displacement.
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Brunt-Väisälä frequency.

Contour plots of these dispersion relations are plotted in the upper pan-
els of figure 1.6. These plots are to be interpreted like topographic maps,
where the lines represent contours of constant elevation. In the case of fig-
ure 1.6, constant values of frequency are represented instead. For simplicity,
the actual values of frequency are not labeled on the contour plots, but are
represented in the graphs in the lower panels. This is possible because fre-
quency depends only on wave vector magnitude (k2

x + k2

y)
1/2 for the first two

examples, and only on wave vector direction θ for the third.

1.3 Superposition of Plane Waves

We now study wave packets in two dimensions by asking what the super-
position of two plane sine waves looks like. If the two waves have different
wavenumbers, but their wave vectors point in the same direction, the re-
sults are identical to those presented in the previous chapter, except that
the wave packets are indefinitely elongated without change in form in the
direction perpendicular to the wave vector. The wave packets produced in
this case move in the direction of the wave vectors and thus appear to a
stationary observer like a series of passing pulses with broad lateral extent.

Superimposing two plane waves which have the same frequency results
in a stationary wave packet through which the individual wave fronts pass.
This wave packet is also elongated indefinitely in some direction, but the
direction of elongation depends on the dispersion relation for the waves being
considered. These wave packets are in the form of steady beams , which
guide the individual phase waves in some direction, but don’t themselves
change with time. By superimposing multiple plane waves, all with the same
frequency, one can actually produce a single stationary beam, just as one
can produce an isolated pulse by superimposing multiple waves with wave
vectors pointing in the same direction.

If the frequency of a wave depends on the magnitude of the wave vec-
tor, but not on its direction, the wave’s dispersion relation is called isotropic;
otherwise it is anisotropic. In the isotropic case, two waves have the same fre-
quency only if the lengths of their wave vectors, and hence their wavelengths,
are the same. The first two examples in figure 1.6 satisfy this condition, while
the last example is anisotropic.
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Figure 1.7: Wave fronts and wave vectors (k1 and k2) of two plane waves with
the same wavelength but oriented in different directions. The vertical bands
show regions of constructive interference where wave fronts coincide. The
vertical regions in between have destructive interference, and hence define
the lateral boundaries of the beams produced by the superposition. The
quantities k0 and ∆k are also shown.

We now use the language of vectors to investigate the superposition of
two plane waves with wave vectors k1 and k2:

h = sin(k1 · x− ωt) + sin(k2 · x− ωt). (1.15)

Applying the trigonometric identity for the sine of the sum of two angles (as
we have done previously), equation (1.15) can be reduced to

h = 2 sin(k0 · x− ωt) cos(∆k · x) (1.16)

where
k0 = (k1 + k2)/2 ∆k = (k2 − k1)/2. (1.17)

This is in the form of a sine wave moving in the k0 direction with phase
speed cphase = ω/|k0| and wavenumber |k0|, modulated in the ∆k direction
by a cosine function. The lines of destructive interference are normal to
∆k. The distance w between lines of destructive interference is the distance
between successive zeros of the cosine function in equation (1.16), implying
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Figure 1.8: Example of beams produced by two plane waves with the same
wavelength moving in different directions. The wave vectors of the two waves
are k = (±0.1, 1.0). Regions of positive displacement are lighter, while re-
gions of negative displacement are darker.

that |∆k|w = π, which leads to

w = π/|∆k|. (1.18)

Thus, the smaller |∆k|, the greater is the beam diameter.

1.3.1 Two Waves of Identical Wavelength

In this section we investigate the beams produced by superimposing isotropic
waves of the same frequency. Figure 1.7 illustrates what happens in such a
superposition. Vectors k1 and k2 of equal length give rise to a mean wave
vector k0 and half the difference, ∆k. As illustrated, the lines of constructive
and destructive interference are perpendicular to ∆k. Figure 1.8 shows a con-
crete example of the beams produced by superposition of two plane waves of
equal wavelength oriented as in figure 1.7. The beams are aligned vertically,
since ∆k is horizontal, with the lines of destructive interference separating
the beams located near x = ±16. The transverse width of the beams of
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Figure 1.9: Wave fronts and wave vectors (k1 and k2) of two plane waves with
different wavelengths oriented in different directions. The slanted bands show
regions of constructive interference where wave fronts coincide. The slanted
regions in between have destructive interference, and as previously, define the
lateral limits of the beams produced by the superposition. The quantities k0

and ∆k are also shown.

≈ 32 satisfies equation (1.18) with |∆k| = 0.1. Each beam is made up of
vertically propagating phase waves, with the crests and troughs indicated by
the regions of white and black.

1.3.2 Two Waves of Differing Wavelength

In the third example of figure 1.6, the frequency of the wave depends only
on the direction of the wave vector, independent of its magnitude, which is
the reverse of the case for an isotropic dispersion relation. In this highly
anisotropic case, different plane waves with the same frequency have wave
vectors which point in the same direction, but have different lengths.

More generally, one might have waves for which the frequency depends
on both the direction and magnitude of the wave vector. In this case, two
different plane waves with the same frequency would typically have wave
vectors which differed both in direction and magnitude. Such an example is
illustrated in figures 1.9 and 1.10.

Figure 1.11 summarizes what we have learned about adding plane waves
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Figure 1.10: Example of beams produced by two plane waves with wave
vectors differing in both direction and magnitude. The wave vectors of the
two waves are k1 = (−0.1, 1.0) and k2 = (0.1, 0.9). Regions of positive
displacement are lighter, while regions of negative displacement darker.

with the same frequency. In general, the beam orientation (and the lines of
constructive interference) are not perpendicular to the wave fronts. This only
occurs when the wave frequency is independent of wave vector direction.

1.3.3 Many Waves with the Same Wavelength

As with wave packets in one dimension, we can add together more than two
waves to produce an isolated wave packet. We will confine our attention here
to the case of an isotropic dispersion relation in which all the wave vectors
for a given frequency are of the same length.

Figure 1.12 shows an example of this in which wave vectors of the same
wavelength but different directions are added together. Defining αi as the
angle of the ith wave vector clockwise from the vertical, as illustrated in
figure 1.12, we could write the superposition of these waves at time t = 0 as

h =
∑

i

hi sin(kxix+ kyiy)
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Figure 1.11: Illustration of factors entering the addition of two plane waves
with the same frequency. The wave fronts are perpendicular to the vector av-
erage of the two wave vectors, k0 = (k1+k2)/2, while the lines of constructive
interference, which define the beam orientation, are oriented perpendicular
to the difference between these two vectors, ∆k = (k2 − k1)/2.
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Figure 1.12: Illustration of wave vectors of plane waves which might be added
together.
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Figure 1.13: Plot of the displacement field h(x, y) from equation (1.19) for
αmax = 0.8 and k = 1.

=
∑

i

hi sin[kx sin(αi) + ky cos(αi)] (1.19)

where we have assumed that kxi = k sin(αi) and kyi = k cos(αi). The param-
eter k = |k| is the magnitude of the wave vector and is the same for all the
waves. Let us also assume in this example that the amplitude of each wave
component decreases with increasing |αi|:

hi = exp[−(αi/αmax)
2]. (1.20)

The exponential function decreases rapidly as its argument becomes more
negative, and for practical purposes, only wave vectors with |αi| ≤ αmax

contribute significantly to the sum. We call αmax the spreading angle.
Figure 1.13 shows what h(x, y) looks like when αmax = 0.8 radians and

k = 1. Notice that for y = 0 the wave amplitude is only large for a small
region in the range −4 < x < 4. However, for y > 0 the wave spreads into a
broad, semicircular pattern.

Figure 1.14 shows the computed pattern of h(x, y) when the spreading
angle αmax = 0.2 radians. The wave amplitude is large for a much broader
range of x at y = 0 in this case, roughly −12 < x < 12. On the other hand,
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Figure 1.14: Plot of the displacement field h(x, y) from equation (1.19) for
αmax = 0.2 and k = 1.

the subsequent spread of the wave is much smaller than in the case of figure
1.13.

We conclude that a superposition of plane waves with wave vectors spread
narrowly about a central wave vector which points in the y direction (as in
figure 1.14) produces a beam which is initially broad in x but for which the
breadth increases only slightly with increasing y. However, a superposition
of plane waves with wave vectors spread more broadly (as in figure 1.13)
produces a beam which is initially narrow in x but which rapidly increases
in width as y increases.

The relationship between the spreading angle αmax and the initial breadth
of the beam is made more understandable by comparison with the results for
the two-wave superposition discussed at the beginning of this section. As
indicated by equation (1.18), large values of kx, and hence α, are associated
with small wave packet dimensions in the x direction and vice versa. The
superposition of two waves doesn’t capture the subsequent spread of the
beam which occurs when many waves are superimposed, but it does lead to
a rough quantitative relationship between αmax (which is just tan−1(kx/ky) in
the two wave case) and the initial breadth of the beam. If we invoke the small
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Figure 1.15: Schematic behavior when a plane wave impinges on a narrow
slit and a broad slit.

angle approximation for α = αmax so that αmax = tan−1(kx/ky) ≈ kx/ky ≈
kx/k, then kx ≈ kαmax and equation (1.18) can be written w = π/kx ≈
π/(kαmax) = λ/(2αmax). Thus, we can find the approximate spreading angle
from the wavelength of the wave λ and the initial breadth of the beam w:

αmax ≈ λ/(2w) (single slit spreading angle). (1.21)

1.4 Diffraction Through a Single Slit

How does all of this apply to the passage of waves through a slit? Imagine a
plane wave of wavelength λ impingent on a barrier with a slit. The barrier
transforms the plane wave with infinite extent in the lateral direction into a
beam with initial transverse dimensions equal to the width of the slit. The
subsequent development of the beam is illustrated in figures 1.13 and 1.14,
and schematically in figure 1.15. In particular, if the slit width is comparable
to the wavelength, the beam spreads broadly as in figure 1.13. If the slit width
is large compared to the wavelength, the beam doesn’t spread as much, as
figure 1.14 illustrates. Equation (1.21) gives us an approximate quantitative
result for the spreading angle if w is interpreted as the width of the slit.
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Figure 1.16: Definition sketch for the double slit. Light passing through slit
B travels an extra distance to the screen equal to d sin θ compared to light
passing through slit A.

One use of the above equation is in determining the maximum angu-
lar resolution of optical instruments such as telescopes. The primary lens
or mirror can be thought of as a rather large “slit”. Light from a distant
point source is essentially in the form of a plane wave when it arrives at the
telescope. However, the light passed by the telescope is no longer a plane
wave, but is a beam with a tendency to spread. The spreading angle αmax

is given by equation (1.21), and the telescope cannot resolve objects with
an angular separation less than αmax. Replacing w with the diameter of the
lens or mirror in equation (1.21) thus yields the telescope’s angular resolu-
tion. For instance, a moderate sized telescope with aperture 1 m observing
red light with λ ≈ 6 × 10−7 m has a maximum angular resolution of about
3× 10−7 radians.

1.5 Two Slits

Let us now imagine a plane sine wave normally impingent on a screen with
two narrow slits spaced by a distance d, as shown in figure 1.16. Since the
slits are narrow relative to the wavelength of the wave impingent on them,
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the spreading angle of the beams is large and the diffraction pattern from
each slit individually is a cylindrical wave spreading out in all directions, as
illustrated in figure 1.13. The cylindrical waves from the two slits interfere,
resulting in oscillations in wave intensity at the screen on the right side of
figure 1.16.

Constructive interference occurs when the difference in the paths traveled
by the two waves from their originating slits to the screen, L2 − L1, is an
integer multiple m of the wavelength λ: L2 − L1 = mλ. If L0 ≫ d, the lines
L1 and L2 are nearly parallel, which means that the narrow end of the dark
triangle in figure 1.16 has an opening angle of θ. Thus, the path difference
between the beams from the two slits is L2−L1 = d sin θ. Substitution of this
into the above equation shows that constructive interference occurs when

d sin θ = mλ, m = 0,±1,±2, . . . (two slit interference). (1.22)

Destructive interference occurs when m is an integer plus 1/2. The integer
m is called the interference order and is the number of wavelengths by which
the two paths differ.

1.6 Diffraction Gratings

Since the angular spacing ∆θ of interference peaks in the two slit case depends
on the wavelength of the incident wave, the two slit system can be used as a
crude device to distinguish between the wavelengths of different components
of a non-sinusoidal wave impingent on the slits. However, if more slits are
added, maintaining a uniform spacing d between slits, we obtain a more
sophisticated device for distinguishing beam components. This is called a
diffraction grating.

Figures 1.17-1.19 show the intensity of the diffraction pattern as a func-
tion of position x on the display screen (see figure 1.16) for gratings with
2, 4, and 16 slits respectively, with the same slit spacing. Notice how the
interference peaks remain in the same place but increase in sharpness as the
number of slits increases.

The width of the peaks is actually related to the overall width of the
grating, w = nd, where n is the number of slits. Thinking of this width as
the dimension of large single slit, the single slit equation, αmax = λ/(2w),
tells us the angular width of the peaks.2

2Note that for this type of grating to work, the width of the grating has to be much less
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Figure 1.17: Intensity of interference pattern from a diffraction grating with 2
slits on the screen in figure 1.16. The position x on the screen is proportional
to the angle θ in the small angle approximation.
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Figure 1.18: Intensity of interference pattern from a diffraction grating with
4 slits.
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Figure 1.19: Intensity of interference pattern from a diffraction grating with
16 slits.

Whereas the angular width of the interference peaks is governed by the
single slit equation, their angular positions are governed by the two slit equa-
tion. Let us assume for simplicity that |θ| ≪ 1 so that we can make the small
angle approximation to the two slit equation, mλ = d sin θ ≈ dθ, and ask the
following question: How different do two wavelengths differing by ∆λ have
to be in order that the interference peaks from the two waves not overlap?
In order for the peaks to be distinguishable, they should be separated in θ
by an angle ∆θ = m∆λ/d, which is greater than the angular width of each
peak, αmax:

∆θ > αmax. (1.23)

Substituting in the above expressions for ∆θ and αmax and solving for ∆λ,
we get ∆λ > λ/(2mn), where λ is the average of the two wavelengths and
n = w/d is the number of slits in the diffraction grating. Thus, the fractional
difference between wavelengths which can be distinguished by a diffraction
grating depends solely on the interference order m and the number of slits n

than the width of the interference peaks on the display screen. This is a severe limitation.

Real diffraction grating spectrometers use a lens to focus the diffraction pattern on the

screen, and are not subject to this limitation.
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Figure 1.20: Sketch of wave moving at 45◦ to the x-axis.

in the grating:
∆λ

λ
>

1

2mn
. (1.24)

1.7 Problems

1. Point A is at the origin. Point B is 3 m distant from A at 30◦ coun-
terclockwise from the x axis. Point C is 2 m from point A at 100◦

counterclockwise from the x axis.

(a) Obtain the Cartesian components of the vector D1 which goes
from A to B and the vector D2 which goes from A to C.

(b) Find the Cartesian components of the vector D3 which goes from
B to C.

(c) Find the direction and magnitude of D3.

2. For the vectors in the previous problem, find D1 · D2 using both the
cosine form of the dot product and the Cartesian form. Check to see
if the two answers are the same.

3. Show graphically or otherwise that |A + B| 6= |A| + |B| except when
the vectors A and B are parallel.
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4. A wave in the x-y plane is defined by h = h0 sin(k · x) where k =
(1, 2) cm−1.

(a) On a piece of graph paper draw x and y axes and then plot a line
passing through the origin which is parallel to the vector k.

(b) On the same graph plot the line defined by k · x = kxx + kyy =
0, k · x = π, and k · x = 2π. Check to see if these lines are
perpendicular to k.

5. A plane wave in two dimensions in the x−y plane moves in the direction
45◦ counterclockwise from the x-axis as shown in figure 1.20. Determine
how fast the intersection between a wave front and the x-axis moves
to the right in terms of the phase speed c of the wave. Hint: What
is the distance between wave fronts along the x-axis compared to the
wavelength?

6. Two deep plane ocean waves with the same frequency ω are moving
approximately to the east. However, one wave is oriented a small angle
β north of east and the other is oriented β south of east.

(a) Determine the orientation of lines of constructive interference be-
tween these two waves.

(b) Determine the spacing between lines of constructive interference.

7. An example of waves with a dispersion relation in which the frequency
is a function of both wave vector magnitude and direction is shown
graphically in figure 1.21.

(a) What is the phase speed of the waves for each of the three wave
vectors? Hint: You may wish to obtain the length of each wave
vector graphically.

(b) For each of the wave vectors, what is the orientation of the wave
fronts?

(c) For each of the illustrated wave vectors, sketch two other wave vec-
tors whose average value is approximately the illustrated vector,
and whose tips lie on the same frequency contour line. Deter-
mine the orientation of lines of constructive interference produced
by the superimposing pairs of plane waves for which each of the
vector pairs are the wave vectors.
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Figure 1.21: Graphical representation of the dispersion relation for shallow
water waves in a river flowing in the x direction. Units of frequency are hertz,
units of wavenumber are inverse meters.

8. Two gravity waves have the same frequency, but slightly different wave-
lengths.

(a) If one wave has an orientation angle θ = π/4 radians, what is the
orientation angle of the other? (See figure 1.6.)

(b) Determine the orientation of lines of constructive interference be-
tween these two waves.

9. A plane wave impinges on a single slit, spreading out a half-angle α
after the slit. If the whole apparatus is submerged in a liquid with
index of refraction n = 1.5, how does the spreading angle of the light
change? (Hint: Recall that the index of refraction in a transparent
medium is the ratio of the speed of light in a vacuum to the speed
in the medium. Furthermore, when light goes from a vacuum to a
transparent medium, the light frequency doesn’t change. Therefore,
how does the wavelength of the light change?)
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10. Determine the diameter of the telescope needed to resolve a planet
2× 108 km from a star which is 6 light years from the earth. (Assume
blue light which has a wavelength λ ≈ 4 × 10−7 m = 400 nm. Also,
don’t worry about the great difference in brightness between the two
for the purposes of this problem.)

11. A laser beam from a laser on the earth is bounced back to the earth
by a corner reflector on the moon.

(a) Engineers find that the returned signal is stronger if the laser beam
is initially spread out by the beam expander shown in figure 1.22.
Explain why this is so.

(b) The beam has a diameter of 1 m leaving the earth. How broad is
it when it reaches the moon, which is 4× 105 km away? Assume
the wavelength of the light to be 5× 10−7 m.

(c) How broad would the laser beam be at the moon if it weren’t
initially passed through the beam expander? Assume its initial
diameter to be 1 cm.

12. Suppose that a plane wave impinges on two slits in a barrier at an
angle, such that the phase of the wave at one slit lags the phase at the
other slit by half a wavelength. How does the resulting interference
pattern change from the case in which there is no lag?

13. Suppose that a thin piece of glass of index of refraction n = 1.33 is
placed in front of one slit of a two slit diffraction setup.

(a) How thick does the glass have to be to slow down the incoming
wave so that it lags the wave going through the other slit by a
phase difference of π? Take the wavelength of the light to be
λ = 6× 10−7 m.

(b) For the above situation, describe qualitatively how the diffraction
pattern changes from the case in which there is no glass in front
of one of the slits. Explain your results.

14. A light source produces two wavelengths, λ1 = 400 nm (blue) and
λ2 = 600 nm (red).
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Figure 1.22: Sketch of a beam expander for a laser.

(a) Qualitatively sketch the two slit diffraction pattern from this source.
Sketch the pattern for each wavelength separately.

(b) Qualitatively sketch the 16 slit diffraction pattern from this source,
where the slit spacing is the same as in the two slit case.

15. A light source produces two wavelengths, λ1 = 631 nm and λ2 =
635 nm. What is the minimum number of slits needed in a grating
spectrometer to resolve the two wavelengths? (Assume that you are
looking at the first order diffraction peak.) Sketch the diffraction peak
from each wavelength and indicate how narrow the peaks must be to
resolve them.


